
Kernel level memory management
1. The very base on boot vs memory management

2. Memory ‘Nodes’ (UMA vs NUMA)

3. x86 paging support

4. Boot and steady state behavior of the memory

management system in the Linux kernel

Advanced Operating Systems

MS degree in Computer Engineering

University of Rome Tor Vergata

Lecturer: Francesco Quaglia

Basic terminology

• firmware: a program coded on a ROM device, which can

be executed when powering a processor on

• bootsector: predefined device (e.g. disk) sector keeping

executable code for system startup

• bootloader: the actual executable code loaded and

launched right before giving control to the target operating

system

➢this code is partially kept within the bootsector, and

partially kept into other sectors

➢It can be used to parameterize the actual operating

system boot

Startup tasks

• The firmware gets executed, which loads in memory and

launches the bootsector content

• The loaded bootsector code gets launched, which may

load other bootloader portions

• The bootloader ultimately loads the actual operating

system kernel and gives it control

• The kernel performs its own startup actions, which may

entail architecture setup, data structures and software

setup, and process activations

• To emulate a steady state unique scenario, at least one

process is derived from the boot thread (namely the IDLE

PROCESS)

Where is memory management there?

• All the previously listed steps lead to change the image of

data/code that we have in memory

• These changes need to happen just based on various

memory handling policies/mechanisms, operating at:

✓ Architecture setup

✓ Kernel initialization (including kernel level memory

management initialization)

✓ Kernel common operations (which make large usage

of kernel level memory management services that

have been setup along the boot phase)

An initially loaded kernel memory-image is not the same as the

one that common applications ``see’’ when they are activated

Traditional firmware on x86

• It is called BIOS (Basic I/O System)

• Interactive mode can be activated via proper interrupts

(e.g. the F1 key)

• Interactive mode can be used to parameterize firmware

execution (the parameterization is typically kept via

CMOS rewritable memory devices powered by apposite

temporary power suppliers)

• The BIOS parameterization can determine the order for

searching the boot sector on different devices

• A device boot sector will be searched for only if the device

is registered in the BIOS list

Bios bootsector

• The first device sector keeps the so called master boot

record (MBR)

• This sector keeps executable code and a 4-entry tables,

each one identifying a different device partition (in terms

of its positioning on the device)

• The first sector in each partition can operate as the

partition boot sector (BS)

• In case the partition is extended, then it can additionally

keep up to 4 sub-partitions (hence the partition boot

sector can be structured to keep an additional partitioning

table)

• Each sub-partition can keep its own boot sector

RAM image of the MBR

Grub (if you use it) or others

An example scheme with Bios

Boot sector

Boot

partition

Extended partition boot sector

Partition table

Boot code

Partition 1 Partition 3 (extended)

Nowadays huge limitation:

the maximum size of

manageable disks is 2TB

UEFI – Unified Extended Firmware Interface

• It is the new standard for basic system support (e.g. boot

management)

• It removes several limitations of BIOS:

• We can (theoretically) handle disks up to 9 zettabytes

• It has a more advanced visual interface

• It is able to run EFI executables, rather than simply

loading and launching the MBR code

• It offers interfaces to the OS for being configured

(rather than being exclusively configurable by

triggering its interface with Fn keys at machine

startup)

UEFI device partitioning

• Based on GPT (GUID Partition Table)

• GUID = Globally Unique Identifier ….. Theoretically all

over the world (if the GPT has in its turn a unique

identifier)

• Theoretically unbounded number of partitions kept in this

table – No longer we need extended partitions for

enlarging the partitions’ set

• GPT are replicated so that if a copy is corrupted then

another one will work – this breaks the single point of

failure represented by MBR and its partition table

Bios/UEFI tasks upon booting the OS kernel (i)

• The bootloader/EFI-loader, e.g., GRUB, loads in memory the

initial image of the operating system kernel

• This includes a ``machine setup code’’ that needs to run before

the actual kernel code takes control

• This happens since a kernel configuration needs given setup in

the hardware upon being launched

• The machine setup code ultimately passes control to the initial

kernel image

Bios/UEFI tasks upon booting the OS kernel (ii)

• In Linux, this kernel image executes starting from the

start_kernel() in init/main.c

• This kernel image is way different, both in size and

structure, from the one that will operate at steady state

• Just to name one reason, boot is typically highly

configurable!

What about Linux boot on multi-core/HT

machines

• The start_kernel() function is executed along a

single CPU-core (the master)

• All the other cores (the slaves) only keep waiting that the

master has finished

• The kernel internal function smp_processor_id()

can be used for retrieving the ID of the current core

• This function is based on ASM instructions implementing a

hardware specific ID detection protocol

• This function operates correctly either at kernel boot or at

steady state

The actual support for CPU-core

identification

Actual kernel startup scheme in Linux

……….

Core-0 Core-1 Core-2 Core-(n-1) code in
head.S

(or variants)

start_kernel

SYNC

An example head.S code snippet:

triggering Linux paging (IA32 case)

/* * Enable paging */ 3:
movl $swapper_pg_dir-__PAGE_OFFSET,%eax

movl %eax,%cr3 /* set the page table

pointer.. */

movl %cr0,%eax

orl $0x80000000,%eax

movl %eax,%cr0 /* ..and set paging (PG) bit

*/

An example head_64.S code snippet:

triggering Linux paging (x86-64 case / kernel 5)

/* Form the CR3 value being sure to include the CR3 modifier */

addq $(early_top_pgt - __START_KERNEL_map), %rax

………. /* here in the middle we account for other stuff like

randomization */

movq %rax, %cr3

https://elixir.bootlin.com/linux/v5.9.1/C/ident/early_top_pgt
https://elixir.bootlin.com/linux/v5.9.1/C/ident/__START_KERNEL_map
https://elixir.bootlin.com/linux/v5.9.1/C/ident/rax
https://elixir.bootlin.com/linux/v5.9.1/C/ident/movq
https://elixir.bootlin.com/linux/v5.9.1/C/ident/rax
https://elixir.bootlin.com/linux/v5.9.1/C/ident/cr3

Hints on the signature of the

start_kernel function (as well as others)

…… __init start_kernel(void)

This only lives in memory during kernel boot (or startup)

The reason for this is to recover main memory storage which is relevant

because of both:

• Reduced available RAM (older configurations)

• Increasingly complex (and hence large in size) startup code

Recall that the kernel image is not subject to swap out

(conventional kernels are always resident in RAM)

Management of __init functions

• The kernel linking stage locates these functions on

specific logical pages (recall what we told about the

fixed positioning of specific kernel level stuff in the

kernel layout!!)

• These logical pages are identified within a “bootmem”

subsystem that is used for managing memory when the

kernel is not yet at steady state of its memory

management operations

• Essentially the bootmem subsystem keeps a bitmask

with one bit indicating whether a given page has been

used (at compile time) for specific stuff

… still on bootmem

• The bootmem subsystem also allows for memory

allocation upon the very initial phase of the kernel

startup

• In fact, the data structures (e.g. the bitmaps) it keeps

not only indicate if some page has been used for

specific data/code

• They also indicate if some page which is actually

reachable at the very early phase of boot is not used

for any stuff

• These are clearly “free buffers” exploitable upon the

very early phase of boot

An exemplified picture of bootmem

Data

Code

.

.

.

.

Link in a single image

Bootmem

bitmap

0x80000000

0xc0800000

free

free

free

Compact status of

busy/free buffers (pages)

Logical pages immediately reachable at

the very early phase of kernel startup

The meaning of ``reachable page’’

• The kernel software can access the actual content of the page

(in RAM) by simply expressing an address falling into that

page

• The point is that the expressed address is typically a virtual

one (since kernel code is commonly written using ``pointer’’

abstractions)

• So the only way we have to make a virtual address correspond

to a given page frame in RAM is to rely on at least a page

table that makes the translation (even at the very early stage of

kernel boot)

• The initial kernel image has a page table, with a minimum

number of pages mapped to RAM, those handled by the

bootmem subsystem

How is RAM memory organized on

modern (large scale/parallel) machines?

• In modern chipsets, the CPU-core count continuously

increases

• However, it is increasingly difficult to build architectures

with a flat-latency memory access (historically referred to

as UMA)

• Current machines are typically NUMA

• Each CPU-core has some RAM banks that are close and

other that are far

• Generally speaking, each memory bank is associated with

a so called NUMA-node

• Modern operating systems are designed to handle NUMA

machines (hence UMA as a special case)

Looking at the Linux NUMA setup via

Operating System facilities

• A very simple way is the numactl command

• It allows to discover

✓How many NUMA nodes are present

✓What are the nodes close/far to/from any CPU-core

✓What is the actual distance of the nodes (from the

CPU-cores)

Let’s see a few ‘live’ examples …….

Bootmem vs Memblock

• In more recent versions of OS kernels the bootmem

architecture has been enriched

• It allows for keeping track of free/busy frames with a per-

NUMA node granularity

• The newer architecture is called “memblock” in Linux

• An additional logic is inserted for setting up the memblock

system to indicate how many NUMA nodes we have

• The API for managing memory in memblock has been

slightly changed with respect to traditional bootmem

• However the essence of the operations we can do is the

same

Actual kernel data structures for

managing memory

• Kernel Page table

➢This is a kind of ‘ancestral’ page table (all the others are

somehow derived from this one)

➢It keeps the memory mapping for kernel level code and

data (thread stack included)

• Core map

➢The map that keeps status information for any frame

(page) of physical memory, and for any NUMA node

• Free list of physical memory frames, for any NUMA node

None of them is already finalized when we

startup the kernel

A scheme

Free list Free list

Status (free/busy)

of memory frames

mov (%rax), %rbx

Frames’

zone x

Frames’

zone y

Kernel page

table

Target frame

Core

map

Objectives of the kernel page table setup

• These are basically two:

✓ Allowing the kernel software to use virtual addresses while

executing (either at startup or at steady state)

✓ Allowing the kernel software (and consequently the

application software) to reach (in read and/or write mode)

the maximum admissible (for the specific machine) or

available RAM storage

• The finalized shape of the kernel page table is therefore

typically not setup into the original image of the kernel

loaded in memory, e.g., given that the available RAM to

drive can be parameterized

A scheme

Range of linear

addresses

reachable when

switching to

protected mode

plus paging
Range of linear

addresses

reachable when

running at steady

state

Increase

of the size

of reachable

RAM locations

(e.g. according

to boot

parameters)

Passage from the compile-time

defined kernel-page table

to the boot time reshuffled one

Directly mapped memory pages

• They are kernel level pages whose mapping onto physical

memory (frames) is based on a simple shift between virtual and

physical addresses

✓ PA = (VA) where  is (typically) a simple function subtracting

a predetermined constant value to VA

• Not all the kernel level virtual pages are directly mapped

Kernel level

pages

Page

frames

Directly

mapped

Non-

directly

mapped

Virtual memory vs boot sequence:

the i386 very didactical example

• Upon kernel startup addressing relies on a simple single level

paging mechanism that only maps 2 pages (each of 4 MB) up to

8 MB physical addresses

• The actual paging rule (namely the page granularity and the

number of paging levels – up to 2 in i386) is identified via

proper bits within the entries of the page table

• The physical address of the setup page table is kept within the

CR3 register

• The steady state paging scheme used by LINUX will be activated

during the kernel boot procedure

• The max size of the address space for LINUX processes on i386

machines (or protected mode) is 4 GB

➢ 3 GB are within user level segments

➢ 1 GB is within kernel level segments

Virtual memory vs boot sequence:

the i386 very didactical example

Details on the page table structure in i386 (i)

address

<10 bits page number,

22 bits page offset>

<20 bits page number,

12 bits page offset>

<10 bits page section,

10 bits actual page>

<physical 4MB frame address>

<physical 4KB frame address>

1 Level paging 2 Levels paging

PD(E)

PT(E)

PT(E)

Details on the page table structure in i386 (ii)

• It is allocated in physical memory into 4KB blocks, which can

be non-contiguous

• In typical LINUX configurations, once set-up it maps 4 GB

addresses, of which 3 GB at null reference and (almost) 1 GB

onto actual physical memory

• Such a mapped 1 GB corresponds to kernel level virtual

addressing and allows the kernel to span over 1 GB of

physical addresses

• To drive more physical memory, additional configuration

mechanisms need to be activated, or more recent processors

needs to be exploited as we shall see

i386 memory layout at kernel startup:

still very didactical for kernel 2.4

8 MB (mapped on VM)

code

data

free

X MB (unmapped on VM)

Page table

With 2 valid

entries only

(each one for a

4 MB page)

Actual issues to be tackled

1. We need to reach the correct granularity for paging (4KB

rather than 4MB)

2. We need to span logical to physical address across the whole

1GB of kernel-manageable physical memory

3. We need to re-organize the page table in two separate levels

4. So we need to determine ‘free buffers’ within the already

reachable memory segment to initially expand the page table

5. We cannot use memory management facilities other than

paging (since core maps and free lists are not yet at steady

state)

Back to the concept of bootmem

1. Memory occupancy and location of the initial kernel image is

determined by the compile/link process

2. As we have seen, a compile/link time memory manager is

embedded into the kernel image, which is called bootmem

manager

3. It relies on bitmaps telling if any 4KB page in the currently

reachable memory image is busy or free

4. It also offers API (to be employed at boot time) in order to get free

buffers

5. These buffers are sets of contiguous (or single) page aligned areas

6. As hinted, this subsystem is in charge of handling _init marked

functions in terms of final release of the corresponding buffers

Kernel page table collocation within physical

memory

1 GB (mapped on VM starting

from 3 GB

within virtual

addressing)

Code

data

free
Page table

(formed by 4 KB

non-contiguous

blocks)

Low level “pages”

Kernel boot

Load undersized page table

(kernel page size not finalized: 4MB)

- 4 KB (1K entry)

Expand page table via

bootmem low pages

(not marked in the page table)

- compile time identification

Finalize kernel handled

page size (4KB)

LINUX paging vs i386

• LINUX virtual addresses exhibit (at least) 3 indirection levels

Physical

(frame) adress

Page Middle

Directory

Page Table

Entries

Page General

Directory

pgd pmd pte

• On i386 machines, paging is supported limitedly to 2 levels (pde,

page directory entry – pte, page table entry)

• Such a dicotomy is solved by setting null the pmd field, which is

proper of LINUX, and mapping

➢pgd LINUX to i386 pde

➢pte LINUX to i386 pte

offset

i386 page table size

• Both levels entail 4 KB memory blocks

• Each block is an array of 4-byte entries

• Hence we can map 1 K x 1K pages

• Since each page is 4 KB in sixe, we get a 4 GB virtual addressing

space

• The following macros define the size of the page tables blocks (they

can be found in the file include/asm-i386/pgtable-

2level.h)

➢#define PTRS_PER_PGD 1024

➢#define PTRS_PER_PMD 1

➢#define PTRS_PER_PTE 1024

• the value1 for PTRS_PER_PMD is used to simulate the existence

of the intermediate level such in a way to keep the 3-level oriented

software structure to be compliant with the 2-level architectural

support

Page table data structures

• A core structure is represented by the symbol swapper_pg_dir

which is defined within the file arch/i386/kernel/head.S

• This symbol expresses the virtual memory address of the PGD (PDE)

portion of the kernel page table

• This value is initialized at compile time, depending on the memory

layout defined for the kernel bootable image

• Any entry within the PGD is accessed via displacement starting from

the initial PGD address

• The C types for the definition of the content of the page table

entries on i386 are defined in include/asm-i386/page.h

• They are

typedef struct { unsigned long pte_low; } pte_t;

typedef struct { unsigned long pmd; } pmd_t;

typedef struct { unsigned long pgd; } pgd_t;

Debugging

• The redefinition of different structured types, which are identical in

size and equal to an unsigned long, is done for debugging

purposes

• Specifically, in C technology, different aliases for the same type

are considered as identical types

• For instance, if we define
typedef unsigned long pgd_t;

typedef unsigned long pte_t;

pgd_t x; pte_t y;

the compiler enables assignments such as x=y and y=x

• Hence, there is the need for defining different structured types which

simulate the base types that would otherwise give rise to compiler

equivalent aliases

i386 PDE entries

Nothing tells whether we can fetch (so execute)

from there

i386 PTE entries

Nothing tells whether we can fetch (so execute)

from there

Field semantics

• Present: indicates whether the page or the pointed page table is

loaded in physical memory. This flag is not set by firmware (rather

by the kernel)

• Read/Write: define the access privilege for a given page or a set of

pages (as for PDE) . Zero means read only access

• User/Supervisor: defines the privilege level for the page or for the

group of pages (as for PDE). Zero means supervisor privilege

• Write Through: indicates the caching policy for the page or the set

of pages (as for PDE). Zero means write-back, non-zero means

write-through

• Cache Disabled: indicates whether caching is enabled or disabled

for a page or a group of pages. Non-zero value means disabled

caching (as for the case of memory mapped I/O)

• Accessed: indicates whether the page or the set of pages has been

accessed. This is a sticky flag (no reset by firmware). Reset is

controlled via software

• Dirty: indicates whether the page has been write-accessed. This is

also a sticky flag

• Page Size (PDE only): if set indicates 4 MB paging otherwise 4 KB

paging

• Page Table Attribute Index: ….. Do not care ……

• Page Global (PTE only): defines the caching policy for TLB entries.

Non-zero means that the corresponding TLB entry does not

require reset upon loading a new value into the page table pointer

CR3

Bit masking

• in include/asm-i386/pgtable.h there exist some macros

defining the positioning of control bits within the entries of the PDE

or PTE

• There also exist the following macros for masking and setting those

bits

➢#define _PAGE_PRESENT 0x001

➢#define _PAGE_RW 0x002

➢#define _PAGE_USER 0x004

…

➢#define _PAGE_ACCESSED 0x020

➢#define _PAGE_DIRTY 0x040 /* proper of PTE */

• These are all machine dependent macros

An example

pte_t x;

x = …;

if ((x.pte_low) & _PAGE_PRESENT){

/* the page is loaded in a frame */

}

else{

/* the page is not loaded in any

frame */

} ;

Relations with trap/interrupt events

• Upon a TLB miss, firmware accesses the page table

• The first checked bit is typically _PAGE_PRESENT

• If this bit is zero, a page fault occurs which gives rise to a trap

(with a given displacement within the trap/interrupt table)

• Hence the instruction that gave rise to the trap can get finally

re-executed

• Re-execution might give rise to additional traps,

depending on firmware checks on the page table

• As an example, the attempt to access a read only page in write

mode will give rise to a trap (which triggers the

segmentation fault handler)

#include <kernel.h>

#define MASK 1<<7

unsigned long addr = 3<<30; // fixing a reference on the

// kernel boundary

asmlinkage int sys_page_size(){

//addr = (unsigned long)sys_page_size; // moving the reference

return(swapper_pg_dir[(int)((unsigned long)addr>>22)]&MASK?

4<<20:4<<10);

}

Run time detection of current page size:

still for i386

Kernel page table initialization details

• As said, the kernel PDE is accessible at the virtual address kept

by swapper_pg_dir (now init_level4_pgt on

x86-64/kernel3 or init_top_pgt on x86-64/kernel4-5)

• The room for PTE tables gets reserved within the 8MB of

RAM that are accessible via the initial paging scheme

• Reserving takes place via the macro

alloc_bootmem_low_pages() which is defined in

include/linux/bootmem.h (this macro returns a

virtual address)

• Particularly, it returns the pointer to a 4KB (or 4KB x N)

buffer which is page aligned

• This function belongs to the (already hinted) basic memory

management subsystem the boot lies on

Kernel 2.4/i386 initialization algorithm

(still very didactical)
• we start by the PGD entry which maps the address 3 GB, namely

the entry numbered 768

• cyclically

1. We determine the virtual address to be memory mapped (this

is kept within the vaddr variable)

2. One page for the PTE table gets allocated which is used for

mapping 4 MB of virtual addresses

3. The table entries are populated

4. The virtual address to be mapped gets updated by adding 4

MB

5. We jump to step 1 unless no more virtual addresses or no more

physical memory needs to be dealt with (the ending condition

is recorded by the variable end)

Initialization function pagetable_init()

for (; i < PTRS_PER_PGD; pgd++, i++) {

vaddr = i*PGDIR_SIZE; /* i is set to map from 3 GB */

if (end && (vaddr >= end)) break;

pmd = (pmd_t *)pgd;/* pgd initialized to (swapper_pg_dir+i) */

………

for (j = 0; j < PTRS_PER_PMD; pmd++, j++) {

………

pte_base = pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);

for (k = 0; k < PTRS_PER_PTE; pte++, k++) {

vaddr = i*PGDIR_SIZE + j*PMD_SIZE + k*PAGE_SIZE;

if (end && (vaddr >= end)) break;

………

*pte = mk_pte_phys(__pa(vaddr), PAGE_KERNEL);

}

set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte_base)));

………

}

}

Note!!!

• The final PDE buffer coincides with the initial page

table that maps 4 MB pages

• 4KB paging gets activated upon filling the entry of the

PDE table (since the Page Size bit gets updated)

• For this reason the PDE entry is set only after having

populated the corresponding PTE table to be pointed

• Otherwise memory mapping would be lost upon any

TLB miss

The set_pmd macro

#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)

• Thia macro simply sets the value into one PMD entry

• Its input parameters are

➢ the pmdptr pointer to an entry of PMD (the type is pmd_t)

➢ The value to be loaded pmdval (of type pmd_t, defined via

casting)

• While setting up the kernel page table, this macro is used in

combination with __pa() (physical address) which returns an

unsigned long

• The latter macro returns the physical address corresponding to a

given virtual address within kernel space (except for some

particular virtual address ranges, those non-directly mapped)

• Such a mapping deals with [3,4) GB virtual addressing onto [0,1) GB

physical addressing

The mk_pte_phys()macro

mk_pte_phys(physpage, pgprot)

• The input parameters are

➢ A frame physical address physpage, of type

unsigned long

➢ A bit string pgprot for a PTE, of type pgprot_t

• The macro builds a complete PTE entry, which includes the

physical address of the target frame

• The result type is pte_t

• The result value can be then assigned to one PTE entry

Bootmem vs Memblock allocation API

• In memblock the classical “low pages” allocators have been

incapsulated into a slightly different API functions

➢memblock_phys_alloc*() - these functions return the

physical address of the allocated memory

➢memblock_alloc*() - these functions return the virtual

address of the allocated memory.

PAE (Physical address extension)
• increase of the bits used for physical addressing

• offered by more recent x86 processors (e.g. Intel Pentium Pro)

which provide up to 36 bits for physical addressing

• we can drive up to 64 GB of RAM memory

• paging gets operated at 3 levels (instead of 2)

• the traditional page tables get modified by extending the entries at

64-bits and reducing their number by a half (hence we can support

¼ of the address space)

• an additional top level table gets included called “page directory

pointer table” which entails 4 entries, pointed by CR3

• CR4 indicates whether PAE mode is activated or not (which is done

via bit 5 – PAE-bit)

x86-64 architectures

• They extend the PAE scheme via a so called “long addressing

mode”

• Theoretically they allow addressing 2^64 bytes of logical memory

• In actual implementations we reach up to 2^48 canonical form

addresses (lower/upper half within a total address space of 2^48)

• The total allows addressing to span over 256 TB

• Not all operating systems allow exploiting the whole range up to

256 TB of logical/physical memory

• LINUX currently allows for 128 TB for logical addressing of

individual processes and 64 TB for physical addressing

Addressing scheme

64-bit 48 out of 64-bit

text

data

kernel

Heap

Stack

DLL

Non-allowed

logical addresses

(canonical 64-bit

addressing)

48-bit addressing: page tables

• Page directory pointer has been expanded from 4

to 512 entries

• An additional paging level has been added thus

reaching 4 levels, this is called “Page-Map level”

• Each Page-Map level table has 512 entries

• Hence, we get 512^4 pages of size 4 KB that are

addressable (namely, a total of 256 TB)

also referred to as PGD

(Page General Directory)

Direct vs non-direct page mapping

• In long mode x86 processors allow one entry of the PML4

to be associated with 2^27 frames

• This amounts to 2^29 KB = 2^9 GB = 512 GB

• Clearly, we have plenty of room in virtual addressing for

directly mapping all the available RAM into kernel pages on

most common chipsets

• This is the typical approach taken by Linux, where we

directly map all the RAM memory

• However, we also remap the same RAM memory in non-

direct manner whenever required

Huge pages

• Ideally x86-64 processors support them starting from PDPT

• Linux typically offers the support for huge pages pointed to

by the PDE (page size 512*4KB)

• See: /proc/meminfo and

/proc/sys/vm/nr_hugepages

• These can be “mmaped” via file descriptors and/or mmap

parameters (e.g. MAP_HUGETLB flag)

• They can also be requested via the madvise(void*,

size_t, int) system call (with MADV_HUGEPAGE

flag)

Back to speculation in the hardware

• From Meldown we already know that a page table entry plays a

central role in hardware side effects with speculative execution

• The page table entry provides the physical address of some

“non-accessible” byte, which is still accessible in speculative

mode

• This byte can flow into speculative incarnations of registers and

can be used for cache side effects

• ….. but, what about a page table entry with “presence bit”

not set???

• ….. is there any speculative action that is still performed by

the hardware with the content of that page table entry?

The L1 Terminal Fault (L1TF) attack

• It is based on the exploitation of data cached into L1

• More in detail:

➢ A page table entry with presence bit set to 0 propagates the value of the

target physical memory location (the TAG) upon loads if that memory

location is already cached into L1

➢ If we use the value of that memory location as an index (Meltdown style)

we can grub it via side effects on cache latency

• Overall, we can be able to indirectly read the content of any

physical memory location if the same location has already been

read, e.g., in the context of another process on the same CPU-

core

• Affected CPUs: AMD, Intel ATOM, Intel Xeon PHI …

The scheme

Page table

Virtual address “invalid” physical address

L1

Tag present

Speculatively

propagate to CPU

L1TF big issues

• To exploit L1TF we must drive page table entries

• A kernel typically does not allow it (in fact kernel

mitigation of this attack simply relies on having “invalid”

page table entries set to proper values not mapping

cacheable data)

• But what about a guest kernel?

• It can attack physical memory of the underlying host

• So it can also attack memory of co-located guests/VMs

• It is as simple as hacking the guest level page tables, on

which an attacker that drives the guest may have full control

Hardware supported “virtual memory”

virtualization

• Intel Extended Page Tables (EPT)

• AMD Nested Page Tables (NPT)

• A scheme:

Keeps track of

the physical

memory location

of the page frames

used for activated

VM

Attacking the host physical memory

Change this to

whatever

physical address and

make the entry invalid

Reaching vs allocating/deallocating memory

Kernel boot

Load undersized page table

(kernel page size not finalized)

Expand page table via

boot mem low pages

(not marked in the page table)

- compile time identification

Finalize kernel

handled page

size (4KB)

Expand/modify data

structures via pages

(marked in the page table)

- run time identification

Allocation only Allocation +

deallocation

Linux core map
• It is an array of mem_map_t (also known as struct page)

structures defined in include/linux/mm.h

• The actual type definition is as follows (or similar along kernel

advancement):

typedef struct page {

struct list_head list; /* ->mapping has some page lists. */

……

atomic_t count; /* Usage count, see below. */

……

unsigned long flags; /* atomic flags, some possibly

updated asynchronously */

……

} mem_map_t;

The concept of memory zones

• Historically (e.g. when reasoning on sigle NUMA-node or

NUMA unaware kernels) we had 3 free lists of frames

• Hence, we had frame positioning within the following zones:

DMA (DMA ISA operations), NORMAL (room where the

kernel can reside), HIGHMEM (room for user data)

• With classical 32-bit address spaces the corresponding sizes

were

ZONE_DMA < 16 MB ISA DMA capable memory

ZONE_NORMAL 16-896 MB direct mapped by the kernel

ZONE_HIGHMEM > 896 MB only page cache and user

Linux free list data structures

• Free lists information is kept within the pg_data_t data structure

defined in include/linux/mmzone.h, and whose actual instance

is contig_page_data, which is declared in mm/numa.c

typedef struct pglist_data {

struct zone node_zones[MAX_NR_ZONES];

……

int nr_zones; //actually used zones

……

struct page *node_mem_map;

……

} pg_data_t;

struct zone {

……

free_area_t free_area[MAX_ORDER];

……

spinlock_t lock;

……

struct page *zone_mem_map;

……

}

Up to 11 in

recent

kernel versions

(it was typically

5 before)

Where do we pick free memory

blocks in a buddy allocator

Describing a memory zone

Buddy system features

frame Order 0

Order 0

Order 1
Order 2

Size 20 Size 21 Size 22

Buddy allocation vs core map vs free list

Order 0

free frames

Order 0

free frames

Order 1

free frame

Order 1

free frame

free_area[0]

free_area[1]

references based on
struct list_head

Recall that spinlocks are used to manage this data structure

mem_map (the core map array)

A scheme (picture from: Understanding the Linux Virtual

Memory Manager – Mel Gorman)

Jumping to NUMA aware Linux kernels

(e.g. starting from kernel 2.6)

• The concept of multiple NUMA zones is represented by a

struct pglist_data even if the architecture is Uniform

Memory Access (UMA)

• This struct is always referenced by its typedef

pg_data_t

• Every node in the system is kept on a NULL terminated list

called pgdat_list, and each node is linked to the next with

the field pg_data_t→node_next

• For UMA architectures like PC desktops, only one static

pg_data_t structure is used

A schememem_map

pglist_data

pg_data_t record

struct page *node_mem_map

From kernel

2.6.17 we have

an array of entries

called
node_data[]

One buddy

allocator

per each

node

Allocation contexts (more generally,

kernel level execution contexts)

• Process context
– Allocation is caused by a system call or a trap

• Not satisfiable → wait is experienced along the current
execution trace

• Priority based schemes

• Interrupt
– Allocation requested by an interrupt handler

• Not satisfiable → no-wait is experienced along the current
execution trace

• Priority independent schemes

Buddy-system API

• After booting, the memory management system can be accessed via

proper APIs, which drive operations on the aforementioned data

structures

• The prototypes are in #include <linux/malloc.h>

• The very base allocation APIs are (bare minimal – page aligned

allocation)

➢ unsigned long get_zeroed_page(int flags)

removes a frame from the free list, sets the content to zero and returns

the virtual address

➢ unsigned long __get_free_page(int flags)

removes a frame from the free list and returns the virtual address

➢ unsigned long __get_free_pages(int flags,

unsigned long order)

removes a block of contiguous frames with given order from the free

list and returns the virtual address of the first frame

➢ void free_page(unsigned long addr)

puts a frame into the free list again, having a given initial virtual

address

➢ void free_pages(unsigned long addr,

unsigned long order)

puts a block of frames of given order into the free list again

Note!!!!!!! Wrong order may give rise to kernel corruption in

several kernel configurations

flags : used contexts

GFP_ATOMIC the call cannot lead to sleep (this is for interrupt

contexts)

GFP_USER - GFP_BUFFER - GFP_KERNEL the call can lead to

sleep

Buddy allocation vs direct mapping

• All the buddy-system API functions return virtual

addresses of direct mapped pages

• We can therefore directly discover the position in

memory of the corresponding frames

• Also, memory contiguousness is guaranteed for both

virtual and physical addresses

Binding actual allocation to NUMA nodes

The real core of the Linux page allocator is the function

struct page *alloc_pages_node(int nid, unsigned

int flags, unsigned int order);

Hence the actual allocation chain is:

__get_free_pages

mempolicy data
Node ID

alloc_pages_node (per NUMA node allocation)

Mem-policy details

• Generally speaking, mem-policies determine what NUMA node

needs to be involved in a specific allocation operation which is

thread specific

• Starting from kernel 2.6.18, the determination of mem-policies can

be configured by the application code via system calls

Synopsis
#include <numaif.h>

int set_mempolicy(int mode, unsigned long

*nodemask, unsigned long maxnode);

sets the NUMA memory policy of the calling process, which consists

of a policy mode and zero or more nodes, to the values specified by

the mode, nodemask and maxnode arguments

The mode argument must specify one of MPOL_DEFAULT,

MPOL_BIND, MPOL_INTERLEAVE or

MPOL_PREFERRED

… another example

Synopsis
#include <numaif.h>

int mbind(void *addr, unsigned long len, int

mode, unsigned long *nodemask, unsigned long

maxnode, unsigned flags);

sets the NUMA memory policy, which consists of a policy mode and

zero or more nodes, for the memory range starting with addr and

continuing for len bytes. The memory policy defines from which node

memory is allocated.

… finally you can also move pages around

Synopsis
#include <numaif.h>

long move_pages(int pid, unsigned long count,

void **pages, const int *nodes, int *status,

int flags);

moves the specified pages of the process pid to the memory nodes

specified by nodes. The result of the move is reflected in status. The

flags indicate constraints on the pages to be moved.

The case of frequent allocation/deallocation of

target-specific data structures

• Here we are talking about allocation/deallocation operations of data

structures

1. that are used for a target-specific objective (e.g. in terms of data

structures to be hosted)

2. which are requested/released frequently

• The problem is that getting the actual buffers (pages) from the buddy

system will lead to contention and consequent synchronization costs

(does not scale)

• In fact the (per NUMA node) buddy system operates with spinlock

synchronized critical sections

• Kernel design copes with this issue by using pre-reserved buffers

with lightweight allocation/release logic

… a classical example

• The allocation and deletion of page tables, at any level, is a very

frequent operation, so it is important the operation is as quick as

possible

• Hence the pages used for the page tables are cached in a number

of different lists called quicklists

• For 3/4 levels paging, PGDs, PMDs/PUDs and PTEs have two

sets of functions each for the allocation and freeing of page tables.

• The allocation functions are pgd_alloc(), pmd_alloc(),

pud_alloc() and pte_alloc(), respectively the free

functions are, predictably enough, called pgd_free(),

pmd_free, pud_free() and pte_free()

• Broadly speaking, these APIs implement caching

Actual quicklists

• Defined in include/linux/quicklist.h

• They are implemented as a list of per-core page lists

• There is no need for synchronization

• If allocation fails, they revert to

__get_free_page()

• In very latest versions of the Linux kernel, pre-reserving is

done at the buddy allocator API

Quicklist API and algorithm

Beware these!!

We can exploit the below macros

virt_to_phys(unsigned int addr)

(in include/asm-i386/io.h)

phys_to_virt(unsigned int addr)

(in include/asm-i386/io.h)

Logical/Physical address translation for kernel

directly mapped memory

__pa()

__va()
In generic kernel versions

SLAB (or SLUB) allocator: a cache of ‘small’ size buffers

• The prototypes are in linux/malloc.h

• The main APIs are

➢ void *kmalloc(size_t size, int flags)

allocation of contiguous memory of a given size - it returns the virtual address

➢ void kfree(void *obj)

frees memory allocated via kmalloc()

• Main features:

➢ Cache aligned delivery of memory chunks (performance optimal

access of related data within the same chunk)

➢ Fast allocation/deallocation support

• Clearly, we can also perform node-specific requests via

➢ void *kmalloc_node(size_t size, int flags,

int node)

kzalloc() for

zeroed buffers

• Classically employed while adding large size data

structures to the kernel in a stable way

• We can go beyond the size-limit of the specific buddy

system implementation

• This is the case when, e.g., mounting external modules

• This time we are not guaranteed to get direct mapped

pages

• The main APIs are:
➢void * vmalloc(unsigned long size);

allocates memory of a given size, which can be non-contiguous

physically, and returns the virtual address (the corresponding frames

are anyhow reserved)

➢void vfree(void * addr)

frees the above mentioned memory

What about (very) large size allocations

kmalloc vs vmalloc: an overall reference picture

• Allocation size:

➢ 128 KB for kmalloc (cache aligned)

➢ 64/128 MB for vmalloc

• Physical contiguousness

➢ Yes for kmalloc

➢ No for vmalloc

• Effects on TLB

➢ None for kmalloc

➢ Global for vmalloc (transparent to vmalloc

users)

vmalloc operations (i)

• Based in remapping a range of contiguous pages in (non

contiguous) physical memory

Kernel level

pages
Page

frames Directly

mapped

Non-

directly

mapped

Suppose we need

3 contiguous

virtual pages

Busy frame

Free frame

vmalloc operations (ii)

Clearly with vmalloc we typically remap much larger

blocks of pages

Kernel level

pages
Page

frames Directly

mapped

Non-

directly

mapped

We remap the three pages

within the page table (also

moving the green frames

to red)

Busy frame

Free frame

Kernel-page remapping vs hardware state

• Kernel-page mapping has a “global nature”

• Any core can use the same mapping, supported by

the same page tables

• When running vmalloc/vfree services on a

specific core, all the other cores need to observe the

update mapping

• Cached mappings within TLBs need therefore to be

updated via proper operations

TLB implicit vs explicit operations

• The level of automation in the management process of

TLB entries depends on the specific hardware architecture

• Kernel hooks have to exist for explicit management of

TLB operations (these are compile-time mapped to null

operations in case of fully automated TLB management)

• For x86 processors automation is only partial

• Specifically, automatic TLB flushes occur upon updates of

the CR3 register (e.g. page table changes)

• Changes inside the current page table are not automatically

reflected within the TLB

Types of TLB relevant events

• Scale classification

✓ Global: dealing with virtual addresses accessible by

every CPU/core in real-time-concurrency

✓ Local: dealing with virtual addresses accessible in time-

sharing concurrency

• Typology classification

✓ Virtual to physical address remapping

✓ Virtual address access rule modification (read only vs

write access)

• Typical management, TLB implicit renewal via flush

operations

TLB flush costs

• Direct costs

✓ The latency of the firmware level protocol for TLB entries

invalidation (selective vs non-selective)

✓ plus, the latency for cross-CPU coordination in case of

global TLB flushes

• Indirect costs

✓TLB renewal latency by the MMU firmware upon misses in

the translation process of virtual to physical addresses

✓This cost depends on the amount of entries to be refilled

✓Tradeoff vs TLB API and software complexity inside the

kernel (selective vs non-selective flush/renewal)

void flush_tlb_all(void)

• This flushes the entire TLB on all processors

running in the system, which makes it the most

expensive TLB flush operation

• After it completes, all modifications to the page

tables will be visible globally

• This is required after the kernel page tables, which

are global in nature, have been modified

• Examples are vmalloc()/vfree() operations

LINUX global TLB flush

• x86 does not offer pure hardware support for

flushing all the TLBs on board of the architecture

• It offers a baseline mechanism to let CPU-cores

coordinate

• A software layer is used to drive what to do

while coordinating (namely TLB invalidation)

• We will come back to this issue when analyzing

actual interrupt achitectures on multi-core

machines

LINUX global TLB flush vs x86

The x86 timeline of vmalloc

• Acquire memory from the buddy allocator

• Update kernel page table

Cross CPU-core

coordination for

TLB invalidation

(via CR3 rewriting)

Invocation (on some generic CPU-core)

return

void flush_tlb_mm(struct mm_struct *mm)

• This flushes all TLB entries related to the userspace

portion for the requested mm context

• In some architectures (e.g. MIPS), this will need to be

performed for all processors, but usually it is confined

to the local processor

• This is only called when an operation has been

performed that affects the entire address space

• e.g., after all the address mapping has been duplicated

with dup_mmap() for fork or after all memory

mappings have been deleted with exit_mmap()

• Interaction with COW protection

LINUX partial TLB flush

void flush_tlb_range(struct

mm_struct *mm, unsigned long

start, unsigned long end)

• This flushes all entries within the requested user

space range for the mm context

• This is used after a region has been moved (e.g.

mremap()) or when changing permissions (e.g.

mprotect())

• This API is provided for architectures that can

remove ranges of TLB entries quickly rather than

iterating with flush_tlb_page()

void flush_tlb_page(struct

vm_area_struct *vma, unsigned long

addr)

• This API is responsible for flushing a single page

from the TLB

• The two most common uses of it are for flushing

the TLB after a page has been faulted in or has

been paged out

✓ Interactions with page table access firmware

x86 partial TLB invalidation

void flush_tlb_pgtables(struct

mm_struct *mm, unsigned long start,

unsigned long end)

➢ This API is called when the page tables are being

torn down and freed

➢ Some platforms cache the lowest level of the page

table, i.e., the actual page frame storing entries,

which needs to be flushed when the pages are

being deleted (e.g. Sparc64)

➢ This is called when a region is being unmapped

and the page directory entries are being reclaimed

void update_mmu_cache(struct

vm_area_struct *vma, unsigned long

addr, pte_t pte)

➢ This API is only called after a page fault completes

➢ It tells that a new translation now exists at pte for the

virtual address addr

➢ Each architecture decides how this information should be

used

➢ In some case it is used for preloading TLB entries (e.g.

like in ARM Cortex processors)

