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Basic terminology

• firmware: a program coded on a ROM device, which can 

be executed when powering a processor on

• bootsector: predefined device (e.g. disk) sector keeping 

executable code for system startup

• bootloader: the actual executable code loaded and 

launched right before giving control to the target operating 

system

➢this code is partially kept within the bootsector, and 

partially kept into other sectors

➢It can be used to parameterize the actual operating 

system boot



Startup tasks

• The firmware gets executed, which loads in memory and 

launches the bootsector content

• The loaded bootsector code gets launched, which may 

load other bootloader portions

• The bootloader ultimately loads the actual operating 

system kernel and gives it control

• The kernel performs its own startup actions, which may 

entail architecture setup, data structures and software 

setup, and process activations

• To emulate a steady state unique scenario, at least one 

process is derived from the boot thread (namely the IDLE 

PROCESS)



Where is memory management there?

• All the previously listed steps lead to change the image of 

data/code that we have in memory

• These changes need to happen just based on various 

memory handling policies/mechanisms, operating at:

✓ Architecture setup

✓ Kernel initialization (including kernel level memory 

management initialization)

✓ Kernel common operations (which make large usage 

of kernel level memory management services that 

have been setup along the boot phase) 

An initially loaded kernel memory-image is not the same as the 

one that common applications ``see’’ when they are activated



Traditional firmware on x86

• It is called BIOS (Basic I/O System)

• Interactive mode can be activated via proper interrupts 

(e.g. the F1 key)

• Interactive mode can be used to parameterize firmware 

execution (the parameterization is typically kept via 

CMOS rewritable memory devices powered by apposite 

temporary power suppliers)

• The BIOS parameterization can determine the order for 

searching the boot sector on different devices

• A device boot sector will be searched for only if the device 

is registered in the BIOS list 



Bios bootsector

• The first device sector keeps the so called master boot 

record (MBR)

• This sector keeps executable code and a 4-entry tables, 

each one identifying a different device partition (in terms 

of its positioning on the device)

• The first sector in each partition can operate as the 

partition boot sector (BS)

• In case the partition is extended, then it can additionally 

keep up to 4 sub-partitions (hence the partition boot 

sector can be structured to keep an additional partitioning 

table)

• Each sub-partition can keep its own boot sector



RAM image of the MBR

Grub (if you use it) or others



An example scheme with Bios

Boot sector

Boot 

partition

Extended partition boot sector

Partition table

Boot code

Partition 1 Partition 3 (extended)

Nowadays huge limitation:

the maximum size of 

manageable disks is 2TB



UEFI – Unified Extended Firmware Interface

• It is the new standard for basic system support (e.g. boot 

management)

• It removes several limitations of BIOS:

• We can (theoretically) handle disks up to 9 zettabytes

• It has a more advanced visual interface

• It is able to run EFI executables, rather than simply 

loading and launching the MBR code

• It offers interfaces to the OS for being configured 

(rather than being exclusively configurable by 

triggering its interface with Fn keys at machine 

startup)



UEFI device partitioning 

• Based on GPT (GUID Partition Table)

• GUID = Globally Unique Identifier ….. Theoretically all 

over the world (if the GPT has in its turn a unique 

identifier)

• Theoretically unbounded number of partitions kept in this 

table – No longer we need extended partitions for 

enlarging the partitions’ set

• GPT are replicated so that if a copy is corrupted then 

another one will work – this breaks the single point of 

failure represented by MBR and its partition table 



Bios/UEFI tasks upon booting the OS kernel (i)

• The bootloader/EFI-loader, e.g., GRUB, loads in memory the 

initial image of the operating system kernel

• This includes a ``machine setup code’’ that needs to run before 

the actual kernel code takes control

• This happens since a kernel configuration needs given setup in 

the hardware upon being launched

• The machine setup code ultimately passes control to the initial 

kernel image 



Bios/UEFI tasks upon booting the OS kernel (ii)

• In Linux, this kernel image executes starting from the 

start_kernel() in init/main.c

• This kernel image is way different, both in size and 

structure, from the one that will operate at steady state 

• Just to name one reason, boot is typically highly 

configurable!



What about Linux boot on multi-core/HT 

machines

• The start_kernel() function is executed along a 

single CPU-core (the master)

• All the other cores (the slaves) only keep waiting that the 

master has finished

• The kernel internal function smp_processor_id() 

can be used for retrieving the ID of the current core

• This function is based on ASM instructions implementing a 

hardware specific ID detection protocol 

• This function operates correctly either at kernel boot or at 

steady state 



The actual support for CPU-core

identification



Actual kernel startup scheme in Linux

……….

Core-0 Core-1 Core-2 Core-(n-1) code in 
head.S

(or variants)

start_kernel

SYNC



An example head.S code snippet: 

triggering Linux paging (IA32 case)

/* * Enable paging */ 3: 
movl $swapper_pg_dir-__PAGE_OFFSET,%eax

movl %eax,%cr3 /* set the page table 

pointer.. */ 

movl %cr0,%eax 

orl $0x80000000,%eax 

movl %eax,%cr0 /* ..and set paging (PG) bit 

*/ 



An example head_64.S code snippet: 

triggering Linux paging (x86-64 case / kernel 5)

/* Form the CR3 value being sure to include the CR3 modifier */ 

addq $(early_top_pgt - __START_KERNEL_map), %rax

………. /* here in the middle we account for other stuff like 

randomization */

movq %rax, %cr3

https://elixir.bootlin.com/linux/v5.9.1/C/ident/early_top_pgt
https://elixir.bootlin.com/linux/v5.9.1/C/ident/__START_KERNEL_map
https://elixir.bootlin.com/linux/v5.9.1/C/ident/rax
https://elixir.bootlin.com/linux/v5.9.1/C/ident/movq
https://elixir.bootlin.com/linux/v5.9.1/C/ident/rax
https://elixir.bootlin.com/linux/v5.9.1/C/ident/cr3


Hints on the signature of the 

start_kernel function (as well as others)

……  __init start_kernel(void)

This only lives in memory during kernel boot (or startup)

The reason for this is to recover main memory storage which is relevant 

because of both:

• Reduced available RAM (older configurations)

• Increasingly complex (and hence large in size) startup code

Recall that the kernel image is not subject to swap out 

(conventional kernels are always resident in RAM )



Management of  __init functions

• The kernel linking stage locates these functions on 

specific logical pages (recall what we told about the 

fixed positioning of specific kernel level stuff in the 

kernel layout!!)

• These logical pages are identified within a “bootmem” 

subsystem that is used for managing memory when the 

kernel is not yet at steady state of its memory 

management operations

• Essentially the bootmem subsystem keeps a bitmask 

with one bit indicating whether a given page has been 

used (at compile time) for specific stuff 



… still on bootmem

• The bootmem subsystem also allows for memory 

allocation upon the very initial phase of the kernel 

startup

• In fact, the data structures (e.g. the bitmaps) it keeps 

not only indicate if some page has been  used for 

specific data/code

• They also indicate if some page which is actually 

reachable at the very early phase of boot is not used 

for any stuff

• These are clearly “free buffers” exploitable upon the 

very early phase of boot



An exemplified picture of bootmem

Data 
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Link in a single image

Bootmem

bitmap

0x80000000

0xc0800000

free

free

free

Compact status of 

busy/free buffers (pages)

Logical pages immediately reachable at 

the very early phase of kernel startup



The meaning of ``reachable page’’

• The kernel software can access the actual content of the page 

(in RAM) by simply expressing an address falling into that 

page

• The point is that the expressed address is typically a virtual 

one (since kernel code is commonly written using ``pointer’’ 

abstractions)

• So the only way we have to make a virtual address correspond 

to a given page frame in RAM is to rely on at least a page 

table that makes the translation (even at the very early stage of 

kernel boot)

• The initial kernel image has a page table, with a minimum 

number of pages mapped to RAM, those handled by the 

bootmem subsystem



How is RAM memory organized on 

modern (large scale/parallel) machines?

• In modern chipsets, the CPU-core count continuously 

increases

• However, it is increasingly difficult to build architectures 

with a flat-latency memory access (historically referred to 

as UMA)

• Current machines are typically NUMA

• Each CPU-core has some RAM banks that are close and 

other that are far

• Generally speaking, each memory bank is associated with 

a so called NUMA-node

• Modern operating systems are designed to handle NUMA 

machines (hence UMA as a special case)  



Looking at the Linux NUMA setup via 

Operating System facilities

• A very simple way is the numactl command

• It allows to discover 

✓How many NUMA nodes are present

✓What are the nodes close/far to/from any CPU-core

✓What is the actual distance of the nodes (from the 

CPU-cores)

Let’s see a few ‘live’ examples ……. 



Bootmem vs Memblock

• In more recent versions of OS kernels the bootmem 

architecture has been enriched 

• It allows for keeping track of free/busy frames with a per-

NUMA node granularity

• The newer architecture is called “memblock” in Linux

• An additional logic is inserted for setting up the memblock 

system to indicate how many NUMA nodes we have

• The API for managing memory in memblock has been 

slightly changed with respect to traditional bootmem

• However the essence of the operations we can do is the 

same



Actual kernel data structures for 

managing memory

• Kernel Page table

➢This is a kind of ‘ancestral’ page table (all the others are 

somehow derived from this one)  

➢It keeps the memory mapping for kernel level code and 

data (thread stack included)

• Core map

➢The map that keeps status information for any frame 

(page) of physical memory, and for any NUMA node

• Free list of physical memory frames, for any NUMA node

None of them is already finalized when we 

startup the kernel 



A scheme

Free list Free list 

Status (free/busy)

of memory frames

mov (%rax), %rbx

Frames’ 

zone x

Frames’ 

zone y

Kernel page 

table

Target frame

Core 

map



Objectives of the kernel page table setup

• These are basically two:

✓ Allowing the kernel software to use virtual addresses while 

executing (either at startup or at steady state)

✓ Allowing the kernel software (and consequently the 

application software) to reach (in read and/or write mode) 

the maximum admissible (for the specific machine) or 

available RAM storage

• The finalized shape of the kernel page table is therefore 

typically not setup into the original image of the kernel 

loaded in memory, e.g., given that the available RAM to 

drive can be parameterized



A scheme

Range of linear 

addresses

reachable when

switching to

protected mode

plus paging
Range of linear 

addresses

reachable when

running at steady 

state 

Increase

of the size 

of reachable 

RAM locations

(e.g. according

to boot 

parameters)

Passage from the compile-time

defined kernel-page table

to the boot time reshuffled one



Directly mapped memory pages

• They are kernel level pages whose mapping onto physical 

memory (frames) is based on a simple shift between virtual and 

physical addresses

✓ PA = (VA)  where  is (typically) a simple function subtracting 

a predetermined constant value to VA

• Not all the kernel level virtual pages are directly mapped

Kernel level

pages

Page

frames 

Directly 

mapped 

Non-

directly 

mapped 



Virtual memory vs boot sequence:

the i386 very didactical example

• Upon kernel startup addressing relies on a simple single level 

paging mechanism that only maps 2 pages (each of 4 MB) up to 

8 MB physical addresses

• The actual paging rule (namely the page granularity and the 

number of paging levels – up to 2 in i386) is identified via  

proper bits within the entries of the page table

• The physical address of the setup page table is kept within the 

CR3 register



• The steady state paging scheme used by LINUX will be activated 

during the kernel boot procedure

• The max size of the address space for  LINUX processes on i386 

machines (or protected mode) is 4 GB

➢ 3 GB are within user level segments

➢ 1 GB is within kernel level segments

Virtual memory vs boot sequence:

the i386 very didactical example



Details on the page table structure in i386 (i)

address

<10 bits page number,

22 bits page offset>

<20 bits page number,

12 bits page offset>

<10 bits page section,

10 bits actual page>

<physical 4MB frame address>

<physical 4KB frame address>

1 Level paging 2 Levels paging

PD(E)

PT(E)

PT(E)



Details on the page table structure in i386 (ii)

• It is allocated in physical memory into 4KB blocks, which can 

be non-contiguous

• In typical LINUX configurations, once set-up it maps 4 GB 

addresses, of which  3 GB at null reference and (almost) 1 GB 

onto actual physical memory

• Such a mapped 1 GB corresponds to kernel level virtual 

addressing and allows the kernel to span over 1 GB of 

physical addresses

• To drive more physical memory, additional configuration 

mechanisms need to be activated, or more recent processors 

needs to be exploited as we shall see



i386 memory layout at kernel startup:

still very didactical  for kernel 2.4

8 MB (mapped on VM)

code

data

free

X MB (unmapped on VM)

Page table

With 2 valid 

entries only

(each one for a

4 MB page)



Actual issues to be tackled

1. We need to reach the correct granularity for paging (4KB 

rather than 4MB)

2. We need to span logical to physical address across the whole 

1GB of kernel-manageable physical memory

3. We need to re-organize the page table in two separate levels

4. So we need to determine ‘free buffers’ within the already 

reachable memory segment to initially expand the page table

5. We cannot use memory management facilities other than 

paging (since core maps and free lists are not yet at steady 

state)



Back to the concept of bootmem

1. Memory occupancy and location of the initial kernel image is 

determined by the compile/link process

2. As we have seen, a compile/link time memory manager is 

embedded into the kernel image, which is called bootmem 

manager

3. It relies on bitmaps telling if any 4KB page in the currently 

reachable memory image is busy or free

4. It also offers API (to be employed at boot time) in order to get free 

buffers

5. These buffers are sets of contiguous (or single) page aligned areas

6. As hinted, this subsystem is in charge of handling _init marked 

functions in terms of final release of the corresponding buffers



Kernel page table collocation within physical 

memory

1 GB (mapped on VM starting 

from 3 GB

within virtual 

addressing)

Code

data

free
Page table

(formed by 4 KB 

non-contiguous

blocks)



Low level “pages”

Kernel boot

Load undersized page table

(kernel page size not finalized: 4MB)

- 4 KB (1K entry)

Expand page table via 

bootmem low pages 

(not marked in the page table)

- compile time identification 

Finalize kernel handled 

page size (4KB)



LINUX paging vs i386

• LINUX virtual addresses exhibit (at least) 3 indirection levels

Physical 

(frame) adress

Page Middle

Directory

Page Table

Entries

Page General

Directory

pgd pmd pte

• On i386 machines, paging is supported limitedly to 2 levels (pde, 

page directory entry – pte, page table entry)

• Such a dicotomy is solved by setting null the pmd field, which is 

proper of LINUX, and mapping

➢pgd LINUX to i386 pde

➢pte LINUX to i386 pte

offset



i386 page table size

• Both levels entail 4 KB memory blocks 

• Each block is  an array of 4-byte entries

• Hence we can map 1 K x 1K pages

• Since each page is 4 KB in sixe, we get a 4 GB virtual addressing 

space

• The following macros define the size of the page tables blocks (they 

can be found in the file include/asm-i386/pgtable-

2level.h)

➢#define PTRS_PER_PGD    1024

➢#define PTRS_PER_PMD    1

➢#define PTRS_PER_PTE    1024

• the value1 for PTRS_PER_PMD is used to simulate the existence 

of the intermediate level such in a way to keep the 3-level oriented 

software structure to be compliant with the 2-level architectural 

support



Page table data structures

• A core structure is represented by the symbol swapper_pg_dir

which is defined within the file arch/i386/kernel/head.S

• This symbol expresses the virtual memory address of the PGD (PDE)

portion of the kernel page table

• This value is initialized at compile time, depending on the memory 

layout defined for the kernel bootable image

• Any entry within the PGD is accessed via displacement starting from 

the initial PGD address

• The C types for the definition of the content of the page table 

entries on i386 are defined in include/asm-i386/page.h

• They are

typedef struct { unsigned long pte_low; } pte_t;

typedef struct { unsigned long pmd; } pmd_t;

typedef struct { unsigned long pgd; } pgd_t;



Debugging

• The redefinition of different structured types, which are identical in 

size and equal to an unsigned long, is done for debugging 

purposes

• Specifically, in C technology, different aliases for the same type 

are considered as identical types 

• For instance, if we define
typedef unsigned long pgd_t;

typedef unsigned long pte_t;

pgd_t x; pte_t y;

the compiler enables assignments such as x=y and y=x

• Hence, there is the need for defining different structured types which 

simulate the base types that would otherwise give rise to compiler 

equivalent aliases



i386 PDE entries

Nothing tells whether we can fetch (so execute) 

from there



i386 PTE entries

Nothing tells whether we can fetch (so execute) 

from there



Field semantics

• Present: indicates whether the page or the pointed page table is 

loaded in physical memory. This flag is not set by firmware (rather 

by the kernel)

• Read/Write: define the access privilege for a given page or a set of 

pages (as for PDE) . Zero means read only access

• User/Supervisor: defines the privilege level for the page or for the 

group of pages (as for PDE). Zero means supervisor privilege

• Write Through: indicates the caching policy for the page or the set 

of pages (as for PDE). Zero means write-back, non-zero means 

write-through

• Cache Disabled: indicates whether caching is enabled or disabled 

for a page or a group of pages. Non-zero value means disabled 

caching (as for the case of memory mapped I/O)



• Accessed: indicates whether the page or the set of pages has been 

accessed. This is a sticky flag (no reset by firmware). Reset is 

controlled via software

• Dirty: indicates whether the page has been write-accessed. This is 

also a sticky flag

• Page Size (PDE only): if set indicates 4 MB paging otherwise 4 KB 

paging

• Page Table Attribute Index: ….. Do not care ……

• Page Global (PTE only): defines the caching policy for TLB entries. 

Non-zero means that the corresponding TLB entry does not 

require reset upon loading a new value into the page table pointer 

CR3



Bit masking

• in include/asm-i386/pgtable.h there exist some macros 

defining the positioning of control bits within the entries of the PDE 

or PTE

• There also exist the following macros for masking and setting those 

bits

➢#define _PAGE_PRESENT 0x001

➢#define _PAGE_RW 0x002

➢#define _PAGE_USER 0x004

…

➢#define _PAGE_ACCESSED 0x020

➢#define _PAGE_DIRTY 0x040 /* proper of PTE */

• These are all machine dependent macros



An example

pte_t x;

x = …;

if ( (x.pte_low) & _PAGE_PRESENT){

/* the page is loaded in a frame */

}  

else{

/* the page is not loaded in any 

frame */

} ;



Relations with trap/interrupt events

• Upon a TLB miss, firmware accesses the page table

• The first checked bit is typically _PAGE_PRESENT

• If this bit is zero, a page fault occurs which gives rise to a trap 

(with a given displacement within the trap/interrupt table)

• Hence the instruction that gave rise to the trap can get finally 

re-executed

• Re-execution might give rise to additional traps, 

depending on firmware checks on the page table

• As an example, the attempt to access a read only page in write 

mode will give rise to a trap  (which triggers the 

segmentation fault handler)



#include <kernel.h>

#define MASK 1<<7

unsigned long addr = 3<<30; // fixing a reference on the 

// kernel boundary

asmlinkage int sys_page_size(){

//addr = (unsigned long)sys_page_size; // moving the reference

return(swapper_pg_dir[(int)((unsigned long)addr>>22)]&MASK?

4<<20:4<<10);

}

Run time detection of current page size: 

still for i386



Kernel page table initialization details

• As said, the kernel PDE is accessible at the virtual address kept 

by  swapper_pg_dir (now init_level4_pgt on 

x86-64/kernel3 or init_top_pgt on x86-64/kernel4-5)

• The room for PTE tables gets reserved within the 8MB of 

RAM that are accessible via the initial paging scheme

• Reserving takes place via the macro 

alloc_bootmem_low_pages() which is defined in 

include/linux/bootmem.h (this macro returns a 

virtual address)

• Particularly, it returns the pointer to a 4KB (or 4KB x N) 

buffer which is page aligned

• This function belongs to the (already hinted) basic memory 

management subsystem the boot lies on



Kernel 2.4/i386 initialization algorithm 

(still very didactical)
• we start by the PGD entry which maps the address 3 GB, namely 

the entry numbered 768

• cyclically

1. We determine the virtual address to be memory mapped (this 

is kept within the vaddr variable)

2. One page for the PTE table gets allocated which is used for 

mapping 4 MB of virtual addresses 

3. The table entries are populated 

4. The virtual address to be mapped gets updated by adding  4 

MB

5. We jump to step 1 unless no more virtual addresses or no more 

physical memory needs to be dealt with (the ending condition 

is recorded by the variable end)  



Initialization function pagetable_init()

for (; i < PTRS_PER_PGD; pgd++, i++) {

vaddr = i*PGDIR_SIZE;  /* i is set to map from 3 GB */

if (end && (vaddr >= end))   break;

pmd = (pmd_t *)pgd;/* pgd initialized to (swapper_pg_dir+i) */

………

for (j = 0; j < PTRS_PER_PMD; pmd++, j++) {

………

pte_base = pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);

for (k = 0; k < PTRS_PER_PTE; pte++, k++) {

vaddr = i*PGDIR_SIZE + j*PMD_SIZE + k*PAGE_SIZE;

if (end && (vaddr >= end)) break;

………

*pte = mk_pte_phys(__pa(vaddr), PAGE_KERNEL);

}

set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte_base)));

………

}

}



Note!!!

• The final PDE buffer coincides with the initial page 

table that maps 4 MB pages

• 4KB paging gets activated upon filling the entry of the 

PDE table (since the Page Size bit gets updated)

• For this reason the PDE entry is set only after having 

populated the corresponding PTE table to be pointed

• Otherwise memory mapping would be lost upon any 

TLB miss



The set_pmd macro 

#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)

• Thia macro simply sets the value into one PMD entry

• Its input parameters are

➢ the pmdptr pointer to an entry of PMD (the type is pmd_t)

➢ The value to be loaded pmdval (of type pmd_t, defined via 

casting)

• While setting up the kernel page table, this macro is used in 

combination with __pa() (physical address) which returns an 

unsigned long

• The latter macro returns the physical address corresponding to a 

given virtual address within kernel space (except for some 

particular virtual address ranges, those non-directly mapped)

• Such a mapping deals with [3,4) GB virtual addressing onto [0,1) GB 

physical addressing



The mk_pte_phys()macro 

mk_pte_phys(physpage, pgprot)

• The input parameters are

➢ A frame physical address physpage, of type 

unsigned long

➢ A bit string pgprot for a PTE, of type pgprot_t

• The macro builds a complete PTE entry, which includes the 

physical address of the target frame

• The result type is pte_t

• The result value can be then assigned to one PTE entry



Bootmem vs Memblock allocation API

• In memblock the classical “low pages” allocators have been 

incapsulated into a slightly different API functions

➢memblock_phys_alloc*() - these functions return the 

physical address of the allocated memory

➢memblock_alloc*() - these functions return the virtual 

address of the allocated memory. 



PAE (Physical address extension)
• increase of the bits used for physical addressing

• offered by more recent x86 processors (e.g. Intel Pentium Pro)      

which provide up to 36 bits for physical addressing

• we can drive up to 64 GB of RAM memory

• paging gets operated at 3 levels (instead of 2)

• the traditional page tables get modified by extending the entries at  

64-bits and reducing their number by a half (hence we can support     

¼  of the address space)

• an additional top level table gets included called “page directory   

pointer table” which entails 4 entries, pointed by CR3

• CR4 indicates whether  PAE mode is activated or not (which is done 

via bit  5 – PAE-bit)



x86-64 architectures

• They extend the PAE scheme via a so called “long addressing 

mode”

• Theoretically they allow addressing 2^64 bytes of logical memory

• In actual implementations we reach up to 2^48 canonical form 

addresses (lower/upper half within a total address space of  2^48)

• The total allows addressing to span over 256 TB

• Not all operating systems allow exploiting the whole range up to 

256 TB of logical/physical memory

• LINUX currently allows for 128 TB for logical addressing of 

individual processes and  64 TB for physical  addressing



Addressing scheme

64-bit 48 out of 64-bit



text

data

kernel

Heap

Stack

DLL

Non-allowed 

logical addresses

(canonical 64-bit

addressing)



48-bit addressing: page tables

• Page directory pointer has been expanded from 4 

to 512 entries

• An additional paging level has been added thus 

reaching 4 levels, this is called “Page-Map level”

• Each Page-Map level table has 512 entries

• Hence, we get 512^4 pages of  size 4 KB that are 

addressable (namely, a total of 256 TB)



also referred to as PGD

(Page General Directory)







Direct vs non-direct page mapping 

• In long mode x86 processors allow one entry of the PML4 

to be associated with 2^27 frames

• This amounts to 2^29 KB = 2^9 GB = 512 GB

• Clearly, we have plenty of room in virtual addressing for 

directly mapping all the available RAM into kernel pages on 

most common chipsets 

• This is the typical approach taken by Linux, where we 

directly map all the RAM memory

• However, we also remap the same RAM memory in non-

direct manner whenever required 



Huge pages

• Ideally x86-64 processors support them starting from PDPT

• Linux typically offers the support for huge pages pointed to 

by the PDE (page size 512*4KB)

• See: /proc/meminfo and 

/proc/sys/vm/nr_hugepages

• These can be “mmaped” via file descriptors and/or mmap

parameters (e.g. MAP_HUGETLB flag) 

• They can also be requested via the  madvise(void*, 

size_t, int) system call (with MADV_HUGEPAGE 

flag)



Back to speculation in the hardware

• From Meldown we already know that a page table entry plays a 

central role in hardware side effects with speculative execution

• The page table entry provides the physical address of some 

“non-accessible” byte, which is still accessible in speculative 

mode

• This byte can flow into speculative incarnations of registers and 

can be used for cache side effects

• ….. but, what about a page table entry with “presence bit” 

not set???  

• ….. is there any speculative action that is still performed by 

the hardware with the content of that page table entry?



The L1 Terminal Fault (L1TF) attack

• It is based on the exploitation of data cached into L1

• More in detail:

➢ A page table entry with presence bit set to 0 propagates the value of the 

target physical memory location (the TAG) upon loads if that memory 

location is already cached into L1

➢ If we use the value of that memory location as an index (Meltdown style) 

we can grub it via side effects on cache latency

• Overall, we can be able to indirectly read the content of any 

physical memory location if the same location has already been 

read, e.g., in the context of  another process on the same CPU-

core  

• Affected CPUs: AMD, Intel ATOM, Intel Xeon PHI …



The scheme

Page table

Virtual address “invalid” physical address

L1 

Tag present

Speculatively 

propagate to CPU



L1TF big issues

• To exploit L1TF we must drive page table entries 

• A kernel typically does not allow it (in fact kernel 

mitigation of this attack simply relies on having “invalid” 

page table entries set to proper values not mapping 

cacheable data)

• But what about a guest kernel?

• It can attack physical memory of the underlying host

• So it can also attack memory of co-located guests/VMs

• It is as simple as hacking the guest level page tables, on 

which an attacker that drives the guest may have full control 



Hardware supported “virtual memory” 

virtualization 

• Intel Extended Page Tables (EPT)

• AMD Nested Page Tables (NPT)

• A scheme:

Keeps track of 

the physical 

memory location 

of the page frames 

used for activated 

VM



Attacking the host physical memory

Change this to 

whatever 

physical address and 

make the entry invalid



Reaching vs allocating/deallocating memory

Kernel boot

Load undersized page table

(kernel page size not finalized)

Expand page table via 

boot mem low pages 

(not marked in the page table)

- compile time identification 

Finalize kernel 

handled page 

size (4KB)

Expand/modify data

structures via pages

(marked in the page table)

- run time identification

Allocation only Allocation + 

deallocation



Linux core map
• It is an array of mem_map_t (also known as struct page) 

structures defined in include/linux/mm.h

• The actual type definition is as follows (or similar along kernel 

advancement):

typedef struct page {

struct list_head list; /* ->mapping has some page lists. */

……

atomic_t count; /* Usage count, see below. */

……

unsigned long flags; /* atomic flags, some possibly

updated asynchronously */

……

} mem_map_t;



The concept of memory zones

• Historically (e.g. when reasoning on sigle NUMA-node or 

NUMA unaware kernels) we had 3 free lists of frames 

• Hence, we had frame positioning within the following zones: 

DMA (DMA ISA operations), NORMAL (room where the 

kernel can reside), HIGHMEM (room for user data)

• With classical 32-bit address spaces the corresponding sizes 

were

ZONE_DMA < 16 MB      ISA DMA capable memory

ZONE_NORMAL 16-896 MB direct mapped by the kernel

ZONE_HIGHMEM > 896 MB only page cache and user



Linux free list data structures 

• Free lists information is kept within the pg_data_t data structure 

defined in include/linux/mmzone.h, and whose actual instance 

is contig_page_data, which is declared in mm/numa.c

typedef struct pglist_data {

struct zone node_zones[MAX_NR_ZONES];

……

int nr_zones; //actually used zones

……

struct page *node_mem_map;

……

} pg_data_t;



struct zone {

……

free_area_t free_area[MAX_ORDER];

……

spinlock_t lock;

……

struct page *zone_mem_map;

……

}

Up to 11 in 

recent 

kernel versions

(it was typically 

5 before)

Where do we pick free memory

blocks in a buddy allocator

Describing a memory zone



Buddy system features

frame Order 0

Order 0

Order 1
Order 2

Size 20 Size 21 Size 22



Buddy allocation vs core map vs free list

Order 0 

free frames

Order 0 

free frames

Order 1 

free frame

Order 1 

free frame

free_area[0]

free_area[1]

references based on 
struct list_head

Recall that spinlocks are used to manage this data structure 

mem_map (the core map array)



A scheme (picture from: Understanding the Linux Virtual 

Memory Manager – Mel Gorman) 



Jumping to NUMA aware Linux kernels 

(e.g. starting from kernel 2.6)

• The concept of multiple NUMA zones is represented by a 

struct pglist_data even if the architecture is Uniform 

Memory Access (UMA)

• This struct is always referenced by its typedef 

pg_data_t

• Every node in the system is kept on a NULL terminated list 

called pgdat_list, and each node is linked to the next with 

the field pg_data_t→node_next

• For UMA architectures like PC desktops, only one static 

pg_data_t structure is used



A schememem_map

pglist_data

pg_data_t record

struct page *node_mem_map

From kernel 

2.6.17 we have 

an array of entries

called 
node_data[]

One buddy

allocator

per each 

node



Allocation contexts (more generally, 

kernel level execution contexts)

• Process context
– Allocation is caused by a system call or a trap

• Not satisfiable → wait is experienced along the current 
execution trace

• Priority based schemes 

• Interrupt
– Allocation requested by an interrupt handler

• Not satisfiable → no-wait is experienced along the current 
execution trace

• Priority independent schemes



Buddy-system API

• After booting, the memory management system can be accessed via 

proper APIs, which drive operations on the aforementioned data

structures

• The prototypes are in   #include <linux/malloc.h>

• The very base allocation APIs are (bare minimal – page aligned 

allocation)

➢ unsigned long get_zeroed_page(int flags) 

removes a frame from the free list, sets the content to zero and returns 

the virtual address

➢ unsigned long __get_free_page(int flags) 

removes a frame from the free list and returns the virtual address

➢ unsigned long __get_free_pages(int flags, 

unsigned long order) 

removes a block of contiguous frames with given order from the free 

list and returns the virtual address of the first frame



➢ void free_page(unsigned long addr) 

puts a frame into the free list again, having a given initial virtual 

address

➢ void free_pages(unsigned long addr, 

unsigned long order) 

puts a block of frames of given order into the free list again 

Note!!!!!!! Wrong order may give rise to kernel corruption in 

several kernel configurations

flags : used contexts

GFP_ATOMIC the call cannot lead to sleep (this is for interrupt 

contexts)

GFP_USER - GFP_BUFFER - GFP_KERNEL the call can lead to 

sleep



Buddy allocation vs direct mapping

• All the buddy-system API functions return virtual 

addresses of direct mapped pages

• We can therefore directly discover the position in 

memory of the corresponding frames

• Also, memory contiguousness is guaranteed for both 

virtual and physical addresses



Binding actual allocation to NUMA nodes

The real core of the Linux page allocator is the function

struct page *alloc_pages_node(int nid, unsigned 

int flags, unsigned int order);

Hence the actual allocation chain is:

__get_free_pages

mempolicy data
Node ID

alloc_pages_node (per NUMA node allocation)



Mem-policy details

• Generally speaking, mem-policies determine what NUMA node 

needs to be involved in a specific allocation operation which is 

thread specific

• Starting from kernel 2.6.18, the determination of mem-policies can 

be configured by the application code via system calls

Synopsis
#include <numaif.h> 

int set_mempolicy(int mode, unsigned long 

*nodemask, unsigned long maxnode); 

sets the NUMA memory policy of the calling process, which consists 

of a policy mode and zero or more nodes, to the values specified by 

the mode, nodemask and maxnode arguments

The mode argument must specify one of MPOL_DEFAULT, 

MPOL_BIND, MPOL_INTERLEAVE or 

MPOL_PREFERRED



… another example

Synopsis
#include <numaif.h> 

int mbind(void *addr, unsigned long len, int 

mode, unsigned long *nodemask, unsigned long 

maxnode, unsigned flags); 

sets the NUMA memory policy, which consists of a policy mode and 

zero or more nodes, for the memory range starting with addr and 

continuing for len bytes. The memory policy defines from which node 

memory is allocated. 



… finally you can also move pages around

Synopsis
#include <numaif.h> 

long move_pages(int pid, unsigned long count, 

void **pages, const int *nodes, int *status, 

int flags);

moves the specified pages of the process pid to the memory nodes 

specified by nodes. The result of the move is reflected in status. The 

flags indicate constraints on the pages to be moved. 



The case of frequent allocation/deallocation of 

target-specific data structures

• Here we are talking about allocation/deallocation operations of data 

structures 

1. that are used for a target-specific objective (e.g. in terms of data 

structures to be hosted) 

2. which are requested/released frequently

• The problem is that getting the actual buffers (pages) from the buddy 

system will lead to contention and consequent synchronization costs  

(does not scale)

• In fact the (per NUMA node) buddy system operates with spinlock 

synchronized critical sections

• Kernel design copes with this issue by using pre-reserved buffers 

with lightweight allocation/release logic



… a classical example

• The allocation and deletion of page tables, at any level, is a very 

frequent operation, so it is important the operation is as quick as 

possible

• Hence the pages used for the page tables are cached in a number 

of different lists called quicklists

• For 3/4 levels paging,  PGDs, PMDs/PUDs and PTEs have two 

sets of functions each for the allocation and freeing of page tables. 

• The allocation functions are pgd_alloc(), pmd_alloc(), 

pud_alloc() and pte_alloc(), respectively the free 

functions are, predictably enough, called pgd_free(), 

pmd_free, pud_free() and pte_free()

• Broadly speaking, these APIs implement caching



Actual quicklists

• Defined in include/linux/quicklist.h

• They are implemented as a list of per-core page lists

• There is no need for synchronization

• If allocation fails, they revert to

__get_free_page()

• In very latest versions of the Linux kernel, pre-reserving is 

done at the buddy allocator API



Quicklist API and algorithm

Beware these!!



We can exploit the below macros

virt_to_phys(unsigned int addr)

(in include/asm-i386/io.h)

phys_to_virt(unsigned int addr) 

(in include/asm-i386/io.h)

Logical/Physical address translation for kernel 

directly mapped memory

__pa()

__va() 
In generic kernel versions



SLAB (or SLUB) allocator: a cache of ‘small’ size buffers

• The prototypes are in  linux/malloc.h

• The main APIs are

➢ void *kmalloc(size_t size, int flags) 

allocation of contiguous memory of a given size - it returns the virtual address

➢ void kfree(void *obj) 

frees memory allocated via kmalloc()

• Main features:

➢ Cache aligned delivery of memory chunks (performance optimal 

access of related data within the same chunk)

➢ Fast allocation/deallocation support

• Clearly, we can also perform node-specific requests via

➢ void *kmalloc_node(size_t size, int flags, 

int node)

kzalloc() for 

zeroed buffers



• Classically employed while adding large size data 

structures to the kernel in a stable way

• We can go beyond the size-limit of the specific buddy 

system implementation 

• This is the case when, e.g., mounting external modules

• This time we are not guaranteed to get direct mapped 

pages

• The main APIs are:
➢void * vmalloc(unsigned long size);

allocates memory of a given size, which can be non-contiguous 

physically, and returns the virtual address (the corresponding frames 

are anyhow reserved)

➢void vfree(void * addr)

frees the above mentioned memory

What about (very) large size allocations



kmalloc vs vmalloc: an overall reference picture

• Allocation size:

➢ 128 KB for kmalloc (cache aligned)

➢ 64/128 MB for vmalloc

• Physical contiguousness

➢ Yes for kmalloc

➢ No for vmalloc

• Effects on TLB

➢ None for kmalloc

➢ Global for vmalloc (transparent to vmalloc

users)



vmalloc operations (i)

• Based in remapping a range of contiguous pages in (non 

contiguous) physical memory

Kernel level

pages
Page

frames Directly 

mapped 

Non-

directly 

mapped 

Suppose we need 

3 contiguous 

virtual pages

Busy frame

Free frame



vmalloc operations (ii)

Clearly with vmalloc we typically remap much larger 

blocks of pages

Kernel level

pages
Page

frames Directly 

mapped 

Non-

directly 

mapped 

We remap the three pages 

within the page table (also 

moving the green frames 

to red)

Busy frame

Free frame



Kernel-page remapping vs hardware state

• Kernel-page mapping has a “global nature”

• Any core can use the same mapping, supported by 

the same page tables

• When running vmalloc/vfree services on a 

specific core, all the other cores need to observe the 

update mapping

• Cached mappings within TLBs need therefore to be 

updated via proper operations 



TLB implicit vs explicit operations

• The level of automation in the management process of 

TLB entries depends on the specific hardware architecture

• Kernel hooks have to exist for explicit management of 

TLB operations (these are compile-time mapped to null 

operations in case of fully automated TLB management)

• For x86 processors automation is only partial

• Specifically, automatic TLB flushes occur upon updates of 

the CR3 register (e.g. page table changes) 

• Changes inside the current page table are not automatically 

reflected within the TLB  



Types of TLB relevant events

• Scale classification

✓ Global: dealing with virtual addresses accessible by 

every CPU/core in real-time-concurrency

✓ Local: dealing with virtual addresses accessible in time-

sharing concurrency

• Typology classification

✓ Virtual to physical address remapping

✓ Virtual address access rule modification (read only vs 

write access)

• Typical management, TLB implicit renewal via flush 

operations 



TLB flush costs

• Direct costs

✓ The latency of the firmware level protocol for TLB entries 

invalidation (selective vs non-selective)

✓ plus, the latency for cross-CPU coordination in case of 

global TLB flushes

• Indirect costs

✓TLB renewal latency by the MMU firmware upon misses in 

the translation process of virtual to physical addresses 

✓This cost depends on the amount of entries to be refilled

✓Tradeoff vs TLB API and software complexity inside the 

kernel (selective vs non-selective flush/renewal)



void flush_tlb_all(void) 

• This flushes the entire TLB on all processors 

running in the system, which makes it the most 

expensive TLB flush operation  

• After it completes, all modifications to the page 

tables will be visible globally 

• This is required after the kernel page tables, which 

are global in nature, have been modified

• Examples are vmalloc()/vfree() operations

LINUX global TLB flush



• x86 does not offer  pure hardware support for 

flushing all the TLBs on board of the architecture

• It offers a baseline mechanism to let CPU-cores 

coordinate

• A software layer is used to drive what to do 

while coordinating (namely TLB invalidation)

• We will come back to this issue when analyzing 

actual interrupt achitectures on multi-core 

machines

LINUX global TLB flush vs x86



The x86 timeline of vmalloc

• Acquire memory from the buddy allocator

• Update kernel page table

Cross CPU-core

coordination for 

TLB invalidation

(via CR3 rewriting)

Invocation (on some generic CPU-core)

return



void flush_tlb_mm(struct mm_struct *mm)

• This flushes all TLB entries related to the userspace 

portion for the requested mm context

• In some architectures (e.g. MIPS), this will need to be 

performed for all processors, but usually it is confined 

to the local processor 

• This is only called when an operation has been 

performed that affects the entire address space 

• e.g., after all the address mapping has been duplicated 

with dup_mmap() for fork or after all memory 

mappings have been deleted with exit_mmap()

• Interaction with COW protection

LINUX partial TLB flush



void flush_tlb_range(struct 

mm_struct *mm, unsigned long 

start, unsigned long end) 

• This flushes all entries within the requested user 

space range for the mm context

• This is used after a region has been moved (e.g. 

mremap()) or when changing permissions (e.g. 

mprotect())  

• This API is provided for architectures that can 

remove ranges of TLB entries quickly rather than 

iterating with flush_tlb_page()



void flush_tlb_page(struct 

vm_area_struct *vma, unsigned long 

addr)

• This API is responsible for flushing a single page 

from the TLB

• The two most common uses of it are for flushing 

the TLB after a page has been faulted in or has 

been paged out

✓ Interactions with page table access firmware



x86 partial TLB invalidation



void flush_tlb_pgtables(struct 

mm_struct *mm, unsigned long start, 

unsigned long end)

➢ This API is called when the page tables are being 

torn down and freed 

➢ Some platforms cache the lowest level of the page 

table, i.e., the actual page frame storing entries, 

which needs to be flushed when the pages are 

being deleted (e.g. Sparc64)

➢ This is called when a region is being unmapped 

and the page directory entries are being reclaimed



void update_mmu_cache(struct 

vm_area_struct *vma, unsigned long 

addr, pte_t pte)

➢ This API is only called after a page fault completes 

➢ It tells that a new translation now exists at pte for the 

virtual address addr

➢ Each architecture decides how this information should be 

used

➢ In some case it is used for preloading TLB entries (e.g.

like in ARM Cortex processors)


