
Cross ring data move
1. Segmentation based protection breaks

2. Kernel level actual data move facilities

3. Enhanced hardware/software data move support

Advanced Operating Systems

MS degree in Computer Engineering

University of Rome Tor Vergata

Lecturer: Francesco Quaglia

User/kernel interactions so far

➢ We can change execution flow between user and kernel

➢ The effects are

✓ the switch of segmentation information (CS, DS

….)

✓ the switch of the CPL

➢ We can use CPU general purpose registers to

✓ Post register-fitting input data to the kernel

✓ Get register-fitting results from the kernel

➢ What about the need for exchanging larger data sets?

✓ see, e.g., Posix read()/write(), or Win-

API ReadFile()/WriteFile()

Usage of pointers

➢ Clearly, to exchange larger data sets between user and

kernel software we use buffers, hence pointers

➢ Pointers fully break the ring-based protection model

✓ A pointer value can be defined at user level

✓ The actual pointed content can be (over)written

or read executing at kernel level

✓ Without additional mechanisms, kernel software

can be tampered

➢ The actual solution to this problem depends on a lot of

factors

✓ Actual segmentation support in the hardware

✓ Absence or presence of additional protection

mechanisms in the hardware

The case of flexible segmentation

➢ This is x86 protected mode segmentation

➢ We can make, e.g., CS and DS point to whatever we want

in the linear address space

➢ Actual advantages and problems:

✓ Segment full separation in the address space will

allow protecting illegal read/writes from kernel

segments

✓ We need a mechanism for making this

protection occur seamless to the software

development process

A scheme

user

CS/DS

kernel

CS/DS

read(x,y,z)

y is an offset in DS

If we simply use the offset y

for putting data into the
destination buffer (e.g. “mov

source,(y)”) then we

will point to kernel level DS

upon kernel access

limit

If we use pure compiler-selected segmentation

then the ring model is broken

A solution

➢ Pieces of kernel code for moving data cross user/kernel

must be “handcrafted” (since choices involving segments

must be carefully handled – not solely based on compilers)

➢ We can use a programmable segment selector (e.g. FS) to

do this

✓ map FS to the user DS

✓ move data using the pointer ‘y’ applying the

displacement to FS

➢ These operations are generally called ‘segmentation fixup’

➢ Clearly they have a cost in terms of processor state setup

for carrying out the memory copy

Solution details

user

CS/DS

kernel

CS/DS

read(x,y,z)

y is an offset in DS

1) Trap to kernel

2) Materialize data to be

delivered into the buffer

cache (or other kernel

buffers)

3) Set FS base to user DS base

4) Execute a memory copy

module based on the
“mov source, FS:(y)”

pattern

5) Restore FS to the original

content

limit

The case of “constrained” segmentation

➢ This is x86 long mode segmentation

➢ This is also x86 protected mode with classical mapping of

user/kernel CS, DS, SS, ES to base 0x0

➢ Making FS to point to the base of “user DS” does not

work (it fails)

➢ The offset ‘y’ will still apply to kernel DS

➢ Hence the “mov source, FS:(y)” construct may

lead to write kernel level memory pages, depending on

the value of ‘y’

A representation of the failure

user

CS/DS

kernel

CS/DS

read(x,y,z)

y is an offset in DS

1) Trap to kernel

2) Materialize data into the

buffer cache (or other kernel

buffers)

3) Set FS base to user DS base

4) Execute a memory copy

module based on the
“mov source, FS:(y)”

pattern

5) Restore FS to the original

content

limit

Actual solutions with constrained

segmentation

➢ Where to point for a user/kernel data exchange

operation is not only defined by the processor state (and

its relation to parameters passed to the kernel)

➢ It is determined by the kernel software

➢ The determination is actuated per each individual

address space the kernel is managing

➢ Hence each thread has its limitations on where pointers

can be redirected for user/kernel data move

➢ When an operation is requested, the data move fixup

inspects the per-thread limitations to determine if the

operation is “legitim”

Per-thread memory limits in Linux

➢ Each thread management metadata keep a field called
addr_limit

➢ It is embedded into a struct (in a field called seg) which

can be read via the kernel API get_fs()

➢ It can also be updated to a generic value ‘x’ via the kernel

API set_fs(x)

➢ All the kernel services that implement user/kernel data

move make a check on addr_limit

➢ It the memory area (based on passed pointer and size of

the destination/source buffer) is not within addr_limit

the service does not (or partially) perform(s) memory copy

Example of addr_limit read

unsigned long limit;

......

limit = (unsigned long)get_fs().seg;

printk("limit is %p\n", limit);

Currently the limit in Linux is set to 0x00007ffffffff000

which is the lower half of the x86 long mode canonical

addressing form

User/kernel level data move API

unsigned long copy_from_user(void *to, const
void *from, unsigned long n)

Copies n bytes from the user address(from) to the kernel address
space(to).

unsigned long copy_to_user(void *to, const void
*from, unsigned long n)

Copies n bytes from the kernel address(from) to the user address
space(to).

void get_user(void *to, void *from)

Copies an integer value from userspace (from) to kernel space (to).

void put_user(void *from, void *to)

Copies an integer value from kernel space (from) to userspace (to).

User/kernel level data move API

long strncpy_from_user(char *dst, const char
*src, long count)

Copies a null terminated string of at most count bytes long from
userspace (src) to kernel space (dst)

int access_ok(int type, unsigned long addr,
unsigned long size)

Returns nonzero if the userspace block of memory is valid and zero
otherwise

These data move operations may “memory fail” but limited to

already mapped regions – the results returned indicates the

residual bytes of the data move operation, not the amount of

data actually moved

A scheme

These functions return the residuals

(bytes not managed)

Most of them ground on
access_ok()

The actual copy operation may lead the thread to sleep

(we will be back to this issue when talking of contexts)

Overall view of the API actions

➢Segment fixup (if segmentation takes a real role in
the composition of the addresses)

➢Check on address ranges related to user level

✓The actual depth of check may depend on the specific
implementation (namely on the kernel version)

✓E.g., the process memory map might be checked or not

➢Note: associating physical to virtual memory is
demanded to the page-fault handler

✓Performance impact due to (possible) non-atomicity
while finalizing the handling

Service redundancy approaches

• Check e fixup are required only in case we need to

link activities across different privilege levels within

the ring model (as when calling system calls)

• Particularly, this occurs when the execution semantic

crosses the boundaries of individual segments

• Bypassing check e fixup when no crossing of segment

boundaries occurs takes place via “service

redundancy” (for performance reasons)

• The kernel layer entails an internal API for executing

activities that are typically triggered when running in

user mode

Classical examples

• kernel_read() is a redundancy for read()

• kernel_write() is a redundancy for write()

read() – syscall

sys_read()

read() – file operation

real data movement

call from the kernel

kernel_read()

This requires

fixup with

possible update of
addr_limit

memcpy with tampered pointers

➢ Clearly, the usage of fixup based APIs for data

movement does not break the ring model under

normal operating conditions

➢ What of a memcpy() is called by the kernel, with

arbitrary pointers after a subversion (speculative or

not) or in presence of bugs?

➢ In more dated processor/kernel versions we could

do nothing

➢ In more modern processors/kernels we have ad

additional security oriented hardware support,

which leads to constrained supervisor mode!!

The actual hardware support on x86

➢ SMAP (Supervisor Mode Access Prevention)

✓ It blocks data access to user pages when

running at CPL 0

➢ SMEP (Supervisor Mode Execution Prevention)

✓ It blocks instruction fetches form user

pages when running at CPL 0

➢ Two bits in CR4 (21 and 20) activate them

➢ They can be temporary disabled (e.g. setting te AC

bit in EFLAGS for the case of SMAP)

copy_to_user timeline (as a

reference example)

➢ Check within pre-thread limit

➢ Determine the legal amount of data to be copied

➢ Disable SMAP (via the AC flag through the stac

x86 instruction)

➢ Make the copy (may wait but not SEGFAULT)

➢ Enable SMAP again (via the AC flag through the

clac x86 instruction

access_OK limitations

➢ The determination of the legal amount of data to be

copied requires inspecting the memory map (via

*mm) of the running thread

➢ Various additional machine instructions used just to

move data between kernel and user

✓ Interactions with suboptimal usage of I/O services

(e.g. byte rather than segment reads/writes)

➢ mm inspection may have linear (non-constant) cost

Newer approaches: kernel masked

SEGFAULTS

➢ Access OK control only checks the addr_limit

➢ If addr_limit is OK then the memory copy is

directly executed

➢ If and only if some user page not mapped (or not

compliant with the protection requested by the

memory copy) is touched we have a SEGFAULT

from kernel software (RIP points to a kernel page)

➢ The philosophy is the one of speeding up the normal

scenario

Kernel masked SEGFAULTS details

copy_to_user A A’

Segfaulting RIP

put_user B B’

Known at kernel

compile/load time

Alternative RIP

……

The page fault

handler check this

table and passes

control to the

alternative block

of code

The alternative code block

finalizes the data

move simply returning

the residual bytes number

