
Università degli Studi di Roma “La Sapienza”

Dottorato di Ricerca in Ingegneria Informatica

XI Ciclo – 1999

Consistent Checkpointing in Distributed

Computations: Theoretical Results and Protocols

Francesco Quaglia

Università degli Studi di Roma “La Sapienza”

Dottorato di Ricerca in Ingegneria Informatica

XI Ciclo - 1999

Francesco Quaglia

Consistent Checkpointing in Distributed

Computations: Theoretical Results and Protocols

Thesis Committee

Prof. Bruno Ciciani (Advisor)
Prof. Giacomo Cioffi
Prof. Silvio Salza

Reviewers

Prof. Jean Michel Hélary
Prof. Mukesh Singhal

Author’s address:
Francesco Quaglia
Dipartimento di Informatica e Sistemistica
Università degli Studi di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy
e-mail: quaglia@dis.uniroma1.it
www: http://www.dis.uniroma1.it/∼quaglia

Abstract

This thesis is focused on the study of consistent checkpointing in distributed
computations. The model of the computation is asynchronous. The inves-
tigated checkpointing approach is known as communication-induced. In this
approach, processes of the distributed computation take checkpoints at their
own pace (namely basic checkpoints) and some additional checkpoints (namely
forced checkpoints) are induced by a lazy coordination scheme, in order to
guarantee consistency of global checkpoints. The lazy coordination is real-
ized by piggybacking control information on application messages. Upon the
receipt of a message, the recipient process evaluates a predicate basing on
the incoming control information and on its local context; if the predicate is
evaluated to TRUE, a forced checkpoint is taken. The thesis reports both
theoretical results on this issue and protocols derived from those results.

Chapter Organization

The first three chapters are devoted to the description of basic concepts and
theories on checkpointing.

Original contributions of the thesis starts from Chapter 4 where a taxon-
omy of communication-induced checkpointing protocols is presented splitting
protocols in VP-enforced and VP-accordant (1).

Chapter 5 introduces an equivalence relation between checkpoints and
presents a VP-enforced communication-induced checkpointing protocol based
on such a relation. Its performance is also investigated. The equivalence rela-
tion here introduced provides actually a framework that can be used to design
efficient checkpoint timestamping mechanisms.

Chapter 6 provides a characterization of the necessary and sufficient con-
dition for the absence of useless checkpoints (i.e., checkpoints that cannot be
members of any consistent global checkpoint) in a distributed computation,
which was previously an open question. Then, the characterization is used

1VP stands for “Virtual Precedence property”.

i

ii CHAPTER 0. ABSTRACT

as a basis for the design of VP-accordant checkpointing protocols ensuring no
useless checkpoint. Applications of the proposed protocols are also discussed.

Finally, in Chapter 7, a necessary and sufficient condition for the consis-
tency of global checkpoints of distributed databases is provided by extending
results taken from the context of distributed computations. Non-intrusive
transaction-induced checkpointing protocols are also presented.

Most of this work can be found in the following papers:

R. Baldoni, F. Quaglia and P. Fornara, An Index-Based Checkpointing Al-
gorithm for Autonomous Distributed Systems, Proc. 16th IEEE Int. Sympo-
sium on Reliable Distributed Systems, 1997, pp. 27-34 (an expanded version
appeared on IEEE Transactions on Parallel and Distributed Systems, vol.10,
no.2, February 1999).

R. Baldoni, F. Quaglia and B. Ciciani, A VP-Accordant Checkpointing Pro-
tocol Preventing Useless Checkpoints, Proc. 17th IEEE Int. Symposium on
Reliable Distributed Systems, 1998, pp. 61-67.

R. Baldoni, F. Quaglia and M. Raynal, Consistent Checkpointing in Dis-
tributed Databases: Towards a Formal Approach, Tech. Rep. 27-97, Di-
partimento di Informatica e Sistemistica, Universita’ di Roma “La Sapienza”,
July 1997 (submitted paper).

F. Quaglia, R. Baldoni and B. Ciciani, A Low-Overhead Z-Cycle-Free Check-
pointing Algorithm for Distributed Systems, Proc. European Research Semi-
nar on Advances in Distributed Systems, 1997, pp. 198-203.

F. Quaglia, B. Ciciani and R. Baldoni, A Checkpointing-Recovery Scheme for
Distributed Systems, in Dimiter R. Avresky, David R. Kaeli, editors, “Fault
Tolerant Parallel and Distributed Systems” (Chapter 5), Kluwer Academic
Publishers, 1998.

F. Quaglia, R. Baldoni and B. Ciciani, On the No-Z-Cycle Property in Dis-
tributed Executions, Tech. Rep. 01-99, Dipartimento di Informatica e Sis-
temistica, Universita’ di Roma “La Sapienza”, January 1999 (submitted pa-
per).

F. Quaglia, R. Baldoni and B. Ciciani, Characterizing the “No-Z-Cycle” Prop-
erty in Distributed Computations, submitted paper.

F. Quaglia, B. Ciciani and R. Baldoni, Checkpointing Protocols in Distributed

iii

Systems with Mobile Hosts: a Performance Analysis, Proc. 3rd Workshop on
Fault Tolerant Parallel and Distributed Systems, LNCS 1388, 1998, pp.742-
755.

iv CHAPTER 0. ABSTRACT

Acknowledgments

My deepest debt of gratitude goes to my advisor Bruno Ciciani, for his help
during the whole Ph.D. course. He suggested me to study problems related
to checkpointing. I started to study such problems together with him in the
context of optimistic synchronization protocols, then we moved to the context
of distributed computations. Bruno always inspired and encouraged me during
all troubled times.

I would like to thank Michel Raynal, with whom results reported in Chap-
ter 7 have been obtained. It was a honour to discuss with him issues related
to checkpointing.

I express my gratitude to Jean Michel Hélary for comments he gave me on
a preliminary version of a technical report dealing with the characterization
introduced in Chapter 6, and for his help in the construction of the proof of
Theorem 7.4.3 in Chapter 7. I thank him also for having accepted to be an
external referee for this thesis.

Special thank goes to Paolo Fornara and Luca De Santis. They helped me
to develop simulation code and to collect simulation data reported in Chapter
5 and in Chapter 6.

I also thank Giacomo Cioffi and Silvio Salza for being internal referees,
Prof. Mukesh Singhal as external referee, Luigia Carlucci Aiello and Giorgio
Ausiello as presidents of the Ph.D. Committee of the Dipartimento di Infor-
matica e Sistemistica.

Finally, I thank my parents Angela and Gennaro, my sisters Maria Paola
and Rossella, and my girlfriend Cristina, for strength and invaluable help they
give me.

Francesco

v

vi CHAPTER 0. ACKNOWLEDGMENTS

Contents

Abstract i

Acknowledgments v

1 Introduction 1

1.1 Model of the Distributed Computation 2

1.2 Checkpoint and Communication Patterns of Distributed Com-
putations . 3

1.3 Consistent Global Checkpoints 4

1.4 Checkpointing Protocols . 6

1.4.1 Uncoordinated Protocols 6

1.4.2 Coordinated Protocols 7

1.4.3 Communication-Induced Protocols 9

2 Consistent Checkpointing 11

2.1 Netzer and Xu Theory . 12

2.1.1 Z-Paths . 12

2.1.2 Z-Cycles . 14

2.2 Properties of Checkpoint and Communication Patterns 14

2.2.1 The No-Z-Cycle Property 14

2.2.2 The Rollback-Dependency-Trackability Property 15

2.2.3 Relation Between Properties 16

3 Communication-Induced Protocols: Overview 19

3.1 Protocols Ensuring the No-Z-Cycle Property 19

3.2 Protocols Ensuring the Rollback-Dependency-Trackability Prop-
erty . 27

4 A Taxonomy of Protocols 33

4.1 The Virtual Precedence Property 33

4.1.1 Description . 33

vii

viii CONTENTS

4.1.2 Equivalence Between the No-Z-Cycle Property and the
Virtual Precedence Property 35

4.2 A Taxonomy of Protocols Based on the Virtual Precedence
Property . 35

4.2.1 VP-Enforced Protocols 36

4.2.2 VP-Accordant Checkpointing Protocols 37

4.3 Applying the Taxonomy to Existing Protocols 38

5 A Virtual Precedence Enforced Protocol 41

5.1 Relation of Equivalence Between Checkpoints 41

5.2 Sequence and Equivalence Numbers of a Consistent Global Check-
point . 44

5.2.1 Tracking Equivalent Checkpoints 45

5.2.2 Sequence and Equivalence Number Based Protocol
(SENBP) . 49

5.2.3 A Modification of SENBP (M-SENBP) for the Case of
Periodic Basic Checkpoints 52

5.2.4 An Implementation of M-SENBP 52

5.2.5 Correctness Proof . 53

5.3 Performance Measures: a Case Study in the Context of Rollback
Recovery . 57

5.3.1 The Simulation Model 58

5.3.2 Results of the Experiments 59

6 Virtual Precedence Accordant Protocols 67

6.1 Preliminary Definitions . 68

6.1.1 Message Chains . 68

6.1.2 Concatenation Relations 70

6.1.3 Concatenation Operators 71

6.1.4 A Formal Redefinition of the Z-Cycle 71

6.2 A Characterization of the No-Z-Cycle Property 72

6.2.1 Elementary Z-Cycles . 73

6.2.2 Prime Z-Cycles . 74

6.2.3 Core Z-Cycles . 76

6.2.4 A Characterization Theorem 79

6.3 Deriving VP-Accordant Protocols 80

6.3.1 Suspect Core Z-Cycles 80

6.3.2 A Remark on Characterizations Stronger than NCZC . 83

6.3.3 A Checkpointing Protocol (P1) Preventing SCZCs . . . 84

6.3.4 A Comparison with Previous VP-Accordant Protocols . 87

6.3.5 Reducing the Size of the Control Information of P1: Pro-
tocol P2 . 89

CONTENTS ix

6.3.6 A Comparison with VP-Enforced Protocols 91
6.4 Consistent Global Checkpoints that Contain a Given Local Check-

point . 94
6.4.1 Consistent Global Checkpoint Collection 94

6.5 Applications of the Presented Protocols 97
6.5.1 Recovery from Transient Failures in Long Running Sci-

entific Applications . 97
6.5.2 The Output Commit Problem 98

7 Consistent Checkpointing in Distributed Databases 101
7.1 Database Model . 103

7.1.1 Data Objects . 103
7.1.2 Transactions . 103
7.1.3 Concurrency control . 104

7.2 Distributed Database . 104
7.2.1 Execution . 104

7.3 Consistent Global Checkpoints 105
7.3.1 Local States and Their Relations 105
7.3.2 Consistent Global States 106
7.3.3 Consistent Global Checkpoints 107

7.4 Extension of Netzer-Xu Theory to Distributed Databases . . . 107
7.4.1 Dependence on Data Checkpoints 107
7.4.2 Dependence Path . 109
7.4.3 Necessary and Sufficient Condition 110

7.5 Deriving “Transaction-Induced” Checkpointing Protocols . . . 112
7.5.1 Protocols A and B: Behavior of a Transaction Manager 113
7.5.2 Protocol A: Behavior of a Data Manager 113
7.5.3 Protocol B: Behavior of a Data Manager 114
7.5.4 Short Comparison with Previous Protocols 115

Bibliography 117

Glossary 123

x CONTENTS

Chapter 1

Introduction

A global state of a distributed computation is a set of individual process
states, also called local states, one for each process. Each local state repre-
sents a snapshot of the process at a given point of the computation. A local
checkpoint, or simply checkpoint, is a local state saved onto stable storage. A
set of checkpoints, one for each process, is a global checkpoint of the distributed
computation.

Global checkpoints have application in several problems of distributed
computing such as hardware/software fault tolerance [19, 49], distributed de-
bugging [16, 23], the determination of distributed breakpoints [22, 39] and
of shared global states [24], the evaluation of global predicates [34], proto-
col specification [25] and others [63, 64]. However, the application of global
checkpoints to previous problems may result ineffective, or even useless, if the
problem of consistency is not tackled.

A global checkpoint is consistent if no checkpoint in the global checkpoint
depends on another one. Informally, consistency means that there does not
exist any message whose receive event is recorded in the global checkpoint
whereas the corresponding send event is not recorded. If this happens, the
global checkpoint represents a snapshot of the computation recording a de-
pendence which is not yet generated. Such a dependence is the source of the
inconsistency of the global checkpoint.

As an example of drawbacks due to inconsistency, in the context of fault
tolerance through checkpoint-based rollback, the absence of consistent global
checkpoints requires, in case of failure, the distributed computation to be
restarted from its initial state (this unbounded rollback extent is known as
domino effect [49]). This is a highly undesirable phenomenon implying that all
checkpoints taken (i.e., the overhead imposed to the computation for taking
them) result to be useless for protecting against the loss of all useful work
performed until the occurrence of the failure.

1

2 CHAPTER 1

Depending on the way checkpoints are taken by processes, checkpoint-
ing protocols can be split into three classes: uncoordinated, coordinated and
communication-induced.

This thesis focuses on the communication-induced class and considers a
particular model of the distributed computation usually termed in the litera-
ture as asynchronousmodel with non-FIFO communication between processes.
Such a model is presented in Section 1.1 of this chapter. Both theoretical and
practical aspects of communication-induced checkpointing are investigated.
Starting from theoretical results, communication-induced checkpointing pro-
tocols are derived with the aim at improving system performance compared
to previous solutions.

Note that when a checkpointing protocol runs at processes, the outcom-
ing distributed computation is modeled not only as a partial order of events,
but also as a set of relations among checkpoints. Thus, in Section 1.2 of this
chapter, the notion of checkpoint and communication pattern of a distributed
computation is presented. Then, in Section 1.3 the formal definition of con-
sistent global checkpoint is provided.

Although this thesis presents results for communication-induced check-
pointing, Section 1.4 of this chapter is devoted to the description of features
of protocols in each class in order to outline basic differences among dis-
tinct classes. We give details while describing protocols of the uncoordinated
and coordinated class; instead, less details are given about protocols of the
communication-induced class as they will be extensively described in Chapter
3. As it will be shown, some of the coordinated checkpointing protocols re-
quire more strict constraints on the computational model investigated in this
thesis (for example FIFO communication). Whenever one of these protocols
is described, the imposed constraints are explicitly mentioned.

A set of preliminary definitions and notations forming a basis for any
future reasoning or description are also presented somewhere in this chapter.
Additional definitions/notations are introduced whenever they are needed.

1.1 Model of the Distributed Computation

A distributed computation consists of a set P of n processes {P1, P2, . . . , Pn}.
Processes do not share memory and do not share a common clock value; fur-
thermore, no private information of any process (such as clock drift, clock
granularity or clock precision) is known by other processes. They communi-
cate only by exchanging messages. Each pair of processes is connected by an
asynchronous, directed logical channel. Transmission delays over channels are
unpredictable but finite.

Processes of the distributed computation are sequential. A process pro-

1.2. CHECKPOINT AND COMMUNICATION PATTERNS OF
DISTRIBUTED COMPUTATIONS 3

duces a sequence of events; each event moves the process from one local state
to another. The x-th event in process Pi is denoted as ei,x. We assume events
are produced by the execution of internal, send and receive statements. The
send and receive events of a message m are denoted respectively by send(m)
and receive(m).

Definition 1.1.1
In process Pi an event ei,x precedes an event ei,y, denoted ei,x ≺P ei,y, iff
x < y.

Definition 1.1.2
An event ei,x of process Pi precedes an event ej,y of process Pj due to message
m, denoted ei,x ≺m ej,y, iff:

(ei,x = send(m)) ∧ (ej,y = receive(m))

Lamport’s Happened-Before relation [33], denoted as
e→, is the transitive

closure of the union of relations ≺P and ≺m. Let H be the set of all events
produced by a distributed computation, the computation can be modeled by
the partial order Ĥ = (H, e→). The relation

e→ expresses causal dependences
between events. If ei,x

e→ej,y, then ej,y is causally dependent on ei,x.

Let us now introduce some graphical notations. In any picture, horizontal
lines extending towards the right end side represent process execution; arrows
between processes represent messages. As an example, in Figure 1.1 we have a
computation consisting of three processes and two messages. Process P2 sends
a message m to P1 and then receives message m′ sent by P3.

P1

P2

P3

m

m′messages

Figure 1.1: An Example of Distributed Computation.

1.2 Checkpoint and Communication Patterns of Dis-
tributed Computations

A local state of a process saved on stable storage is called a checkpoint of the
process. A local state is not necessarily recorded as a local checkpoint, so the
set of local checkpoints is a subset of the set of local states.

4 CHAPTER 1

The x-th checkpoint of process Pi is denoted as Ci,x where x is called
the rank of the checkpoint. The rank of checkpoints of a process increases
monotonically: each time a checkpoint is taken the rank is increased by one. It
is assumed that each process Pi takes an initial checkpoint Ci,1 (corresponding
to the initial state of the process) and that after each event a checkpoint will
eventually be taken. Hence the execution of a process always terminates with
a checkpoint. A checkpoint interval Ii,x is the set of events between Ci,x and
Ci,x+1.

Let us finally introduce the concept of checkpoint and communication pat-
tern related to a distributed computation:

Definition 1.2.1
A checkpoint and communication pattern of a distributed computation is a
pair (Ĥ, CĤ) where Ĥ is a distributed computation and CĤ is a set of local

checkpoints defined on Ĥ.

From a graphical point of view, the action of taking a checkpoint at a
given point of the execution is pictured as a rectangular box placed on the
line representing the process execution. As an example, in Figure 1.2 we have
a computation with three processes and four checkpoints. Checkpoints C1,1,
C2,1 and C3,1 correspond to the initial states of the processes. The checkpoint
interval I2,1 (corresponding to events occurring in P2 between C2,1 and C2,2)
is marked in the picture. Note that the termination of the computation is not
shown (otherwise a checkpoint should be placed at the end of each horizontal
line).

P1

P2

P3

m

m′

C1,1

C2,1

C3,1

C2,2

I2,1

Figure 1.2: An Example of Distributed Computation with Checkpoints.

1.3 Consistent Global Checkpoints

A global checkpoint of a distributed computation is a set of local checkpoints
{C1,x1 , . . . , Cn,xn}, one for each process. The notion of consistent global check-
point [14] can be easily formalized by using the following precedence relation
between checkpoints:

1.3. CONSISTENT GLOBAL CHECKPOINTS 5

Definition 1.3.1
A checkpoint Ci,x of process Pi precedes checkpoint Cj,y of process Pj, denoted
Ci,x ≺ckpt Cj,y, if there exists a message m such that:

((send(m) ∈ Ii,x′) ∧ (x′ ≥ x)) ∧ ((receive(m) ∈ Ij,y′) ∧ (y′ < y))

In other words, Definition 1.3.1 states that Ci,x precedes Cj,y if there exists
a message m which is sent by Pi after Ci,x was taken and is received by Pj

before taking Cj,y. In the literature, such a message is said to be orphan with
respect to the ordered pair (Ci,x, Cj,y) [14]. As an example, in Figure 1.3 a
computation with two processes and an orphan message m with respect to the
ordered pair (C1,1, C2,2) is shown. Due to m, checkpoint C1,1 precedes C2,2

through the ≺ckpt relation.

Definition 1.3.2
A global checkpoint {C1,x1 , . . . , Cn,xn} is consistent iff for any pair of check-
points (Ci,xi , Cj,xj) in it:

(¬(Ci,xi ≺ckpt Cj,xj)) ∧ (¬(Cj,xj ≺ckpt Ci,xi))

Intuitively, from Definition 1.3.2 a global checkpoint is consistent if for
any message m whose receive event is recorded in the global checkpoint then
also the corresponding send event is recorded in the global checkpoint. As
an example, the global checkpoint {C1,1, C2,2} in Figure 1.3 is not consistent
because the send event of message m is not recorded in it. In the context of
rollback recovery based on checkpointing, the inconsistency of the ordered pair
(C1,1, C2,2) means that, in case of failure, the application cannot be rolled back
to the global checkpoint {C1,1, C2,2}. If P1 rolls back to C1,1 then it undoes
all the events produced after taking that checkpoint, including the send event
of message m. If P2 rolls back to C2,2 then the receive of m is not undone. In
such a case, there exists a message which is not sent but has been received,
hence the global checkpoint records a causal dependence between P1 and P2

which is not yet generated.

global checkpoint

P2

C1,1

C2,1 C2,2
m

P1

non-consistent

Figure 1.3: An Example of Precedence Between Checkpoints.

6 CHAPTER 1

1.4 Checkpointing Protocols

In this section a description is given of checkpointing protocols in the uncoordi-
nated and coordinated classes. Furthermore, basic concepts about communica-
tion-induced checkpointing are also presented (communication-induced proto-
cols are, instead, extensively discussed in Chapter 3).

1.4.1 Uncoordinated Protocols

Uncoordinated (or independent) checkpointing protocols allow each process
to decide independently when to take checkpoints. The main advantage is
the low overhead imposed to the computation because no coordination among
processes is necessary. Autonomy in taking checkpoints also allows each pro-
cess to select appropriate checkpoint positions in order to further reduce the
overhead: (i) by saving smaller amounts of state information (this may hap-
pen in the case of processes having dynamic state size) or (ii) by checkpointing
during idle CPU periods.

The main disadvantage of the uncoordinated approach is the possibility
that no consistent global checkpoint can ever be formed. As already outlined,
this can lead to an unbounded rollback extent in the case of fault tolerance
realized through checkpoint-based rollback.

The dependences between checkpoints caused by message exchanges need
to be recorded in order to reconstruct a consistent global checkpoint whenever
it is reclaimed. To this purpose, a direct dependency tracking technique [9,
57, 59] is commonly adopted. It works as follows: whenever a process Pi

executing at its checkpoint interval Ii,x sends a message m to Pj , the pair
(i, x) is piggybacked on m. If Pj receives m in its checkpoint interval Ij,y,
the dependence between Ci,x and Cj,y+1 is recorded when Cj,y+1 is taken.
Whenever a consistent global checkpoint is reclaimed by a process Pk, the
latter broadcasts a dependency request message for collecting the dependency
information from the other processes. Upon the receipt of the message, process
Ph replies to Pk with the dependency information. The consistent global
checkpoint is then calculated by Pk basing on the collected information. Such
a calculation is realized building and analyzing either a rollback-dependency-
graph [9, 13, 63] or a checkpoint-graph [57, 62].

Basically, in a rollback-dependency-graph each node corresponds to a check-
point and an edge exists between Ci,x to Cj,y if: (1) i ̸= j and a message m is
sent by Pi in the checkpoint interval Ii,x−1 and is received by Pj in Ij,y−1, or
(2) i = j and y = x+1. The name rollback-dependency-graph comes from the
context of fault tolerance and indicates that if there exists an edge between
Ci,x and Cj,y, and the interval Ii,x−1 is rolled back on Pi, then the interval
Ij,y−1 must be rolled back as well (because Cj,y depends on Ci,x−1). To calcu-

1.4. CHECKPOINTING PROTOCOLS 7

late a consistent global checkpoint containing Ci,x the following algorithm is
used [9, 63]: the node corresponding to Ci,x+1 is marked; then all the nodes
reachable by the initially marked node are marked as well (i.e., a reachability
analysis is performed on the graph); the last unmarked node for each process
corresponds to a checkpoint which is a member of the consistent global check-
point. Note that it is not guaranteed that the identified global checkpoint
actually contains Ci,x (i.e., the corresponding node could be marked during
the analysis).

The checkpoint-graph is quite similar to the rollback-dependency graph,
with the difference that an edge exists between nodes corresponding to Ci,x

and Cj,y if there exists a message m which is sent in Ii,x and is received in Ij,y.
Also in this case, reachability analysis is used for identifying consistent global
checkpoints [57, 60].

1.4.2 Coordinated Protocols

In coordinated checkpointing protocols, processes coordinate their checkpoint-
ing actions in order to ensure consistency of a global checkpoint. In the context
of checkpoint-based rollback recovery, coordinated protocols allow computa-
tions which are free from the domino effect as, after the occurrence of a failure,
the computation can be always resumed from the last taken global checkpoint
(being it consistent). The main disadvantages are: (i) the sacrifice of process
autonomy and (ii) the message overhead due to the coordination.

A simple approach to coordinate checkpointing actions is to block interpro-
cess communication until the end of the execution of the checkpointing proto-
col [18, 55]. This can be done through a simple two-phase based protocol struc-
tured as follows. The initiator process broadcasts a checkpoint request mes-
sage and takes its checkpoint; upon the receipt of that message, any process,
other than the initiator, takes a checkpoint, stops sending application messages
and replies to the initiator with a local checkpoint donemessage. After having
received the local checkpoint done message from all the other processes, the
coordinator starts the second phase by broadcasting a global checkpoint done
message. Upon the receipt of the latter message, any process resumes normal
execution.

An alternative to the blocking technique is non-blocking coordination. In
this type of coordination, processes other than the initiator do not block send-
ing application messages when the checkpoint request message is received.
The problem incurred is that a process Pj can receive an application mes-
sage m sent by Pi after the latter received the checkpoint request message
from the initiator. Such a situation is depicted in Figure 1.4.a. If Pj re-
ceives and processes the message m before the receipt and the processing
of the checkpoint request message then checkpoints Ci,x and Cj,y cannot be

8 CHAPTER 1

part of a consistent global checkpoint due to the presence of m which estab-
lishes the following relation Ci,x ≺ckpt Cj,y. As a result, the outcoming global
checkpoint is not consistent. In the case of FIFO communication channels,
Chandy and Lamport provide a solution to this problem [14] by forcing pro-
cess Pi to send a checkpoint request message to Pj before the sending of m
and imposing to each process to take a checkpoint upon the receipt of the
first checkpoint request message. In such a case process Pj takes the check-
point before the receipt of m (see Figure 1.4.b), thus avoiding inconsistency of
the global checkpoint. A modification of the Chandy-Lamport scheme for the
case of non-FIFO communication channels has been presented in [32]. Such
solution avoids the sending of the checkpoint request message from Pi to Pj ,
instead, the checkpoint request is piggybacked on m. Upon the receipt of m
piggybacking the request, a checkpoint is taken by Pj before processing the
message. In the case of non-FIFO communication channels, it is possible that
a checkpoint request with index ind1 is received when a checkpoint request
with index ind2 > ind1 was already processed. In such a case the checkpoint
request with index ind1 is discarded.

(a) (b)

Pi

Pj

Pk

Ci,x

Pk is the initiator

Ck,z

m
Cj,y

checkpoint request

Pi

Pj

Pk

m

Ci,x

Cj,y

checkpoint request

Pk is the initiator

Ck,z

Figure 1.4: A Global Checkpoint which is not Consistent (a); a Consistent
Global Checkpoint (b).

A way to reduce the impact of coordination on the execution is to force
coordination itself only among processes that really need to coordinate (i.e.,
processes that have communicated with the initiator since the last taken check-
point) [8, 31]. In the scheme presented by Koo and Tueg [31] a two-phase
approach is adopted with the following characteristics. In the first phase the
initiator identifies all the processes that communicated with it since its last
checkpoint and sends a checkpoint request message to all of them. Upon the
receipt of that message, a process behaves in a similar way (i.e., it identifies
its set of communicating processes since the last checkpoint and sends them
the request). When all processes are identified, the second phase is started, in

1.4. CHECKPOINTING PROTOCOLS 9

which the checkpointing actions are performed. This scheme requires blocking
coordination.

A rather different way to reduce the overhead due to coordination mes-
sages is the usage of synchronous, or quasi synchronous, checkpointing clocks
[17, 48, 56]. Note that synchronous clocks imply the computational model to
be more strict than the general one described in Section 1.1. Furthermore, an
additional restriction is that checkpoints can be triggered only on a periodic
basis. If processes take local checkpoints approximately at the same time then
the need for broadcasting a checkpoint request message is avoided. To guar-
antee consistency in the presence of drift between clocks, either the sending of
messages is blocked for a given amount of time (related to the maximum de-
viation between clocks) or checkpoint requests are piggybacked on application
messages. In the latter case, if upon the receipt of a message m piggybacking
the request the recipient process has not yet taken the checkpoint (due to drift
between clocks) then it takes the checkpoint prior to processing the message.

1.4.3 Communication-Induced Protocols

In communication-induced checkpointing, the coordination between check-
pointing actions at distinct processes is realized in a lazy fashion by piggy-
backing control information on application messages. Upon the receipt of an
application message, the recipient process examines the information prior to
processing the message. If a given predicate P is evaluated to TRUE then a
checkpoint is taken before processing the message. Such a checkpoint is called
forced checkpoint. Protocols in this class differ by the amount of control in-
formation piggybacked on the application messages and by the predicate P
triggering checkpoints upon the receipt of a message. Note that the control
information incoming with application messages is commonly used to update
local control information, namely local context, proper of the recipient process.

In this kind of approach we can distinguish between two types of check-
points: (i) basic checkpoints, that are taken by a process according to its own
local strategy (an example of local strategy is periodic checkpointing), and (ii)
forced checkpoints, which are triggered by the lazy coordination scheme.

In contrast with coordinated checkpointing, no coordination message is ex-
changed among processes, hence the only information available to the check-
pointing protocol at the receive event of an application message is the one
encoded by the control information piggybacked on that message plus the lo-
cal context of the process. This information is related to the causal past of
that event which is captured by the

e→ relation. The following constraints
commonly identify the communication-induced class:

C1. The usable knowledge at an event e is the knowledge of the restriction of

10 CHAPTER 1

(Ĥ, CĤ) to e’s causal past;

C2. Upon the arrival of a message m at process Pi, the checkpointing pro-
tocol has to evaluate the predicate P on-the-fly (i.e., without additional
delays). If it is evaluated to TRUE, a forced checkpoint has to be taken
before processing m;

C3. The evaluation of the predicate is based on the usable knowledge avail-
able at that event (i.e., the local context of the process plus the control
information piggybacked on the application message). In other words,
no control message is allowed;

C4. The content of an application message cannot be interpreted by the check-
pointing protocol;

C5. Information about other processes (such as clock speed, clock drift, etc.)
and about the network’s characteristics (such as the maximum message
transmission delay) are not known by any process.

The structure of the predicate P determines the property ensured by the
outcoming checkpoint and communication pattern of the distributed computa-
tion. Two main properties are of interest for most applications: the no-Z-cycle
property and the rollback-dependency-trackability property. Informally, the
no-Z-cycle property stipulates that each local checkpoint belongs to at least
one consistent global checkpoint. Both previous properties will be presented in
Chapter 2. Finally, an overview of communication-induced protocols ensuring
either one or the other property will be reported in Chapter 3.

Chapter 2

Consistent Checkpointing

The definition of consistency of a global checkpoint relies on the notion of
causality, as consistency means that no checkpoint in the global checkpoint
depends on another checkpoint in the global checkpoint through the ≺ckpt

relation - see Definition 1.3.2 - (such a relation captures causal dependences
between checkpoints due to the exchange of a single message). However, rea-
soning by causality has been for long time the major cause preventing the
answers to the following fundamental questions:

• Q(Ci,x, Cj,y): given a pair (Ci,x, Cj,y) of checkpoints of distinct processes,
which is the necessary and sufficient condition for these checkpoints to
be members of a same consistent global checkpoint?

• Q(Ci,x): given a checkpoint Ci,x of process Pi, which is the necessary
and sufficient condition ensuring that checkpoint Ci,x can be member of
at least one consistent global checkpoint?

The precedence relation ≺ckpt between checkpoints, and, more generally,
the concept of causality have been shown by Netzer and Xu to be not enough
powerful to form a basis for providing answers to previous questions. Netzer
and Xu provided those answers in a recent past [40] by starting from a notion
of dependence superseding the causal one. Actually they provided the answer
to the following question Q(S), which includes both Q(Ci,x, Cj,y) and Q(Ci,x):

• Q(S): given a set S of checkpoints of distinct processes, including at least
one checkpoint and at most one checkpoint for each process, which is the
necessary and sufficient condition for these checkpoints to be members
of a same consistent global checkpoint?

Their results, which are described in this chapter, are of interest not only
from a theoretical point of view but also from a practical one as they gave a

11

12 CHAPTER 2. CONSISTENT CHECKPOINTING

strong shot to research in the field of design of communication-induced check-
pointing protocols.

2.1 Netzer and Xu Theory

2.1.1 Z-Paths

Netzer and Xu generalized the notion of causal dependence through the intro-
duction of the concept of zigzag path (Z-path for short) [40]. Z-paths are par-
ticular kind of dependences between checkpoints which include both causality
and non-causality.

Informally, a Z-path between a checkpoint Ci,x and a checkpoint Cj,y is
a particular sequence of messages [m1, . . . ,mq] such that the sending of a
message mi belongs on a process to the same, or to a successive, checkpoint
interval of the receive of the message mi−1. Formally, a Z-path from Ci,x to
Cj,y is defined as follows:

Definition 2.1.1
A Z-path exists from checkpoint Ci,x to checkpoint Cj,y iff there exists a se-
quence of messages [m1,m2, . . . ,mq] such that:

(1) (send(m1) ∈ Ii,x′) ∧ (x′ ≥ x)
(i.e., m1 is sent by process Pi after taking Ci,x);

(2) ∀p : 1 ≤ p < q ⇒ if receive(mp) ∈ Ik,z then (send(mp+1) ∈ Ik,z′) ∧
(z′ ≥ z)
(i.e., if mp (1 ≤ p < q) is received by process Pk in the checkpoint interval
Ik,z, then mp+1 is sent by Pk in the same or in a later checkpoint interval,
although mp+1 may be sent before or after mp is received);

(3) (receive(mq) ∈ Ij,y′) ∧ (y′ < y)
(i.e., mq is received by process Pj before taking Cj,y).

Figure 2.1.a and Figure 2.1.b show two examples of Z-path between Ci,x

and Cj,y formed by messages [m1,m2].

The following fundamental theorem has been proved by Netzer and Xu
[40]:

Theorem 2.1.1
A set of checkpoints S, where each is from a different process, can belong to
the same consistent global checkpoint iff no checkpoint in S has a Z-path to
any checkpoint in S.

2.1. NETZER AND XU THEORY 13

(a)

m1

(b)

(c)

m1
m3

Pj

m2

Pi Pi

Pj

m2

m1Ci,x Ci,x

Cj,yCj,y

Pi

Ci,x

m2

Figure 2.1: A causal Z-path from Ci,x to Cj,y (a), a non-causal Z-path from
Ci,x to Cj,y (b), a Z-cycle involving Ci,x (c).

Basing on Theorem 2.1.1, we have that, though Ci,x and Cj,y in Figure
2.1.a and in Figure 2.1.b do not depend on each other through the relation
≺ckpt, they cannot be members of a same consistent global checkpoint as there
exists a Z-path between them.

Z-paths can be split in two families: the causal Z-paths which are actually
casual paths of messages and the non-causal Z-paths in which there exists at
least one message mp whose send precedes the receive of mp−1 in the same
checkpoint interval. Formally:

Definition 2.1.2
A Z-path from Ci,x to Cj,y formed by messages [m1, . . . ,mq] is causal if

∀p : 1 ≤ p < q ⇒ receive(mp) ≺P send(mp+1)

Otherwise the Z-path is non-causal.

As an example, the Z-path from the checkpoint Ci,x to Cj,y formed by
[m1,m2] shown in Figure 2.1.a is a causal one. Instead, the Z-path from Ci,x

to Cj,y formed by [m1,m2] shown in Figure 2.1.b is a non-causal one.

14 CHAPTER 2. CONSISTENT CHECKPOINTING

2.1.2 Z-Cycles

Due to the presence of non-causal Z-paths, it is possible for a sequence of
messages to establish a relation between a checkpoint Ci,x and itself. Such
a relation has been formalized by Netzer and Xu with the name zigzag cycle
(Z-cycle for short) [40]. Therefore, a Z-cycle involving Ci,x is a Z-path from
Ci,x to itself.

As an example, the sequence of messages [m2,m3,m1] shown in Figure
2.1.c involves checkpoint Ci,x in a Z-cycle. Using the notion of Z-cycle, the
following fundamental Corollary has been derived from Theorem 2.1.1:

Corollary 2.1.2
A checkpoint Ci,x of process Pi can belong to at least one consistent global
checkpoint iff Ci,x is involved in no Z-cycle.

2.2 Properties of Checkpoint and Communication
Patterns

Starting from the notions of Z-path and Z-cycle, two fundamental properties
of checkpoint and communication patterns of distributed computations have
been studied. These properties are described in this section.

2.2.1 The No-Z-Cycle Property

Given a checkpoint Ci,x belonging to a checkpoint and communication pattern
(Ĥ, CĤ) of a distributed computation, then, by Corollary 2.1.2, Ci,x can be part
of at least one consistent global checkpoint iff it is involved in no Z-cycle. If the
property of being involved in no Z-cycle holds for any checkpoint in (Ĥ, CĤ),
then (Ĥ, CĤ) is said to satisfy the No-Z-Cycle (NZC) property. More formally:

Property 2.2.1
A checkpoint and communication pattern of a distributed computation (Ĥ, CĤ)
satisfies the No-Z-Cycle property (NZC) iff no Z-cycle exists in (Ĥ, CĤ).

NZC is a highly desirable property in the context of many applications. In
particular, in a checkpoint and communication pattern (Ĥ, CĤ) of a distributed
computation satisfying NZC the progress of the global consistent checkpoint
is guaranteed (because each time a local checkpoint is taken then there exists
at least a global consistent checkpoint including it). In the context of rollback
recovery, ensuring the NZC property means rollback without the risk of the
domino-effect.

2.2. PROPERTIES OF CHECKPOINT AND COMMUNICATION
PATTERNS 15

2.2.2 The Rollback-Dependency-Trackability Property

Sometimes applications relying on checkpointing also involve other problems.
For example, rollback recovery involves problems as recovery line identifica-
tion, garbage collection and output commit. Identifying a recovery line of a
distributed computation means determining the global consistent checkpoint
more close to the end of the computation (the computation is then rolled back
to that recovery line in order to minimize the amount of lost work). All the
checkpoints preceding the recovery line can be garbage collected for recovering
storage. Instead, the output commit problem appears whenever there exist in-
teractions with external entities (for example an external client) which cannot
be required to rollback.

Efficient solutions to previous problems can be found in a simple way if pro-
cesses can calculate efficiently the minimum and maximum consistent global
checkpoint containing a given local checkpoint(1). For example, the efficient
calculation of the maximum consistent global checkpoint is the basis for an
efficient rollback minimizing the amount of lost work. Also, the efficient calcu-
lation of the minimum consistent global checkpoint recording all the outputs
is the basis for efficient solutions to the output commit problem.

Wang has shown [64] that if all dependences between checkpoints due to Z-
paths are trackable on-the-fly (i.e., at the time a checkpoint is taken) then the
individuation of the minimum and maximum consistent global checkpoints as-
sociated to a specified set of checkpoints is quite straightforward. Dependences
between checkpoints due to Z-paths are trackable iff they can be revealed by
causality.

A dependence between two checkpoints Ci,x and Cj,y due to a non-causal
Z-path from Ci,x to Cj,y cannot be revealed by causality. An example of
this type of dependence is the one between Ci,x and Cj,y due to messages
[m1,m2] in Figure 2.1.b. However, if given a dependence due to a non-causal
Z-path, the same dependence is also established by a causal Z-path then such
a dependence can be tracked on-the-fly. Whenever a dependence between
checkpoints established by a non-causal Z-path is also established by a causal
one, then the original Z-path is said to be causally doubled.

As an example, in Figure 2.2 the dependence between Ci,x and Cj,y due
to the non-causal Z-path formed by [m1,m2] is also established by the causal
Z-path formed by [m1,m3], hence process Pj is able to track such dependence
involving Cj,y on-the-fly by exploiting causality (i.e., the non-causal Z-path is
causally doubled).

The ability for each process to track on-the-fly all dependences due to Z-
paths and involving its checkpoints, deriving from the fact that all non-causal

1The minimum (resp. maximum) consistent global checkpoint containing Ci,x corre-
sponds to the earliest (resp. latest) consistent global checkpoint containing Ci,x [35, 63, 64].

16 CHAPTER 2. CONSISTENT CHECKPOINTING

Pi

Pj

m2

m1Ci,x

Cj,y

m3

Figure 2.2: A non-Causal Z-path from Ci,x to Cj,y Formed by [m1,m2] which
is Causally Doubled by the Causal Z-path Formed by [m1,m3].

Z-paths are causally doubled, is a property of the checkpoint and communica-
tion pattern of the distributed computation known as Rollback-Dependency-
Trackability (RDT) [3, 64]. Formally:

Property 2.2.2
A checkpoint and communication pattern (Ĥ, CĤ) of a distributed computation
satisfies the Rollback-Dependency-Trackability property (RDT) iff all its Z-
paths are causally doubled.

As shown byWang [64], in a checkpoint and communication pattern (Ĥ, CĤ)
satisfying the RDT property all dependences due to Z-paths can be tracked
on-the-fly by a transitive dependency tracking mechanism. Details about such
a mechanism will be discussed in Chapter 3 while describing checkpointing
protocols ensuring the RDT property.

2.2.3 Relation Between Properties

Note that a Z-path from a checkpoint Ci,x to itself (i.e., a Z-cycle involving
that checkpoint) is a particular non-causal Z-path that cannot be doubled by
any causal Z-path (such a doubling would lead to a cycle in the Happened-
Before relation which is acyclic). This observation straightforwardly implies
the following result: if all the non-causal Z-paths are doubled in a checkpoint
and communication pattern (Ĥ, CĤ) of a distributed computation, then no

Z-cycle exists in (Ĥ, CĤ). In terms of properties we get:

RDT ⇒ NZC

In other words, if (Ĥ, CĤ) satisfies the RDT property, then it also satisfies
the NZC property. Therefore, none of the local checkpoints of a checkpoint
and communication pattern satisfying RDT is useless (as no Z-cycle exists
in (Ĥ, CĤ) due to the implication between properties). Furthermore, to each

2.2. PROPERTIES OF CHECKPOINT AND COMMUNICATION
PATTERNS 17

checkpoint is on-the-fly associable the set of checkpoints on which it depends
on due to Z-paths. The latter feature is not guaranteed in a checkpoint and
communication pattern of a distributed computation satisfying NZC but not
RDT .

18 CHAPTER 2. CONSISTENT CHECKPOINTING

Chapter 3

Communication-Induced
Protocols: Overview

This chapter is devoted to the description of communication-induced check-
pointing protocols existing in the literature and ensuring either NZC orRDT .
Recall that this type of protocols induce a separation of checkpoints into basic
ones and forced ones (forced checkpoints are triggered whenever, upon the
receipt of a message, a predicate P proper of the protocol is evaluated to
TRUE).

3.1 Protocols Ensuring the No-Z-Cycle Property

As formally stated, theNZC property stipulates that no checkpoint of a check-
point and communication pattern (Ĥ, CĤ) of a distributed computation is
involved in any Z-cycle. Equivalently, NZC is ensured whenever, each check-
point belongs to at least one consistent global checkpoint.

As shown in Chapter 1, a simple way to guarantee that each checkpoint
belongs to at least one consistent global checkpoint is to start a explicit co-
ordination protocol each time a local checkpoint Ci,x is taken by process Pi.
Such a coordination will determine a consistent global checkpoint including
Ci,x.

Briatico et al. [12] argued that previous coordination can be realized, in the
context of communication-induced checkpointing, by introducing the concept
of sequence number of a consistent global checkpoint and by piggybacking
as control information on the application messages the value of the sequence
number.

More technically, each process Pi is endowed with a sequence number sni,
which is initialized to zero at the beginning of the execution. When a check-
point Ci,x is taken, the current value of sni is recorded onto stable storage

19

20
CHAPTER 3. COMMUNICATION-INDUCED PROTOCOLS:

OVERVIEW

together with the checkpoint. Hence, to each checkpoint Ci,x is associated
a sequence number denoted Ci,x.sn, with Ci,1.sn = 0. Each time a basic
checkpoint is scheduled by Pi then sni is increased by one prior to taking the
checkpoint. Each time an application message m is sent by Pi to any other
process, the value of sni is attached to m as control information, denoted as
m.sn.

As the aim of the protocol by Briatico et al. [12] is to force consistency
(i.e., independence) between checkpoints having the same value of the sequence
number, then the following behavior characterizes the handling of the receipt
of any message: when Pi receives in the checkpoint interval Ii,x−1 a message
m piggybacking a sequence number greater than the local one, then the local
sequence number is set to m.sn and a forced checkpoint Ci,x is taken prior to
processing m (hence, Ci,x.sn = m.sn).

As an example, in Figure 3.1 process P1 sends a message m2 to P2 after
taking checkpoint C1,2 whose sequence number is equal to 1 (thereforem2.sn =
1). Upon the receipt of m2, P2 takes the forced checkpoint C2,2 prior to
processing the message and assigns to that checkpoint the sequence number 1
(i.e., the sequence number received with the message m2).

forced checkpoint
checkpoint

P1

m1

P2

consistent global

C1,1.sn = 0

C2,1.sn = 0

C1,2.sn = 1

m2.sn = 1

C2,2.sn = 1

Figure 3.1: An Example of Applying of the Briatico et Al. Protocol.

The NZC property is guaranteed since the following features are ensured
by the protocol to the resulting checkpoint and communication pattern of the
computation:

(A) Ci,x−1.sn < Ci,x.sn;

(B) if a message m is sent by Pi after taking Ci,x (i.e., send(m) ∈ Ii,x+ϵ with
ϵ ≥ 0), then m.sn ≥ Ci,x.sn;

(C) along any Z-path [m1, . . . ,mq] from Ci,x to Cj,y then ∀p : 1 ≤ p < q ⇒
mp+1.sn ≥ mp.sn;

3.1. PROTOCOLS ENSURING THE NO-Z-CYCLE PROPERTY 21

(D) if a message m is received by Pk, it is received in a checkpoint interval
Ii,x such that Ci,x.sn ≥ m.sn.

The combination of constraints (A), (B), (C) and (D) guarantees the ab-
sence of Z-cycles. As a sketch proof (for a complete proof the reader can refer
to [37], where a theoretical framework for classifying communication-induced
protocols is presented), let us assume the existence of a Z-cycle involving Ci,x.
It implies the existence of at least a Z-path from Ci,x to itself formed by
a sequence of messages [m1, . . . ,mq]; note that mq is received by Pi before
Ci,x is taken (i.e., in a checkpoint interval Ii,x−ϵ with ϵ > 0). Due to con-
straint (B) then m1.sn ≥ Ci,x.sn; due to constraint (C) mq.sn ≥ m1.sn, hence
mq.sn ≥ Ci,x.sn. As mq is received by Pi before Ci,x is taken, it is received
in a checkpoint interval Ii,x−ϵ, with ϵ > 0, such that Ci,x−ϵ.sn < Ci,x.sn due
to constraint (A). By the combination of previous results, mq.sn > Ci,x+ϵ.sn
thus violating constraint (D).

This protocol guarantees that checkpoints with the same sequence number
are members of a consistent global checkpoint as, due to previous constraints,
no Z-path exists among them (note that, due to the updating rule of the
sequence number upon the receipt of a message m, there could be some gap
in the sequence numbers assigned to checkpoints by a process; Briatico et al.
[12] proved that if a process has not assigned the sequence number num, the
first local checkpoint of the process with sequence number num′, such that
num′ > num, can be included in the consistent global checkpoint formed by
local checkpoints with sequence number num).

From the point of view of the checkpointing overhead, the taking of forced
checkpoints pushes the sequence number at some processes higher which may
cause more forced checkpoints to be taken. At worst the number of forced
checkpoints induced by a basic one is n−1. In the best case, if all processes take
a basic checkpoint at the same physical time, the number of forced checkpoints
per basic one is zero. This denotes that the behavior of the protocol in terms of
checkpointing overhead may be strongly dependent on the correlation among
the policies adopted for taking basic checkpoints at distinct processes. Such
an observation is confirmed by simulation results reported in [7].

Furthermore, whenever a consistent global checkpoint associated to a given
sequence number is reclaimed, there is no guarantee that the obtained global
checkpoint is the closest one to the end of the computation. An example of this
drawback is shown in Figure 3.2. If process P2 reclaims the global consistent
checkpoint with sequence number 1 at some point X of its execution, then the
global checkpoint {C1,2, C2,2, C3,2} is identified which is not the closest one to
the end of the computation (the closest one is {C1,3, C2,2, C3,3}). Such a draw-
back can lead, in the context of rollback recovery, to rollback extents which
are larger than what actually needed to resume the computation from a con-

22
CHAPTER 3. COMMUNICATION-INDUCED PROTOCOLS:

OVERVIEW

closest to the end of the
consistent global checkpoint

computation

consistent global checkpoint

P1

P3

C1,1

C2,1

C3,1
C3,3

C1,3

reclaimed by P2

XP2

C1,2.sn = 1

C2,2.sn = 1

C3,2.sn = 1

Figure 3.2: P2 Reclaims a Global Checkpoint which is not the Closest one to
the End of the Computation.

sistent global checkpoint. On the other hand, the guarantee that checkpoints
with the same sequence number are members of the same consistent global
checkpoint allows easy and efficient calculation of a global checkpoint includ-
ing a given local checkpoint (such a calculation does not require exchange of
information among processes related to dependences between checkpoints). As
an example of exploitation of this feature in the context of rollback recovery,
an efficient asynchronous distributed protocol to rollback the computation to
a consistent global checkpoint formed by checkpoints with a given sequence
number has been presented by Manivannan and Singhal [36]. In their scheme,
the sequence number characterizing the global consistent checkpoint to which
the computation must be rolled back is identified by the failed process Pi when
resuming the execution (such number corresponds to the sequence number of
the last taken checkpoint of Pi). Then the rollback is realized by broadcasting
to all the other processes a rollback message, carrying the sequence number
identified by Pi.

Manivannan and Singhal also presented a quasi synchronous protocol [36]
for reducing the checkpointing overhead of the protocol in [12]. In their pro-
tocol, each process Pi is endowed with both a sequence number sni, and a
next to be assignedi integer variable recording the sequence number to be as-
signed to the next to be taken checkpoint. The value of the sequence number
is piggybacked on any outgoing application message. As in the protocol in
[12], upon the receipt of a message m at Pi with m.sn > sni, sni is updated
from m.sn and a forced checkpoint is taken.

The assumption underlying the protocol is that every process increments
its next to be assigned sequence number at the same regular time interval cor-
responding to the smallest of the checkpoint time intervals of all the processes
(note that such assumption requires processes to have a common clock, hence
the computational model is more strict compared to the general one described

3.1. PROTOCOLS ENSURING THE NO-Z-CYCLE PROPERTY 23

in Section 1.1 of Chapter 1). This is done in order to keep sequence numbers
to be assigned to checkpoints of distinct processes close to each other. Upon
the scheduling of a basic checkpoint, the checkpoint is skipped if a forced
checkpoint was taken with sequence number equal to the next to be assigned
one. Since the sequence numbers of the latest checkpoints of the processes are
close to each other, the global consistent checkpoint associated to the sequence
number of the last taken checkpoint of Pi results close to the global checkpoint
which is the closest one to the end of the computation.

If common clock is not guaranteed, the technique of skipping basic check-
points still remains a good way to reduce the checkpointing overhead. In par-
ticular, a version of the original protocol well suited to computations without
common clock among processes is based on the following observation: there is
no reason to take a basic checkpoint if at least one forced checkpoint has been
taken during the current checkpoint period. So, assuming each process Pi has
a flag skipi which indicates if at least one forced checkpoint is taken in the
current checkpoint period (this flag is set to FALSE each time a basic check-
point is scheduled, and is set to TRUE each time a forced checkpoint is taken),
then, when Pi schedules a basic checkpoint Ci,x, such checkpoint is taken only
if skipi = FALSE, otherwise it is skipped. Note, however, that the skipping
of basic checkpoints sometimes may not be applicable. This may happen, for
example, whenever basic checkpoints are scheduled on a non-periodic basis.

Another improvement of the protocol in [12] aiming at reducing the number
of forced checkpoints per basic one has been presented by Hélary et al. [28].
The protocol exploits the information spread by causality about values of the
sequence numbers of the processes in order to ensure that if there exists a
Z-path from Ci,x to Cj,y then Ci,x.sn < Cj,y.sn. This is a guarantee that no
Z-cycle can even be formed. More technically, if the protocol would allow the
formation of a Z-cycle involving Ci,x, then there should exist a Z-path from
Ci,x to itself; in such a case the inequality Ci,x.sn < Ci,x.sn should be verified,
which is, obviously, an absurd.

In the presented protocol, the sequence number sni of Pi becomes the
local clock lci. Each process Pi piggybacks on any application message m
the following data structures: clocki (m.clock), ckpti (m.ckpti) and takeni

(m.taken). The explanation of the data structures is as follows:

• clocki
is a vector of n integers with the following meaning: clocki[j] represents,
to the knowledge of Pi the highest value of the local clock of Pj (i.e.,
lcj); upon the receipt of a message m, Pi updates clocki from m.clock
by taking a component-wise maximum;

• ckpti
is a vector of n integers with the following meaning: ckpti[j] represents,

24
CHAPTER 3. COMMUNICATION-INDUCED PROTOCOLS:

OVERVIEW

to the knowledge of Pi the highest value of the rank of checkpoints of
Pj (i.e., it counts how many checkpoints have been taken by Pj to the
knowledge of Pi); upon the receipt of a message m, Pi updates ckpti
from m.ckpt by taking a component-wise maximum;

• takeni

is a vector of n booleans with the following meaning: takeni[j] is equal
to TRUE if there exists a causal Z-path between the last checkpoint of
Pj seen by Pi through causality and the next checkpoint of Pi, and the
causal Z-path includes a checkpoint (the updating rule of this vector is
out of the scope of this description).

Furthermore, process Pi has the following local data structures:

• send toi
which is a vector of n booleans; send toi[j] is equal to TRUE iff Pi sent
a message to Pj in its current checkpoint interval;

• min toi
which is a vector of n integers; min toi[j] records the local clock of Pi

which has been piggybacked on the first message sent by Pi to Pj in its
current checkpoint interval.

Basing on previous data structures, the authors introduce a protocol guar-
anteeing that no Z-Path exists between any pair of checkpoints (Ci,x, Cj,y)
such that Ci,x.sn = Cj,y.sn. Therefore no Z-path exists from a checkpoint to
itself, implying the absence of Z-cycles. In the protocol, a forced checkpoint
is taken by Pi upon the receipt of a message m sent by Pj if the following
predicate holds:

P ≡ ∃k : send toi[k] ∧
(m.clock[j] > min toi[k]) ∧
((m.clock[j] > max(clocki[k],m.clock[k])) ∨
(m.ckpt[i] = ckpti[i] ∧m.taken[i]))

Basically predicate P means that there exists a process Pk such that Pi

sent a message to Pk in its current checkpoint interval and: the local clock of
Pj piggybacked on m is larger that the local clock of Pk known by Pi through
causality, or, there exists a causal Z-path between the last checkpoint of Pi

and the next to be taken checkpoint of Pi which includes a checkpoint of a
process.

3.1. PROTOCOLS ENSURING THE NO-Z-CYCLE PROPERTY 25

The authors proved that other protocols [12, 36] trigger the forced check-
point according to a predicate P ′ such that P ⇒ P ′. However, the potential
reduction of the checkpointing overhead due to the reduction of the number of
forced checkpoints per basic one compared to the other protocols is not quan-
tified. Recall that the inclusion between predicates means that the protocol by
Hélary et al. takes a forced checkpoint whenever the other protocols do it only
under the same causal past. As there is no guaranty that the computation
evolves at the same way under different checkpointing protocols, performance
of the protocol by Hélary et al., in terms of forced checkpoints per basic one,
is not guaranteed to be better than that of the other protocols. This is the
reason why we use the term “potential reduction”.

All previous protocols ensure that checkpoints with the same sequence
number are members of the same consistent global checkpoint. However, not
all dependences between checkpoints in (Ĥ, CĤ) due to Z-paths can be known
by a process as these protocols allow non-causal Z-paths to be not causally
doubled (i.e., RDT is not guaranteed). Let us consider the example with
three processes shown in Figure 3.3 where CGC0 (resp. CGC1) represents
the consistent global checkpoint formed by checkpoints with sequence number
equal to 0 (resp. 1). There exists a non causal Z-path from checkpoint C3,1

to checkpoint C1,2 due to messages [m1,m2] which is not causally doubled.

P1

P2

P3

C1,1

C2,1

C3,1

C2,2m2

m1

C1,2

C3,2

CGC0

CGC1

Figure 3.3: An Example of Z-path which is not Causally Doubled.

Partial Absence of Z-cycles

Wang and Fuchs [61] modified the protocol in [12] by introducing the notion
of laziness. The latter is a positive integer Z such that only checkpoints with
sequence number which is a multiple of Z are mutually consistent (i.e., no Z-
paths exists among them). Therefore, only the global checkpoints consisting of
local checkpoints with sequence number which is a multiple of Z are guaranteed
to be consistent. This protocol shows the advantage of a reduction of the
number of forced checkpoints (as the lazy coordination acts less frequently)

26
CHAPTER 3. COMMUNICATION-INDUCED PROTOCOLS:

OVERVIEW

but has the disadvantage to not guarantee NZC (as only local checkpoints
with sequence number which is a multiple of Z are guaranteed to belong to a
consistent global checkpoint). In the context of rollback recovery, this protocol
allows the possibility to reduce the checkpointing overhead at the expense of
a potentially larger rollback extent. If the laziness parameter Z is set to one,
the protocol boils down to the Briatico et al. one.

A different approach to the partial absence of Z-cycles has been presented
by Xu and Netzer in [67]. They introduced a checkpointing protocol which
prevents the formation of a particular type of Z-cycles. The particular type of
Z-cycle, that for the sake of clarity is below referred to as XN-cycle, is defined
as follows:

Definition 3.1.1
A Z-cycle due to [m1, . . . ,mq] involving checkpoint Ci,x is an XN-cycle iff:

R ≡ ∀p : 2 ≤ p < q ⇒ receive(mp) ≺p send(mp+1)

In other words, an XN-cycle is a Z-cycle in which message m1 is the only
one that is received after the successive message in the sequence is sent (i.e.,
the sequence of messages [m2, . . . ,mq] constitutes a causal path).

Their protocol induces the recipient process of message m1 to take a forced
checkpoint upon the receipt of such message. As an example, in Figure 3.4.a
we have a Z-cycle involving C1,2 formed by messages [m1,m2,m3]. In this
Z-cycle, predicate R holds as only for message m1 we have ¬(receive(m1) ≺p

send(m2)). This Z-cycle is prevented by the protocol through a forced check-
point C3,2 taken upon the receipt of m1 (see Figure 3.4.b). In Figure 3.5
a Z-cycle which in not prevented by the protocol is shown (in this Z-cycle,
predicate R does not hold as there are two messages, m1 and m2, for which
¬(receive(m1) ≺p send(m2)) and ¬(receive(m2) ≺p send(m3))).

In their protocol, each process Pi maintains a dependency vector DVi of
n integers. The i-th entry records the rank of the last checkpoint taken by
Pi. The j-th entry records the rank of the last checkpoint taken by Pj known
by Pi through causality. Causal information is spread among processes by
piggybacking on each outgoing message m the current value of DV (m.DV).
Upon the receipt of a message m by Pi, the vector DVi is updated from m.DV
by taking a component-wise maximum.

When a checkpoint is taken, the value of DVi is copied into a vector ZVi.
ZVi[j] = y means that there exists a causal path from the y-th checkpoint
of process Pj to the DVi[i]-th checkpoint of process Pi. Each message m
sent by Pi to Pj piggybacks, together with the current value of DVi, the
integer ZVi[j] (m.Zid). Upon the receipt of m, Pj takes a forced checkpoint
if m.Zid = DVj [j].

3.2. PROTOCOLS ENSURING THE
ROLLBACK-DEPENDENCY-TRACKABILITY PROPERTY 27

Although both protocols in [61] and [67] allows the presence of Z-cycles,
they are completely different. The protocol in [61] guarantees that, at some
point of the computation, a global checkpoint will exist which is distinct from
the initial one (unless Z = ∞). On the contrary, the protocol in [67] does
not guarantee that feature, as the absence of XN-cycles does not imply that
a global checkpoint will ever be formed.

P1

P2

P3

C1,1

C2,1 C2,2

C3,1

m1

m2

C1,2

C3,2(b)

P1

P2

P3

C1,1

C2,1 C2,2

C3,1

m1

m2

C1,2

(a)

m3 m3

Figure 3.4: A Z-cycle in which Predicate R Holds (a); the Z-cycle is Prevented
by the Xu-Netzer Protocol Through the Forced Checkpoint C3,2 (b).

P1

P2

P3

C1,1

C2,1 C2,2

C3,1

m1

C1,2

m2

m3

Figure 3.5: Z-cycle which is not Prevented by the Xu-Netzer Protocol.

3.2 Protocols Ensuring the Rollback-Dependency-
Trackability Property

The RDT property has been introduced by Wang [64]. He also designed a
checkpointing protocol ensuring that property which is a generalization of sev-
eral previous existing protocols ensuring the same property. A protocol which
cannot be considered as deriving from Wang’s protocol has been presented
in [4] (a preliminary version also appeared in [5]). Such a protocol will be
discussed in this section as last one.

Wang’s protocol ensures RDT by exploiting the Fixed-Dependency-After-
Send (FDAS) model. This model can be easily explained by looking at Figure
3.6 showing an example involving three processes. In the computation in

28
CHAPTER 3. COMMUNICATION-INDUCED PROTOCOLS:

OVERVIEW

Figure 3.6.a, there exists a Z-path from C3,1 to C1,2, due to messages [m1,m2],
which is not causally doubled. In this case the FDAS model pushes P2 to take a
forced checkpoint before the receipt of m2 in order to prevent the formation of
that non-causal Z-path. The resulting checkpoint and communication pattern
of the computation does not contain non-causal Z-paths which are not causally
doubled. On the other hand, if there exists the messagem3, as shown in Figure
3.6.b, then there is no need to take the forced checkpoint as the Z-path from
C3,1 to C1,2 due to [m1,m2] is doubled by the causal Z-path due to [m3,m2].
The substantial difference between the two scenarios is as follows. In Figure
3.6.b, at the time of sending message m2 establishing a dependence involving
C1,2, process P2 already tracked by causality the existence of C3,1, hence,
always by causality, process P1 can track the dependence of C1,2 on C3,1 due
to the Z-path formed by [m3,m2]. In Figure 3.6.a, P2 tracks the existence of
C3,1 only upon the receipt of m1 when the dependence due to m2 was already
generated. As a consequence P1 is prevented to track the dependence due to
[m1,m2]. The insertion of the forced checkpoint C2,2 in the scenario in Figure
3.6.a prevents the formation of the non-trackable dependence between C3,1

and C1,2.

non-causal Z-path which is not
causally doubled

P2

P3

P1

C2,1

C1,1

C3,1

m2

m1

C1,2

m3

(b)

P2

P3

P1

C2,1

C1,1

C3,1

m2

m1

C1,2

forced checkpoint breaking the

(a)

Figure 3.6: The FDAS model.

Wang has shown [64] that FDAS can be implemented by endowing each
process Pi with a transitive dependency vector Di of n integers and a boolean
variable after first sendi indicating if there has been at least a send event
in the current checkpoint interval of Pi.

Di[i] represents the rank of the last checkpoint taken by Pi. Such a vector
is piggybacked as control information on any message m (m.D). Upon the
receipt of a message m, Di is updated from m.D by taking a component-wise
maximum. Hence, the j-th entry represents the maximum rank of checkpoints
of Pj known by Pi through causality. Upon the receipt of a message m in the
checkpoint interval Ii,x which is about to chance at least one entry of Di (i.e.,
Pi becomes aware of the existence of at least one new checkpoint) then a forced
checkpoint is taken by Pi if after first sendi = TRUE.

3.2. PROTOCOLS ENSURING THE
ROLLBACK-DEPENDENCY-TRACKABILITY PROPERTY 29

In the FDAS protocol, all dependences due to Z-paths involving check-
points of Pi are tracked by causality (as the outcoming checkpoint and com-
munication pattern of the distributed computation satisfies RDT) and are
recorded in the vector Di. More technically, if at the time Ci,x is taken,
Di[j] = y, then there exists a dependence between the y-th checkpoint of Pj

and Ci,x due to a Z-path. Pi learns that no dependence due to a Z-path will
ever exist between Cj,y+1 and Ci,x, therefore they can be members of a con-
sistent global checkpoint. Let Di,x be a vector of n integers associated to Ci,x

and obtained, at the time Ci,x is taken, as follow:

• Di,x[i] = x;

• ∀j : (1 ≤ j ≤ n) ∧ (j ̸= i)→ Di,x[j] = Di[j] + 1;

then, Wang proved the following theorem:

Theorem 3.2.1
Given a checkpoint Ci,x of a checkpoint and communication pattern (Ĥ, CĤ)
of a distributed computation satisfying RDT , the minimum consistent global
checkpoint containing Ci,x can be computed as:

∪1≤j≤nCj,Di,x[j]

Theorem 3.2.1 implicitly states that the calculation of the minimum consis-
tent global checkpoint containing a given checkpoint Ci,x can be done locally
by Pi without the need for exchanging dependency information with other pro-
cesses. Protocols for minimum and/or maximum consistent global checkpoints
collection can be found in [1, 29, 35, 63, 64].

Other communication-induced checkpointing protocols ensuring RDT to
the outcoming checkpoint and communication pattern of the distributed com-
putation are discussed below.

The Fixed-Dependency-Interval (FDI) protocol [58] is a derivation of FDAS.
Upon the receipt of a message m, FDI induces Pi to take a forced checkpoint
if at least one entry of Di is about to be chanced (irrespective whether there
have been send events in the current checkpoint interval).

Another protocol deriving from FDAS is No-Receive-After-Send (NRAS) in
which a checkpoint is taken by Pi upon the receipt of m if after first sendi =
TRUE (irrespective whether the Di vector is going to be updated). Such
a protocol is equivalent to Russell’s MRS protocol [50] where M stands for
“take a checkpoint”, S stands for “send” and R stands for “receive”. NRAS
(and therefore also MRS) generates a checkpoint and communication pattern
(Ĥ, CĤ) of a distributed computation in which in any checkpoint interval there

does not exist a send event preceding a receive one (i.e., all Z-paths in (Ĥ, CĤ)

30
CHAPTER 3. COMMUNICATION-INDUCED PROTOCOLS:

OVERVIEW

are causal). For the context of rollback recovery, a modification of Russell’s
protocol has been presented in [15]. The protocol does not allow a send event
to precede a receive one in a checkpoint interval; furthermore, a checkpoint
is taken after α consecutive receive events in order to reduce the amount of
lost work in case of failure (α is selected in function of failure probability and
other system parameters).

Other deriving protocols are: Checkpoint-Before-Receive (CBR) in which
a forced checkpoint is taken before the receipt of any message; Checkpoint-
After-Send (CAS) in which a forced checkpoint is taken after the send of
any message and Checkpoint-After-Send-Before-Receive (CASBR) in which a
checkpoint is taken both before the receipt and after the send of any message.
Also for CBR, CAS and CASBR no send event precedes a receive one in any
checkpoint interval.

Note that NRAS, CBR, CAS and CASBR actually may work without the
need for piggybacking control information. Indeed, the piggybacked depen-
dency vector is used only to track dependences between checkpoints by not to
determine the insertion of forced checkpoints (i.e., the predicate that triggers
forced checkpoints is evaluated by using only the local context of a process
related to events occurred in the current checkpoint interval).

All previously described protocols are based on the removal of some Z-paths
in order to ensure the absence of non-causal Z-paths which are not causally
doubled. Baldoni et al. [3] gave a characterization of RDT by founding a
small subset of Z-paths to be causally doubled in order to ensure that all Z-
paths of the checkpoint and communication pattern of the computation are
causally doubled. They termed these Z-paths as Elementary-Prime-Simple-
Causal-Message-Z-paths (EPSCM-paths), and introduced a protocol which
breaks only those EPSCM-paths which, upon their formation, are perceived as
not causally doubled (a technical description of the protocol, which appeared
in [4], will be given in Chapter 6 where a comparison with a checkpointing
protocol presented in the same chapter is performed). Simulation results have
shown that their protocol, compared to all the other protocols ensuring RDT ,
achieves a reduction of the number of forced checkpoints in any environment
(e.g., client-server, master-slave etc.).

As final point of this section we recall some concepts of the classification of
protocols ensuring RDT presented by Manivannan and Singhal in [37]. These
protocols are splitted into two classes: Strictly Z-path Free (SZpF) and Z-
path Free (ZpF). The classification is based on the degree to which non-causal
Z-paths are allowed by the protocol in the checkpoint and communication
pattern of the computation.

A communication-induced checkpointing protocol is said to be SZpF iff it
generates a checkpoint and communication pattern of a distributed computa-
tion containing no non-causal Z-path. NRAS, CAS, CBR, and CASBR are

3.2. PROTOCOLS ENSURING THE
ROLLBACK-DEPENDENCY-TRACKABILITY PROPERTY 31

examples of SZpF protocols as they do not allow the formation of non-causal
Z-paths. The disadvantage of an SZpF protocol is the potentially unacceptable
checkpointing overhead needed for the prevention of all non-causal Z-paths.

A communication-induced checkpointing protocol is said to be ZpF iff it
generates a checkpoint and communication pattern of a distributed computa-
tion in which all non-causal Z-paths are causally doubled. A ZpF protocol has
the same advantages of an SZpF one concerning the possibility to use infor-
mation related to causality for determining consistent global checkpoints (as
under both type of protocols dependences due to causal Z-paths are represen-
tative of all dependences between checkpoints). Furthermore, a ZpF protocol,
compared to an SZpF one, shows a potential reduction of the checkpointing
overhead as checkpoints are taken only to prevent the formation of non-causal
Z-path which are not causally doubled (i.e., not all the non-causal Z-paths are
prevented).

32
CHAPTER 3. COMMUNICATION-INDUCED PROTOCOLS:

OVERVIEW

Chapter 4

A Taxonomy of Protocols

This chapter is devoted to the introduction of a taxonomy of communication-
induced checkpointing protocols ensuring eitherNZC orRDT . The taxonomy
relies on the Virtual-Precedence (VP) property introduced by Hélary et al.
[27].

We show that, although protocols ensuring NZC (or RDT) also ensure
the VP property to the outcoming checkpoint and communication pattern of
the distributed computation, a taxonomy of protocols can be made basing on
the way the VP property is used in the design of the protocol. The proposed
taxonomy splits protocols in: VP-enforced and VP-accordant.

4.1 The Virtual Precedence Property

4.1.1 Description

As shown in Chapter 1, a distributed computation can be modeled as a par-
tially ordered set of events. A higher level abstraction of the computation
has been introduced in [27] by considering the execution of each process as
a sequence of intervals. Each interval consists of a set of consecutive events
produced by the process. The proposed abstraction is such that

• every event belongs to a single interval;

• every interval contains at least one event.

The i-th interval of process Pi in the abstraction is denoted as Ii,x.

To the abstraction of the computation a directed graph is associated,
namely Abstraction-graph (A-graph), structured as follows:

• each vertex corresponds to an interval Ii,x;

33

34 CHAPTER 4. A TAXONOMY OF PROTOCOLS

• there exists an edge from Ij,y to Ii,x if:

– j = i and y = x− 1 (local edge); or

– there exists a messagem such that (send(m) ∈ Ij,y)∧(receive(m) ∈
Ii,x) (communication edge).

Note that abstractions of different computations can produce the same
A-graph. Furthermore, depending on the abstraction, the A-graph may have
cycles.

Let consider each message m and each interval Ii,x to be marked with a
timestamp. Informally, an abstraction of a distributed computation satisfies
the VP property if it is possible to timestamp messages and intervals in a way
that:

F1 : for any pair of messages m and m′ such that receive(m) ∈ Ii,x and
send(m′) ∈ Ii,x then the timestamp of m is smaller than or equal to the
timestamp of m′;

F2 : the timestamp of Ii,x is larger than or equal to the timestamp of all
messages received in Ii,x and is smaller than or equal to the timestamp
of all messages sent in Ii,x.

This means that, in the logical time (timestamp), communications can
be seen as causal in each interval. That is, communication events can be
reordered in any interval making all the receive events to precede all the send
events and timestamp does not decrease following causal paths. An example
of this is shown in Figure 4.1.

with timestamp = 9

(b)

timestamp = 10

timestamp = 7

timestamp = 10

(a)

Pi Pi

interval Ii,x

before reordering

interval Ii,x

timestamp = 7

after reordering

Figure 4.1: The Virtual Precedence Property.

In other words, an interval-based abstraction of a distributed computation
satisfies VP if, and only if, it is possible to associate a timestamping function
within intervals with the following characteristics: (i) intervals which are con-
nected by a message must be timestamped in a non-decreasing way (safety
part) and (ii) the timestamp of a process must increase after communication

4.2. A TAXONOMY OF PROTOCOLS BASED ON THE VIRTUAL
PRECEDENCE PROPERTY 35

(liveness part). It is easy to see that if we consider each interval Ii,x formed by
a single event, then the timestamping function boils down to the Lamport’s
scalar clock [33] or the Fidge-Mattern’s vector time [21, 38]. Hélary et al.
([27]) proved the following theorem:

Theorem 4.1.1
An abstraction of a distributed computation Ĥ satisfies the VP property iff
the corresponding A-graph has no cycle including a local edge.

4.1.2 Equivalence Between the No-Z-Cycle Property and the
Virtual Precedence Property

In the particular context of the checkpointing problem, intervals of the ab-
straction correspond to checkpoint intervals. Then, the abstraction of the
distributed computation corresponds to a checkpoint and communication pat-
tern.

Given a checkpoint and communication pattern (Ĥ, CĤ) of a distributed

computation Ĥ, the following properties hold [27]:

(A) if there exists a Z-cycle in (Ĥ, CĤ) then the A-graph corresponding to
the abstraction of the computation contains at least one cycle involving
a local edge;

(B) if no Z-cycle exists in (Ĥ, CĤ) then the A-graph corresponding to the
abstraction of the computation contains no cycle involving a local edge.

Property (A) means VP ⇒ NZC. Property (B) means VP ⇐ NZC.
Therefore, Theorem 4.1.1 can be reformulated as:

Theorem 4.1.2
A checkpoint and communication pattern (Ĥ, CĤ) of a distributed computation
satisfies the VP property iff it satisfies the NZC property (i.e., VP ⇔ NZC).

4.2 A Taxonomy of Protocols Based on the Virtual
Precedence Property

All communication-induced checkpointing protocols generating checkpoint and
communication patterns (Ĥ, CĤ) which satisfy NZC, make these checkpoint
and communication patterns to satisfy VP as well due to Theorem 4.1.2. This
means the VP property constitutes a common basis for all such protocols.

However, the design of a checkpointing protocol not necessarily relies on
such a common basis. In the following sections we exploit latter concept by
introducing the notions of VP-enforced protocol and VP-accordant protocol.

36 CHAPTER 4. A TAXONOMY OF PROTOCOLS

4.2.1 VP-Enforced Protocols

Let a timestamping function be assumed to timestamp messages and check-
point intervals consistently with rules F1 and F2 described in Section 4.1.1.
Then a checkpointing protocol ensuring VP to the outcoming checkpoint and
communication pattern (Ĥ, CĤ) of the computation can be derived as follows.
Timestamps are piggybacked on any sent application message. Then, upon the
arrival of a messagem at Pi in the checkpoint interval Ii,x, the communication-
induced checkpointing protocol pushes Pi to take a forced checkpoint Ci,x+1

before receiving m whenever one of the rules F1 or F2 would be violated by
that receive event. The new created checkpoint interval Ii,x+1 is then times-
tamped by the protocol according to the chosen timestamping function. In
this approach we have:

• the timestamp assigned to the checkpoint interval Ii,x+1 depends on the
chosen timestamping function;

• the timestamps assigned to messages sent in Ii,x+1 depend on the times-
tamping function (note that such timestamps cannot be smaller than
the timestamp assigned to Ii,x+1 due to rule ii); they can assume the
same value of the timestamp assigned to the interval Ii,x+1).

We name any protocol designed starting, has done above, by an a priori
assumed timestamping function as a VP-enforced protocol.

The goodness of a VP-enforced protocol, evaluated in terms of induced
checkpoints per basic checkpoint, depends on the goodness of the a priori
assumed timestamping function. In particular, the timestamping function is
considered as “good” if the deriving checkpointing protocol produces check-
point and communication patterns with a low number of forced checkpoints
per basic one (note that low number of forced checkpoints per basic one im-
plicitly means low probability that upon the receipt of a message either rule
F1 or rule F2 is violated).

Basically, the predicate that triggers the taking of the forced checkpoint
Ci,x+1 is evaluated to TRUE whenever the message m arriving at Pi in Ii,x
piggybacks a timestamp larger than the timestamp assigned to Ii,x. Hence,
less forced checkpoints are taken whenever timestamps of incoming messages
do not exceed timestamps of local checkpoint intervals. Two main approaches
can be envisaged for achieving this:

(1) let the timestamps of checkpoint intervals to increase at the same speed
at distinct processes;

(2) let the timestamps of checkpoint intervals to increase as slowly as possi-
ble.

4.2. A TAXONOMY OF PROTOCOLS BASED ON THE VIRTUAL
PRECEDENCE PROPERTY 37

Approach (1), envisaged for example in the protocol by Manivannan and
Singhal [36] requires a kind of synchronization of checkpointing clocks at dis-
tinct processes, thus imposing a constraint on the computational model de-
scribed in Chapter 1. In particular, if basic checkpoints are taken at the same
physical time and newly created intervals are timestamped with the same
timestamp value, then no forced checkpoint is ever taken.

Approach (2) consists of refining the a priori assumed timestamping func-
tion as much as possible in order to slow down the rate for the increasing of
the timestamp at each process. In latter context both the protocol by Briatico
et al. [12] and the protocol by Hélary et al. [28] can be seen as generated by an
a priori assumed timestamping function (the function is such that the times-
tamp does not decrease along any Z-path), and the timestamping function
of the latter protocol can be considered as a refinement of the timestamping
function of the former one.

4.2.2 VP-Accordant Checkpointing Protocols

We name VP-accordant any protocol which is designed without a priori as-
suming a timestamping function consistent with rules i) and ii) of Section
4.1.1. Instead, it relies on the study of the structure of sub-patterns (i.e.,
portions) of a checkpoint and communication pattern (Ĥ, CĤ) of a distributed
computation.

Sometimes it is possible to prove that if a checkpoint and communication
pattern (Ĥ, CĤ) does not contain sub-patterns with a given structure, namely

STR, then (Ĥ, CĤ) satisfies NZC or RDT . An example of this is the study
presented by Baldoni et al. in [3] where, as outlined in Section 3.2 of Chapter 3,
it is shown that if all EPSCM-paths are causally doubled then the checkpoint
and communication pattern of the distributed computation satisfies RDT (in
such a case, the structure STR to be avoided is that of an EPSCM-path which
is not causally doubled).

The absence of sub-patterns with structure STR is, therefore, a sufficient
condition guaranteeing (Ĥ, CĤ) satisfies either NZC orRDT . Thus the design
of a VP-accordant protocol starts by the identification of the structure STR,
whose formation has to be prevented by the protocol itself.

In this approach the predicate that triggers the action to take a forced
checkpoint Ci,x+1 at Pi upon the receipt of a message m depends upon the
structure of checkpoint and communication sub-patterns that are going to be
formed if the message would be received by Pi in Ii,x. Thus, if the predicate is
evaluated to TRUE, at least one “bad” checkpoint and communication sub-
pattern (i.e., one having structure STR) is going to be formed. Then the
protocol takes a forced checkpoint to prevent the formation of that pattern.

As VP ⇔ NZC, also for a VP-accordant protocol there will exist a times-

38 CHAPTER 4. A TAXONOMY OF PROTOCOLS

tamping function that could be used to timestamp checkpoint intervals of
the computation produced by the protocol consistently with rules i) and ii).
However such a function is not used while designing the protocol.

4.3 Applying the Taxonomy to Existing Protocols

In this section the proposed taxonomy is applied to classify existing communic-
ation-induced checkpointing protocols discussed in Chapter 3.

All communication-induced checkpointing protocols ensuring NZC de-
scribed in Section 3.1 of Chapter 3 are in the VP-enforced class. This is
because they are designed by assuming a timestamping function which pre-
vents timestamp from decreasing along any Z-path.

Also the FDI protocol ensuringRDT [58] described in Section 3.2 of Chap-
ter 3 is in the VP-enforced class. This is because it timestamps messages and
intervals with a dependency vector and takes forced checkpoints whenever,
upon the receipt if a message at least one entry of the local dependency vector
is about to be changed (irrespective of the sub-patterns that are going to be
formed due to that receive event). Then, if we consider the following relation
among two different timestamps T1 and T2:

T1 ≤ T2 ⇔ ∀j : 1 ≤ j ≤ n⇒ T1[j] ≤ T2[j]

the protocol imposes that the timestamp of messages does not decrease along
any Z-path. Hélary et al. [27] defined a meta timestamping function and
showed that all above mentioned protocols derive from instantiations of the
meta function (i.e., instantiations of a meta protocol).

All the other protocols ensuring RDT , described in Section 3.2 of Chapter
3, are in the VP-accordant class, as they aim at preventing sub-patterns with
a given structure.

A graphical representation of the application of the taxonomy is shown in
Table 4.3.

Note that, to the best of our knowledge, there does not exist any communic-
ation-induced checkpointing protocol belonging to the VP-accordant class
which ensures NZC but not RDT . We will design protocols with this feature
in Chapter 6, by preliminary studying sub-patterns of a checkpoint and com-
munication pattern of a distributed computation. In particular, properties on
Z-cycles will be studied and a particular type of Z-cycle, namely core Z-cycle,
is identified such that, given a checkpoint and communication pattern (Ĥ, CĤ)
of a distributed computation, then no Z-cycles exists in it iff no core Z-cycles
exists. The designed protocols prevent the formation of core Z-cycles ensuring
that the outcoming checkpoint and communication pattern of the distributed
computation satisfies NZC.

4.3. APPLYING THE TAXONOMY TO EXISTING PROTOCOLS 39

ensured VP-enforced VP-accordant
property protocols protocols

Briatico et al.
NZC Manivannan-Singhal

Hélary et al.

FDAS
NRAS
MRS

RDT FDI CAS
CBR

CASBR
Baldoni et al.

Table 4.1: Application of the Taxonomy to Existing Protocols.

40 CHAPTER 4. A TAXONOMY OF PROTOCOLS

Chapter 5

A Virtual Precedence
Enforced Protocol

This chapter is devoted to the design of a VP-enforced checkpointing protocol
ensuring NZC. The protocol is designed starting from a notion of equivalence
between local checkpoints of a process, here introduced. Such a notion allows
to slow down the rate at which timestamps grow at distinct processes, thus re-
ducing the probability of forced checkpoints. Therefore, such protocol exploits
approach (2) envisaged in Section 4.2.1 of Chapter 4.

The usefulness of the proposed protocols is demonstrated by simulation
results of a case study in the context of rollback recovery.

Note that the equivalence relation here defined provides actually a frame-
work that can form a basis for the design of other communication-induced
protocols in the VP-enforced class. Furthermore, the presented protocol does
not represent an instantiation of the meta protocol by Hélary et al. [27] as it
uses the notion of provisional timestamp (that will be referred to as provisional
index) which is not considered in the meta protocol.

5.1 Relation of Equivalence Between Checkpoints

Let consider two successive checkpoints Ci,x and Ci,x+1 of process Pi. We
define the following equivalence relation among them:

Definition 5.1.1
Two local checkpoints Ci,x and Ci,x+1 of process Pi are equivalent with respect

to a consistent global checkpoint CGC, denoted Ci,x
CGC≡ Ci,x+1, if:

(i) Ci,x ∈ CGC; and

(ii) ∀Cj,y ∈ CGC : j ̸= i⇒ ¬(Cj,y ≺ckpt Ci,x+1).

41

42 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

In other words, if Ci,x belongs to the consistent global checkpoint CGC
then Ci,x+1 is equivalent to Ci,x with respect to CGC if it does not depend,
through the relation ≺ckpt, on any checkpoint in CGC. As an example of
equivalence, in Figure 5.1 a scenario with three processes is shown. There
exists a global consistent checkpoint CGC = {C1,x1 , C2,x2 , C3,x3}. As C2,x2+1

does not depend through the ≺ckpt relation on both C1,x1 and C2,x2 then

C2,x2

CGC≡ C2,x2+1.
From a graphical point of view, we can distinguish a right end side of

the computation with respect to CGC and a left end side. The right end side
consists of events produced by any process Pj after taking the checkpoint Cj,xj

belonging to CGC. Instead, the left end side consists of events produced by
any process Pj before Cj,xj , belonging to CGC, is taken. Going back to the
example in Figure 5.1, C2,x2+1 does not depend, through the ≺ckpt relation,
on any checkpoint in CGC means there does not exist any message m which
has been sent from the right end side of CGC and is received by P2 before
C2,x2+1 is taken.

P2

P3

P1

C1,x1

C2,x2

C3,x3

CGC

C2,x2+1

Figure 5.1: An Example of Pairs of Equivalent Checkpoints.

The notion of equivalence between local checkpoints is important because
of the following lemma:

Lemma 5.1.1
If Ci,xi

CGC≡ Ci,xi+1 then the set of checkpoints CGC − {Ci,xi} ∪ {Ci,xi+1} is a
consistent global checkpoint.

Proof
Ci,xi

CGC≡ Ci,xi+1 implies CGC is a consistent global checkpoint including Ci,xi .
Therefore, by Definition 5.1.1

∀Cj,xj ∈ CGC : j ̸= i⇒ ¬(Cj,xj ≺ckpt Ci,xi+1)

As CGC is consistent, then, by Definition 1.3.2

5.1. RELATION OF EQUIVALENCE BETWEEN CHECKPOINTS 43

∀Cj,xj ∈ CGC : j ̸= i⇒ ¬(Ci,xi+1 ≺ckpt Cj,xj)

thus CGC − {Ci,xi} ∪ {Ci,xi+1} is a consistent global checkpoint. Q.E.D.

Having two successive checkpoints Ci,xi and Ci,xi+1 of process Pi equivalent
with respect to a given consistent global checkpoint CGC implies:

(i) the first checkpoint, namely Ci,xi belongs to CGC (i.e., it is involved in
no Z-cycle);

(ii) by Lemma 5.1.1, the second checkpoint, namely Ci,xi+1 automatically
belongs to the consistent global checkpoint CGC ′ obtained by substi-
tuting Ci,xi+1 to Ci,xi in CGC (therefore also Ci,xi+1 is involved in no
Z-cycle).

An example of non-equivalent checkpoints C2,x2 and C2,x2+1 with respect
to CGC is shown in Figure 5.2. The non-equivalence is due to the presence of
message m which establishes the following relation: C3,x3 ≺ckpt C2,x2+1 (i.e.,
there exists a message m which has been sent from the right end side of CGC
and has been received by P2 before C2,x2+1 is taken). Note that in this case,
if we substitute C2,x2+1 to C2,x2 in CGC we obtain a global checkpoint which
is not consistent.

P2

P3

P1

C1,x1

C2,x2

C3,x3

CGC

C2,x2+1

m

Figure 5.2: C2,x2 is not Equivalent to C2,x2+1 with Respect to CGC due to m.

From the point of view of communication-induced checkpointing, when a
checkpoint is taken which is equivalent to the previous one with respect to
some consistent global checkpoint, then no lazy coordination must be started
in order to guarantee that checkpoint to be not involved in any Z-cycle (as
this is automatically verified). Furthermore, the consistent global checkpoint
is automatically advanced by including the taken checkpoint.

44 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

From an operational point of view, the equivalence between checkpoints
can be detected exploiting dependences between checkpoints established by
message exchange.

In the following sections we show a solution for detecting the equivalence
on-the-fly which requires to piggyback on any application message one integer
plus a vector of n integers (i.e. the asymptotic space-complexity of the control
information is O(n)). Such information also represents the timestamp associ-
ated to a message. The proposed solution is based on the notion of sequence
number, as well as on the introduction of the notion of equivalence number of
a checkpoint.

5.2 Sequence and Equivalence Numbers of a Con-
sistent Global Checkpoint

We suppose process Pi owns two local variables: sni and eni. The variable sni

stores the sequence number of the current consistent global checkpoint. The
variable eni represents the number of equivalent local checkpoints with respect
to the current global checkpoint number (both sni and eni are initialized to
zero).

Whenever a checkpoint Ci,x is taken, together with the checkpoint two
integers are recorded onto stable storage, namely Ci,x.sn and Ci,x.en, which
represent, respectively, the consistent global checkpoint number and the equiv-
alence number of Pi at the time Ci,x is taken. The pair of integers < sni, eni >
is also called local index of Pi, hence, to each checkpoint Ci,x is associated the
index < Ci,x.sn, Ci,x.en >.

In the remainder of this chapter, the notation Ci,x(< sn, en >) is used
whenever the checkpoint Ci,x of Pi whose index is < sn, en > has to be identi-
fied. Therefore, Ci,x(< sni, eni >) always identifies the last checkpoint taken
by Pi. Furthermore, the notation Ii,x(< sn, en >) identifies the checkpoint
interval Ii,x starting after Ci,x(< sn, en >) is taken. To the first checkpoint
Ci,1 of process Pi the index < 0, 0 > is assigned.

Similarly to the classical sequence number based approach [12, 36], forced
checkpoints are taken as follows. Each application message sent by Pi pig-
gybacks the current sni value. Whenever a message m arrives at Pi in Ii,x
such that m.sn > sni then the local index of Pi is set to < m.sn, 0 > and
a forced checkpoint Ci,x+1 is taken with index < m.sn, 0 >. The updating
rule of the local index is such that whenever the sequence number sni is in-
creased the equivalence number eni is set to zero. For any pair of checkpoints
Ci,x(< sn, 0 >) and Cj,y(< sn, 0 >) the following relation holds:

(¬(Ci,x ≺ckpt Cj,y)) ∧ (¬(Ci,x ≺ckpt Cj,y))

5.2. SEQUENCE AND EQUIVALENCE NUMBERS OF A CONSISTENT
GLOBAL CHECKPOINT 45

hence, checkpoints with the same sequence number and equivalence number
equal to zero are members of a consistent global checkpoint.

Each time a basic checkpoint Ci,x+1 is taken which is equivalent to its
predecessor Ci,x with respect to some consistent global checkpoint then, by
Lemma 5.1.1 such checkpoint is not involved in any Z-cycle. Therefore, the
lazy coordination for determining a consistent global checkpoint containing
Ci,x+1 must be started only if the equivalence is not verified.

Denoting with CGC(Ci,x) the global consistent checkpoint containing Ci,x,
then, upon the scheduling of a basic checkpoint Ci,x+1, the local index is
updated according to the following rule:

if Ci,x

CGC(Ci,x)≡ Ci,x+1

then eni ← eni + 1
else sni ← sni + 1; eni ← 0;

In other words, if Ci,x is equivalent to Ci,x+1 with respect to the consistent
global checkpoint CGC(Ci,x), then the same sequence number of Ci,x and an
equivalence number increased by one are assigned as index to Ci,x+1. Oth-
erwise, the index of Ci,x+1 becomes < Ci,x.sn + 1, 0 >. Note that whenever
the sequence number is not increased, no lazy coordination inducing forced
checkpoints in other processes in started (as forced checkpoints are triggered
basing only on the comparison between the sequence number piggybacked on
an arriving message and the local sequence number of the recipient process).

The increasing of the sequence numbers is the basis for the communication-
induced coordination (as in the protocols in [12, 36]), whereas the increasing
of equivalence numbers is used to spread the knowledge on the automatic ad-
vancement of the consistent global checkpoint due to the occurrence of equiva-
lences between local checkpoints of a process. Whenever a process learns that
the consistent global checkpoint has moved, then it may track new equivalences
with respect to the advanced global checkpoint. The next section is devoted
to the explanation of latter concept and to the description of a mechanism to
track the dynamically created equivalences on-the-fly.

5.2.1 Tracking Equivalent Checkpoints

Let consider the three processes scenario in Figure 5.3.a. There exists a
consistent global checkpoint CGC = {C1,x1 , C2,x2 , C3,x3} formed by check-
points with index < sn, 0 >. Checkpoint C2,x2+1 is equivalent to C2,x2 with
respect to CGC as there does not exist any message m which has been
sent from the right end side of CGC and has been received by P2 before
C2,x2+1 is taken. This equivalence generates a new consistent global check-
point CGC ′ = {C1,x1 , C2,x2+1, C3,x3}. Figure 5.3.b shows that in the progress

46 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

of the execution process P1 takes the checkpoint C1,x1+1. Such a checkpoint is
not equivalent to C1,x1 with respect to CGC due to the presence of the mes-
sage m which establishes the following relation C2,x2 ≺ckpt C1,x1+1. However,
C1,x1+1 is equivalent to C1,x1 with respect to CGC ′. This means that the
equivalence between C2,x2 and C2,x2+1, allowing the consistent global check-
point to advance from CGC to CGC ′, also permits the equivalence to exist
between C1,x1+1 and C1,x1 with respect to CGC ′, allowing thus to advance
the consistent global checkpoint from CGC ′ to CGC ′′. In what follows it is
shown how equivalence numbers can be used in order to let P2 track the equiv-
alence between C2,x2 and C2,x2+1, and then let P1 track the advancement of
the consistent global checkpoint from CGC to CGC ′.

P1

P2

CGC′

C2,x2 (< sn, 0 >)

C1,x1 (< sn, 0 >)

C3,x3 (< sn, 0 >)

C2,x2+1

(b)

C1,x1+1

P3

CGC
CGC′′

P2

P1

P3

CGC
CGC′

C2,x2 (< sn, 0 >)

C1,x1 (< sn, 0 >)

C3,x3 (< sn, 0 >)

C2,x2+1

(a)

m m

Figure 5.3: An Example of Equivalence Between Checkpoints Generated by
the Advancement of the Consistent Global Checkpoint.

Let process Pi be endowed with a vector EQi of n integers. The j-th entry
of the vector represents the knowledge of Pi about the equivalence number of
Pj with the current sequence number sni (thus the i-th entry corresponds to
eni). EQi is updated according to the following rules:

• each application message m sent by process Pi piggybacks the current
sequence number sni (m.sn) and the current EQi vector (m.EQ);

• upon the receipt of a message m, if m.sn = sni, EQi is updated from
m.EQ by taking a component-wise maximum; if m.sn > sni, the values
in m.EQ and m.sn are copied in EQi and sni, respectively.

Let us remark that the set ∪∀jCj,xj (< sn,EQi[j] >) is a consistent global
checkpoint (a formal proof of this property is given in Theorem 6.2.4). So,

5.2. SEQUENCE AND EQUIVALENCE NUMBERS OF A CONSISTENT
GLOBAL CHECKPOINT 47

to the knowledge of Pi, the vector EQi actually identifies the most recent
consistent global checkpoint with sequence number sni.

Upon the arrival of a message m at Pi in the checkpoint interval Ii,x(<
sni, eni >) one of the following three cases is true:

(1) (m.sn < sni) or ((m.sn = sni) and (∀j m.EQ[j] < EQi[j]));
in this case m has been sent from the left side of the consistent global
checkpoint ∪∀jCj,xj (< sn,EQi[j] >);

(2) (m.sn = sni) and (∃j : m.EQ[j] ≥ EQi[j]);
in this case, m has been sent from the right side of the consistent global
checkpoint ∪∀jCj,xj (< sn,EQi[j] >);

(3) (m.sn > sni);
in this case m has been sent from the right side of a consistent global
checkpoint whose sequence number is unknown by Pi (i.e., Pi is not
aware of that consistent global checkpoint).

As explained in previous section, a message m falling in case (3) directs
Pi to take a forced checkpoint Ci,x+1 with index < m.sn, 0 > (note that after
taking the forced checkpoint, message m falls in case (2) with respect to the
checkpoint interval Ii,x+1).

When a forced checkpoint is taken upon the receipt of a messagem, process
Pi has no possibility to select an index for that checkpoint as the index <
m.sn, 0 > must be assigned to it. Therefore, the only interesting cases for
tracking the equivalence, and thus increasing the equivalence number, are (1)
and (2).

When the basic checkpoint Ci,x+1 is scheduled, Pi falls in one of the fol-
lowing two alternatives:

(i) If no message is received in Ii,x(< sn, en >) that falls in case (2), then

Ci,x

∪∀jCj,xj
(<sn,EQi[j]>)

≡ Ci,x+1. This equivalence can be tracked by a pro-
cess using its local context at the time the checkpoint Ci,x+1 is scheduled.
Thus Ci,x+1.sn← Ci,x.sn and Ci,x+1.en← Ci,x.en+1. The equivalence

C2,x2

CGC(C2,x2)≡ C2,x2+1, shown in Figure 5.4, is an example of such a case;

(ii) If there exists at least a messagem received in Ii,x(< sn, en >) which falls
in case (2), one checkpoint belonging to the consistent global checkpoint
∪∀jCj,xj (< sn,EQi[j] >) precedes Ci,x+1 through the ≺ckpt relation.
Such a situation is shown in Figure 5.4 where ∪∀jCj,xj (< sn,EQ1[j] >
) = {C1,x1 , C2,x2 , C3,x3}, and due to m, C2,x2 ≺ckpt C1,x1+1. The conse-
quence is that process Pi cannot determine, at the time the checkpoint

48 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

Ci,x+1 is scheduled, if Ci,x is equivalent to Ci,x+1 with respect to some
consistent global checkpoint.

P2

P3

P1

C2,x2+1

C1,x1+1

C3,x3 (< sn, 0 >)

m m′ m′′

C2,x2 (< sn, 0 >)

C1,x1 (< sn, 0 >)

CGC(C2,x2)

CGC(C2,x2+1)

Figure 5.4: Upon the Receipt of m′, P1 Detects C1,x1

CGC(C2,x2)≡ C1,x1+1.

To solve the problem raised in point (ii), two approaches can be envisaged.
If, at the time the basic checkpoint Ci,x+1 is scheduled, the equivalence between
Ci,x and Ci,x+1 is undetermined (case (ii) discussed above) then:

Pessimistic Approach.
Process Pi pessimistically assumes the two checkpoints are not equivalent with
respect to any consistent global checkpoint even though this determination
could be revealed wrong in the future of the computation. In such a case,
upon the taking of Ci,x+1 the local index is updated as follows sni ← Ci,x.sn+
1 and eni ← 0. Figure 5.4 shows a case in which message m′ brings the

information (encoded in m′.EQ) to P1 that C2,x2

CGC(C2,x2)≡ C2,x2+1 and that
the consistent global checkpoint was advanced including C2,x2 . In such a case,
P1 can determine C1,x1 is equivalent to C1,x1+1 with respect to CGC(C2,x2+1)
corresponding to the set {C1,x1 , C2,x2+1, C3,x3}. A simple implementation of
the pessimistic approach requires each process Pi to be endowed with a boolean
variable equivi. Pi sets equivi to TRUE each time a new checkpoint interval
Ii,x starts and equivi is set to FALSE whenever a message m such that
m.sn = sn is received in Ii,x. Upon scheduling Ci,x+1, if ¬(equivi) then the
index < sn + 1, 0 > is assigned to Ci,x+1. This implementation [44, 45] does
not require to piggyback the vector EQ.

Optimistic Approach.
Process Pi assumes optimistically (and provisionally) that Ci,x is equivalent to
Ci,x+1. So the index of Ci,x+1 becomes < Ci,x.sn, Ci,x.en+ 1 >.

5.2. SEQUENCE AND EQUIVALENCE NUMBERS OF A CONSISTENT
GLOBAL CHECKPOINT 49

As provisional indices cannot be propagated in the system (this would lead
to a non consistent view of processes regarding information on other processes
spread through causality), if at the time of the first send event occurring after
Ci,x+1 is taken the equivalence is still undetermined, then the index of Ci,x+1

is re-updated as < Ci,x.sn + 1, 0 > (thus, sni ← sni + 1, eni ← 0, and
∀j : EQi[j]← 0). Otherwise, the provisional index becomes permanent.

Figure 5.4 shows a case in which C1,x1

CGC(C2,x2)≡ C1,x1+1 and this is detected
by Pi before sending m′′. In this case the index of Ci,xi+1 becomes permanent
upon the send of m′′.

In the next section a communication-induced checkpointing protocol is
described which follows the optimistic approach.

5.2.2 Sequence and Equivalence Number Based Protocol
(SENBP)

In this section a Sequence and Equivalence Number Based Protocol (SENBP)
following the optimistic approach in the detection of equivalent checkpoints
is presented. The protocol can be sketched by three rules: take-basic,
take-forced and send-message.

Take-Basic Rule.
Whenever a basic checkpoint is scheduled, the local sequence number is not
updated by optimistically assuming that each basic checkpoint is equivalent to
the previous one. Hence, each process Pi is endowed with a boolean variable
provisionali which is set to TRUE whenever a provisional index assignment
occurs. It is set to FALSE whenever the index becomes permanent. So we
have:

take-basic :
When a basic checkpoint is scheduled:

eni ← eni + 1;
Take a checkpoint with a provisional index < sni, eni >;
provisionali ← TRUE;

Send-Message Rule.
Due to the presence of provisional indices caused by the existence of non
resolved equivalences, the protocol needs a rule, when sending a message,
in order to disseminate only permanent indices of checkpoints. Let us then
assume each process Pi has a boolean variable after first sendi which is set
to TRUE if at least one send event has occurred in the current checkpoint

50 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

interval. It is set to FALSE each time a checkpoint is taken. The actions of
the rule send-message are the following:

send-message :
Before sending a message m in Ii,x:

if ¬(after first sendi) and provisionali
then

if ¬(Ci,x−1

∪∀jCj,xj
(<sn,EQi[j]>)

≡ Ci,x)
then sni ← sni + 1; eni ← 0; ∀j EQi[j]← 0;
the index < sni, eni > of the last checkpoint becomes permanent;
provisionali ← FALSE;
EQi[i]← eni;

the message m is sent piggybacking sni and EQi;

Take-Forced Rule.
The last rule of the protocol take-forced refines the corresponding rules in
protocols in [12, 36] by using a simple observation.

Observation 5.2.1
Upon the receipt of a message m in Ii,x(< sni, eni >) such that m.sn > sni,
there is no reason to take a forced checkpoint if there has been no send event
in Ii,x(< sni, eni >).

Indeed, no ≺ckpt relation can be established between the last checkpoint
Ci,x(< sni, eni >) and any checkpoint with sequence number m.sn and, thus,
the index of Ci,x(< sni, eni >) can be replaced permanently with the index
< m.sn, 0 >. As discussed in Section 3.2 of Chapter 3, Observation 5.2.1 has
been used for the first time by Wang in [64] to develop the Fixed-Dependency-
After-Send protocol. The take-forced rule is as follows:

take-forced :
Upon the receipt of a message m in Ii,x(< sni, eni >):

case
sni < m.sn and after first sendi → /* part (a) */

sni ← m.sn; eni ← 0;
a forced checkpoint Ci,x+1(< m.sn, 0 >) is taken
and its index is permanent;
provisionali ← FALSE;
∀j EQi[j]← m.EQ[j];

sni < m.sn and ¬(after first sendi) → /* part (b) */
sni ← m.sn; eni ← 0;

5.2. SEQUENCE AND EQUIVALENCE NUMBERS OF A CONSISTENT
GLOBAL CHECKPOINT 51

P2

P3

P1

C1,x1 (< sn, en1 >) C1,x1+1(< sn+ 1, 0 >)

P2

P3

P1

C1,x1 (< sn, en1 >) C1,x1+1(< sn+ 1, 0 >)

C2,x2+1(< sn+ 1, 0 >)

C3,x3 (< sn, en3 >)

C3,x3 (< sn, en3 >)

C2,x2+1(< sn+ 1, 0 >)

m′

(a)

(b)

m

m

C3,x3+1(< sn+ 1, 0 >)

C2,x2 (< sn, en2 >)

C2,x2 (< sn, en2 >)

Figure 5.5: Upon the Receipt of m, C3,sn,en3 can be Part of a Consistent
Global Checkpoint with Sequence Number sn+1 (a); C3,sn,en3 cannot belong
to a Consistent Global Checkpoint with Sequence Number sn+ 1 (b).

the index of the last checkpoint Ci,x is replaced
permanently with < m.sn, 0 >;
provisionali ← FALSE;
∀j EQi[j]← m.EQ[j];

sni = m.sn → /* part (c) */
∀j EQi[j]← max(m.EQ[j], EQi[j]);

end case;
the message m is processed;

For example, in Figure 5.5.a, the local checkpoint C3,x3 can belong to
the consistent global checkpoint with sequence number sn + 1 and formed
by {Ci,x1+1, C2,x2+1, C3,x3} (so the index < sn, en3 > can be replaced with
< sn + 1, 0 >). On the contrary, due to the send event of message m′ in
I3,x3(< sn, en3 >) depicted in Figure 5.5.b, a forced checkpoint C3,x3+1 with
index < sn+ 1, 0 > has to be taken upon the receipt of message m.

52 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

Part (b) of take-forced decreases the number of forced checkpoints com-
pared to the protocols in [12, 36]. The then alternative of send-message
represents the cases in which the action to take a basic checkpoint leads to
update the sequence number with the consequent induction of forced check-
points in other processes.

5.2.3 A Modification of SENBP (M-SENBP) for the Case of
Periodic Basic Checkpoints

Performance of the SENBP protocol, in terms of checkpointing overhead im-
posed to the computation can be improved in the case basic checkpoints are
scheduled on a periodic basis by including in the protocol the technique of
skipping basic checkpoints presented by Manivannan and Singhal [36]. They
have shown that there is no reason to take a basic checkpoint if at least one
forced checkpoint has been taken during the interval between two scheduled
basic checkpoints.

So, let us assume process Pi endows a flag skipi which indicates if at least
one forced checkpoint is taken in the current checkpoint period (this flag is set
to FALSE each time a basic checkpoint is scheduled, and set to TRUE each
time a forced checkpoint is taken). A version of the take-basic rule including
the skipping technique is as follows:

take-basic :
When a basic checkpoint is scheduled:

if skipi
then skipi ← FALSE
else eni ← eni + 1;

Take a checkpoint with a provisional index < sni, eni >;
provisionali ← TRUE;

The checkpointing protocol embedding the skipping technique will be re-
ferred to has Modified SENBP (M-SENBP). An implementation of M-SENBP
is described below.

5.2.4 An Implementation of M-SENBP

We assume each process Pi has the following data structures:

sni, eni: integer;
after first sendi, skipi, provisionali: boolean;

5.2. SEQUENCE AND EQUIVALENCE NUMBERS OF A CONSISTENT
GLOBAL CHECKPOINT 53

Pasti, P resenti, EQi: ARRAY[1,n] of integer.

Presenti[j] represents the maximum equivalence number enj sent by Pj and
received in the current checkpoint interval by Pi, and piggybacked on a message
that falls in the case 2 of Section 5.2.1. Upon taking a checkpoint or when
updating the sequence number, all the entries of Presenti are initialized to -1.
If the checkpoint is basic, Presenti is copied in Pasti before its initialization.
Each time a message m is received such that Pasti[h] < m.EQ[h], Pasti[h]
is set to -1. So, the predicate (∃h : Pasti[h] > −1) indicates that there is a
message received in the past checkpoint interval that has been sent from the
right side of the consistent global checkpoint (case 2 of Section 5.2.1) currently
seen by Pi.

In Figure 5.6 and in Figure 5.7 the behavior of process Pi is shown (the
procedures and the message handler are executed in atomic fashion). The
shown implementation assumes that there exist at most one provisional index
in each process. So each time two successive provisional indices are detected,
the first index is permanently replaced with < sni + 1, 0 >.

5.2.5 Correctness Proof

In what follows, a formal proof is given that at any time under M-SENBP
the set ∪∀jCj,xj (< sn,EQi[j] >) is a consistent global checkpoint (note that
the proof holds also in the case the skipping technique of basic checkpoints is
removed by the protocol). At this aim, let us introduce the following simple
observations and lemmas:

Observation 5.2.2
For any checkpoint Ci,,x(< sn, 0 >), there does not exist any message m with
m.sn ≥ sn such that receive(m) ∈ Ii,x−ϵ with ϵ > 0. This observation derives
from rule take-forced of M-SENBP when considering Ci,x(< sn, 0 >) is the
first checkpoint with sequence number sn.

Observation 5.2.3
For any message m sent by Pi in Ii,x(< sn, en >) or in a later checkpoint in-
terval, then m.sn ≥ sn. This observation derives from the rule send-message

of M-SENBP.

Lemma 5.2.4
For any pair of checkpoints (Ci,x(< sn, en >), Cj,y(< sn, 0 >)) the following
predicate holds:

¬(Ci,x ≺ckpt Cj,y)

54 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

init Pi:

sni := 0; eni := 0;
after first sendi := FALSE; skipi := FALSE; provisionali := FALSE;
∀h EQi[h] := 0; ∀h Pasti[h] := −1; ∀h Presenti[h] := −1;

when message m arrives at Pi from Pj:

if m.sn > sni then % Pi is not aware of the sequence number m.sn %

begin
if after first sendi then
begin

take a checkpoint; % taking a forced checkpoint %

after first sendi := FALSE;

end;
sni := m.sn; eni := 0;
assign the index < sni, eni > to the last taken checkpoint;
provisionali := FALSE; % the index is permanent %

∀h Pasti[h] := −1; ∀h Presenti[h] := −1;
Presenti[j] := m.EQ[j];
∀h EQi[h] := m.EQ[h];

end
else if m.sn = sni then

begin
if Presenti[j] < m.EQ[j] then Presenti[j] := m.EQ[j];
∀h EQi[h] := max(EQi[h], m.EQ[h]); % a component-wise maximum %

∀h if Pasti[h] < m.EQ[h] then Pasti[h] := −1;
end;

process the message m;

Figure 5.6: M-SENBP - Part A.

Proof (By Contradiction)
Suppose by the way of contradiction, that Ci,x ≺ckpt Cj,y. In this case, there
exits a messagem sent by Pi after Ci,x is taken and received by Pj before taking
Cj,y. Due to Observation 5.2.3 m.sn ≥ sn, therefore, due to Observation 5.2.2,
it cannot be received by Pj before Cj,y(< sn, 0 >). Thus the assumption is
contradicted and the claim follows. Q.E.D.

Lemma 5.2.5
Let i, j and k be three integers. At any given time for a pair of checkpoints
(Ci,x(< sn,EQk[i] >), Cj,y(< sn,EQk[j] >)) the following predicate holds:

¬(Ci,x ≺ckpt Cj,y)

Proof (By Contradiction)
Suppose by the way of contradiction that R ≡ Ci,x ≺ckpt Cj,y holds due to a
message m. Four cases have to be considered:

5.2. SEQUENCE AND EQUIVALENCE NUMBERS OF A CONSISTENT
GLOBAL CHECKPOINT 55

when Pi sends data to Pj:

if provisionali ∧ (∃h : Pasti[h] > −1) % last ckpt not equivalent to previous one %

then
begin

sni := sni + 1; eni := 0;
assign the index < sni, eni > to the last taken checkpoint;
provisionali := FALSE; % the index is permanent %

∀h Pasti[h] := −1; ∀h Presenti[h] := −1; ∀h EQi[h] := 0;
end;
m.content = data; m.sn := sni; m.EQ := EQi; % packet the message %

send (m) to Pj;

after first sendi := TRUE;

when a basic checkpoint is scheduled from Pi:

if provisionali then % two successive provisional indices %

if (∃h : Pasti[h] > −1) % last ckpt not equivalent to previous one %

then
begin

∀h pasti[h] := −1;
sni := sni + 1; eni := 0;
assign the index < sni, eni > to the last checkpoint; % permanent index %

∀h EQi[h] := 0;
end
else ∀h Pasti[h] := Presenti[h]; % last ckpt is equivalent to previous one %

take a checkpoint; % taking a basic checkpoint %

eni := eni + 1;
EQi[i] := eni;

assign the index < sni, eni > to the last checkpoint;
provisionali := TRUE; % the index is provisional %

∀h Presenti[h] := −1;
after first sendi := FALSE;

Figure 5.7: M-SENBP - Part B.

1) if i = j predicate R contradicts Definition 1.3.1;

2) if (k = i) ∧ (i ̸= j):

– if EQi[j] = 0, Lemma 6.2.2 is contradicted;

– if EQi[j] > 0 then: (i) Cj,y(< sn,EQi[j] >) is equivalent to
Cj,y−1(< sn,EQi[j] − 1 >) and (ii) there exists a causal path of
messages which brings to Pi the information of that equivalence in
the current checkpoint interval Ii,x(< sn,EQi[i] >).

From Definition 5.1, Cj,y(< sn,EQi[j] >) can be equivalent to
Cj,y−1(< sn,EQi[j]− 1 >) only if EQj [i] > EQi[i]. The latter is a
contradiction to the fact that the current equivalence number of Pi

is EQi[i]. This case is shown in Figure 5.8.a.

56 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

3) if (k = j) ∧ (i ̸= j):

– if EQj [j] = 0, Lemma 6.2.2 is contradicted;

– if EQj [j] > 0 then Cj,y(< sn,EQj [j] >) is equivalent to Cj,y−1(<
sn,EQj [j]− 1 >). Let eni be the value stored in EQj [i]. From the
rule send-message of M-SENBP, an equivalence number is stored
in EQ only when the index is permanent. This means that in the
interval of events between the checkpoint Cj,y(< sn,EQj [j] >) and
the first send event of a message m′, there must exist a causal path
of messages starting after a checkpoint Ci,x+ϵ(< sn, en >) (with
en > eni) and ending in Ij,y(< sn,EQj [j] >) before the sending of
m′. In such a case the previous equivalence holds. Due to the rules
to update the vector EQ, after the receipt of the last message of
that causal path, the value stored in EQj [i] is en. This contradicts
the fact that the value stored in EQj [i] is eni. This case is shown
in Figure 5.8.b.

4) if (k ̸= i) ∧ (k ̸= j) ∧ (i ̸= j):

– if EQk[j] = 0, Lemma 6.2.2 is contradicted;

– if EQk[j] > 0 then Cj,y(< sn,EQk[j] >) is equivalent to Cj,y−1(<
sn,EQk[j]−1 >). Let eni be the value stored in EQk[i]. Due to the
initial assumption, in order to ensure that the equivalence is verified
there must exist (i) a causal path of messages µ′ starting after a
checkpoint Ci,x+ϵ(< sn, en >) (with en > eni) and ending in Ij,y(<
sn,EQk[j] >) and (ii) a causal path of messages µ′′ starting after
the receipt of the last message of µ′ which brings the information
of the equivalence to Pk. Due to the rules to update the vector EQ
(see Section 5.2), the value stored in EQk[i] is en. This contradicts
the fact that the value stored in EQk[i] is eni. This case is shown
in Figure 5.8.c.

In all cases the assumption that the predicate R holds leads to a contra-
diction. Then the claim follows. Q.E.D.

Theorem 5.2.6
At any given time the set S = ∪∀jCj,xj ,(< sn,EQi[j] >) is a consistent global
checkpoint.

Proof
The proof follows from Lemma 6.2.3 applied to any distinct pair of checkpoints
in S and from the Definition 1.3.2. Q.E.D.

5.3. PERFORMANCE MEASURES: A CASE STUDY IN THE
CONTEXT OF ROLLBACK RECOVERY 57

Pi

Pj

Cj,y

causal path

(b)

m′

m

Pi

Pj

m

Ci,x

Cj,y

causal path

Ii,x(sn,EQi[i] >)

(a)

Pi

Pj

causal path

Ci,x(< sn,EQk[i] >)

causal path

(c)

Ci,x(< sn,EQj [i] >) Ci,x+ϵ(< sn, en >)

Ck,z(< sn,EQk[k] >)

µ′

µ′′

Ci,x+ϵ(< sn, en >)

Cj,y(< sn,EQk[j] >)

m

Pk

Figure 5.8: Proof of Lemma 6.2.3

Note that each local checkpoint produced by the protocol belongs to, at
least, one consistent global checkpoint. In particular, Ci,xi(< sn, en >) be-
longs to all consistent global checkpoints having sequence number sn′ such
that Ci,xi−1.sn < sn′ ≤ sn.

5.3 Performance Measures: a Case Study in the
Context of Rollback Recovery

In this section, a performance comparison between M-SENBP and previous
protocols is presented in the context of rollback recovery. Performance data
are obtained through simulation. Performance measures are related to the
overhead imposed by the protocols during failure free computation and to the
extent of rollback in case of failure.

58 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

5.3.1 The Simulation Model

The simulation compares the protocol in [12] (hereafter BCS), the protocol in
[36] (hereafter MS) and M-SENBP (1) in an uniform point-to-point environ-
ment in which each process can send a message to any other and the destination
of each message is an uniformly distributed random variable. We assume a
system with n = 8 processes, each process executes internal, send and receive
operations with probability pi = 0.8, ps = 0.1 and pr = 0.1, respectively. The
time to execute an operation in a process is exponentially distributed with
mean value equal to 1 time units. The time for taking a checkpoint, Tckpt is
10 time units. The the message propagation time is exponentially distributed
with mean value 10 time units for all the protocols.

We also consider a bursted point-to-point environment in which a process
with probability pb = 0.1 enters a burst state and then executes only internal
and send events (with probability pi = 0.8, ps = 0.2 respectively) for B check-
point intervals (when B = 0 we have the uniform point-to-point environment
described above).

Basic checkpoints are taken periodically. Let bcf (basic checkpoint fre-
quency) be the percentage of the ratio t/T where t is the time elapsed between
two successive periodic checkpoints and T is the total execution time. For ex-
ample, bcf= 100% means that only the initial local checkpoint is a basic one,
while bcf= 0.1% means that each process schedules 1000 basic checkpoints.

We also consider a degree of heterogeneity among processes H. For exam-
ple, H = 0% (resp. H = 100%) means all processes have the same checkpoint
period t = 100 (resp. t = 10), H = 25% (resp. H = 75%) means 25% (resp.
75%) of processes have the checkpoint period t = 10 while the remaining 75%
(resp. 25%) has a checkpoint period t = 100.

A first series of simulation experiments were conducted by varying bcf from
0.1% to 100% and we measured (a) the ratio Tot between the total number
of checkpoints taken by a protocol and the total number of checkpoints taken
by BCS and (b) the average number of checkpoints F forced by each basic
checkpoint.

In a second series of experiments we varied the degree of heterogeneity
H of the processes and then we measured (c) the ratio E between the total
number of checkpoints taken by M-SENBP and MS.

Each simulation run contains 8000 message receives and for each value of
bcf and H, we did several simulation runs with different seeds and the result
were within 4% of each other, thus, variance is not reported in the plots.

1Simulation results of the protocol in [28] are not reported as for the considered environ-
ment they are quite similar to those of BCS.

5.3. PERFORMANCE MEASURES: A CASE STUDY IN THE
CONTEXT OF ROLLBACK RECOVERY 59

5.3.2 Results of the Experiments

Total Number of Checkpoints

Figure 5.9 shows the ratio Tot of MS and M-SENBP in an uniform point-to-
point environment. For small values of bcf (below 1.0%), there are only few
send and receive events in each checkpoint interval, leading to high probability
of equivalence between checkpoints. Thus M-SENBP saves from 2% to 10% of
checkpoints compared to MS. As the value of bcf is higher than 1.0%, MS and
M-SENBP takes the same number of checkpoints as the probability that two
checkpoints are equivalent tends to zero. An important point lies in the plot
of the average number of forced checkpoints per basic one taken by MS and
M-SENBP shown in Figure 5.11. For small values of bcf, M-SENBP induces
up to 70% less than MS.

The reduction of the total number of checkpoints and of the ratio F is am-
plified by the bursted environment (Figure 5.10 and Figure 5.12) in which the
equivalences between checkpoints on processes running in the burst mode are
disseminated to the other processes causing other equivalences. In this case,
for all values of bcf, M-SENBP saves from 7% to 18% checkpoints compared
to MS, and induces up to 77% less than MS.

Heterogeneous Environment

The low values of F shown by M-SENBP suggested that its performance could
be particularly good in a heterogeneous environment in which there are some
processes with a shorter checkpointing period. These processes would push
higher the sequence number leading to very high checkpointing overhead using
either MS or BCS.

In Figure 5.13, the ratio E as a function of the degree of heterogeneity H of
the system is shown in the case of uniform (B = 0) and bursted point-to-point
environment (B = 2). The best performance (about 30% less checkpointing
than MS) are obtained when H = 12.5% (i.e., when only one process has a
checkpoint frequency ten times greater than the others) and B = 2.

In Figure 5.14 we show the ratio Tot as a function of bcf in the case of
B = 2 and H = 12.5% which is the environment where M-SENBP got the
maximum gain (see Figure 5.13). Due to the heterogeneity, bcf is in the range
between 1% and 10% of the slowest processes. We would like to remark that
in all the range the checkpointing overhead of M-SENBP is constantly around
30% less than that of MS.

60 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

0.1 1.0 10.0 100.0
bcf (% checkpoint period / total execution time)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
ot

 (

to
ta

l c
kp

t /
 #

 to
ta

l c
kp

t B
C

S
)

MS
M-SENBP

Figure 5.9: Tot vs. bcf in the Uniform Point-to-Point Environment (B = 0).

0.1 1.0 10.0 100.0
bcf (% checkpoint period / total execution time)

0.2

0.4

0.6

0.8

T
ot

 (

to
ta

l c
kp

t /
 #

 to
ta

l c
kp

t B
C

S
)

MS
M-SENBP

Figure 5.10: Tot vs. bcf in the Bursted Point-to-Point Environment (B = 2).

5.3. PERFORMANCE MEASURES: A CASE STUDY IN THE
CONTEXT OF ROLLBACK RECOVERY 61

0.1 1.0 10.0 100.0
bcf (% checkpoint period / total execution time)

0.1

1.0

10.0

F
 (

av
er

ag
e

fo

rc
ed

 c
kp

t p
er

 b
as

ic
 o

ne
)

MS
M-SENBP

Figure 5.11: F vs. bcf in the Uniform Point-to-Point Environment (B = 0).

0.1 1.0 10.0 100.0
bcf (% checkpoint period / total execution time)

0.1

1.0

10.0

F
 (

av
er

ag
e

fo

rc
ed

 c
kp

t p
er

 b
as

ic
 o

ne
)

MS
M-SENBP

Figure 5.12: F vs. bcf in the Bursted Point-to-Point Environment (B = 2).

62 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

0 20 40 60 80 100
H (heterogeneity)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

E
 (

to

ta
l c

kp
t M

-S
E

N
B

P
 /

to

ta
l c

kp
t M

S
)

B=0
B=2

Figure 5.13: E vs. Heterogeneity in both the Uniform Point-to-Point Envi-
ronment (B = 0) and the Bursted Point-to-Point Environment (B = 2).

1.0 3.0 5.0 7.0 9.0
bcf (% checkpoint period / total execution time)

0.50

0.60

0.70

0.80

0.90

T
ot

 (

to
ta

l c
kp

t /
 #

 to
ta

l c
kp

t B
C

S
)

MS
M-SENBP

Figure 5.14: Tot vs. bcf of the Slowest Processes in a Bursted Point-to-Point
Environment (B = 2) with H = 12.5%

5.3. PERFORMANCE MEASURES: A CASE STUDY IN THE
CONTEXT OF ROLLBACK RECOVERY 63

Rollback Recovery

We measured the average amount of the undone computation UE, in terms of
number of events, (i.e., the rollback distance) after the occurrence of a failure
of a process. UE is evaluated without simulating the rollback phase but
considering the amount of undone events as it can be seen by an omniscient
observer of the system. In particular, each time a process fails, the observer
individuates the most recent consistent global checkpoint of the application
associated to the sequence number of the last taken checkpoint of the failed
process and counts the number of events undone to rollback to that global
checkpoint.

The consistent global checkpoint to which the application should be rolled
back is build as follows: the failed process restarts its computation from its
last checkpoint, say A, forcing the other processes to rollback to the global
checkpoint to which A belongs, say CGC(A).

During the rollback phase, in MS and M-SENBP, if the checkpoint with se-
quence number A.sn does not exists a process rolls back to the first checkpoint
with sequence number greater than sn, if any, otherwise no rollback action is
required for that process.

In M-SENBP, if the index of A is not permanent, the index is replaced
with < sn + 1, 0 > prior the rollback. Otherwise, each process rolls back to
the most recent checkpoint with sequence number sn (i.e., the one with the
higher equivalence number).

Simulation experiments were conducted in the uniform point-to-point en-
vironment. In Figure 5.15, UE as a function of bcf is shown. Given the large
checkpointing overhead of BCS during failure-free computations (see Figure
5.9), the consistent global checkpoint to which the application is rolled back is
closest, on the average, to the end of the computation compared to M-SENBP
and MS. As an example in the case of bcf = 2.5% (i.e., 40 basic checkpoints for
each process), M-SENBP and MS takes about 80% less checkpoints compared
to BCS as depicted in Figure 5.9 while BCS’s UE is 70% less than M-SENBP
and MS (see Figure 5.15). This points out an evident tradeoff between UE
and the checkpointing overhead in failure free computation.

This behavior is confirmed by plots shown in Figure 5.16 in an environment
whose heterogeneity degree is 12.5% and bcf varies from 1% to 10% of the
slowest processes. As an example, if bcf = 1% then MS’s UE is 30% less than
M-SENBP, while M-SENBP saves about 35% of forced checkpoints compared
to MS (see Figure 5.14).

64 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

0 1 10 100
bcf (% checkpoint period / total execution time)

10

100

1000

10000

100000

UE

BCS
MS
M-SENBP

Figure 5.15: UE vs. bcf in the Uniform Point-to-Point Environment (B = 0
and H = 0%).

1 2 3 4 5 6 7 8 9 10
bcf (% checkpoint period / total execution time)

0.0

100.0

200.0

300.0

400.0

500.0

UE

BCS
MS
M-SENBP

Figure 5.16: UE vs. bcf in the Uniform Point-to-Point Environment (B=0
and H = 12.5%).

5.3. PERFORMANCE MEASURES: A CASE STUDY IN THE
CONTEXT OF ROLLBACK RECOVERY 65

Total Overhead Analysis

In this section we introduce a function OH(Nf) which quantifies the total
overhead added to the computation by checkpointing and recovery as a func-
tion of the number Nf of failures. We study the behavior of the function OH
in BCS, MS and M-SENBP by varying the number of failures occurring in the
computation.

The total overhead due to checkpointing can be expressed by the product
NckptTckpt whereNckpt is the total number of checkpoints taken during a failure
free computation and Tckpt is the average time spent for a checkpoint operation.

The average overhead due to a single failure (as it can be seen by the
external observer of the system) can be expressed by the sum of two terms.
The first term is the product UC · Tckpt where UC is the average number of
checkpoints that are undone due to a rollback. The second term is the product
UE ·Tev where Tev is the average event execution time. We have that the total
recovery overhead due to Nf failures is Nf (UC ·Tckpt+UE ·Tev). By combining
the checkpointing and the recovery overhead we get:

OH(Nf) = NckptTckpt +Nf (UC · Tckpt + UE · Tev)

Figure 5.17 showsOH/(OH of BCS) vs. the number of failures. These plots
were obtained in an uniform point-to-point environment with heterogeneity
H = 12.5%. A total number of 80000 events were simulated.

The results show that the function OH of M-SENBP is widely less than
the one of BCS and MS. The total overhead imposed by the three protocols
becomes comparable only for a very high failure rate (in the order of 102

failures per an execution of 80000 events) which is extremely unlikely in real
distributed systems.

66 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

1 10 100
Nf (number of failures)

0.50

0.60

0.70

0.80

0.90

1.00

O
H

 /
O

H
 o

f B
C

S

MS
M-SENBP

Figure 5.17: OH/(OH of BCS) vs. Nf in the Uniform Point-to-Point Envi-
ronment (B=0 and H = 12.5%).

Chapter 6

Virtual Precedence Accordant
Protocols

The aim of this chapter is to study the structure of a checkpoint and com-
munication pattern (Ĥ, CĤ) of a distributed computation in order to identify
particular sub-patterns whose absence implies (and is implied by) the absence
of Z-cycles. More technically, a characterization of the NZC property is in-
troduced, which was previously an open problem.

The particular sub-pattern identified in this study has been named Core
Z-Cycle (CZC)1. The derived characterization is based on a property which
stipulates that there is no core Z-cycle in the computation (NCZC property).
A Core Z-cycle is a Z-cycle with several constraints on its structure.

More precisely, the following result is proved:

• NZC ⇔ NCZC (i.e., the characterization theorem). This is obtained by
introducing successive embedded subsets of Z-cycles, namely, elementary
Z-cycles, prime Z-cycles and core Z-cycles, whose members satisfy pro-
gressively stronger constraints on their checkpoint and communication
pattern structure.

This result has been obtained thanks to the introduction of concatenation
relations on message chains and checkpoints that allow to express, in an easy
way, the basic structure of checkpoint and communication patterns.

The introduced characterization is important not only from a theoretical
point of view but also from a practical one as communication-induced check-
pointing protocols ensuring the NZC property can be derived.

1In the rest of the chapter capitalized words denote a specific checkpoint and communica-
tion pattern, bold capitalized words denote a set of checkpoint and communication patterns
of the same type and calligraphic style denotes properties related to checkpoint and commu-
nication patterns.

67

68CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

In particular, members of CZC cannot be tracked on-the-fly, however, a
particular checkpoint and communication pattern, namely Suspect Core Z-
Cycle (SCZC) is identified, which represents the causal part of any CZC. As
it is causal, it is on-the-fly trackable by a communication-induced protocol.

A first communication-induced protocol, namely P1, preventing the for-
mation of SCZCs is introduced. The protocol pushes processes to take forced
checkpoints basing on a predicate P1, and has control information with space-
complexity O(n2). Then, a second protocol, namely P2 is derived. It is based
on a predicate P2 weaker than P1, and has control information with space-
complexity O(n).

These protocols are, to the best of our knowledge, the first VP-accordant
protocols explicitly designed to ensure the NZC property, but not RDT .
Performance of the proposed protocols are compared to that of previous ones
both through a theoretical analysis and through simulation results. Finally,
a distributed protocol for consistent global checkpoint collection is presented.
Applications of the checkpointing and global checkpoint collection protocols
are finally discussed.

6.1 Preliminary Definitions

This section introduces a formal definition of causal and non-causal message
chains (the notion of message chain has already been used in previous chap-
ters, for example under the name of “sequence of messages forming a Z-path”,
but without a formal definition, which becomes now mandatory) and two
concatenation relations on checkpoints and/or chains of messages. These rela-
tions express both causal and non-causal ways for checkpoints and/or chains
of messages to be combined, and allow synthetic expressions for checkpoint
and communication sub-patterns of a checkpoint and communication pattern
(Ĥ, CĤ) of a distributed computation. Finally, the concept of Z-cycle is refor-
mulated using the concatenation relations.

6.1.1 Message Chains

Definition 6.1.1
A message chain is a sequence of messages ζ = [m1,m2, . . . ,mℓ] such that

∀k : 1 ≤ k ≤ ℓ− 1⇒ (receive(mk) ∈ Ii,x) ∧ (send(mk+1) ∈ Ii,y) ∧ (x ≤ y)

In other words, a message chain corresponds to the sequence of messages
which establishes a Z-path between two checkpoints. As an example, in Figure
6.1.b we have a message chain formed by messages [m1,m2,m3]. A particular
case of message chain is the causal message chain, in which the receive of a

6.1. PRELIMINARY DEFINITIONS 69

m2

C1,x1

P1

C1,x1

m2

P1

P3

C2,x3+1C3,x3

C2,x2 C2,x2+1C2,x2 C2,x2+1

m1

P2P2

m1

m3

(a) (b)

P3

C3,x3 C2,x3+1

m3

Figure 6.1: (a) a Message Chain Formed by Messages [m1,m2,m3] ; (b) a
Causal Message Chain Formed by Messages [m1,m2,m3].

message always precedes on a process the send of the successive message of
the chain. More formally we have:

Definition 6.1.2
A message chain ζ = [m1,m2, . . . ,mℓ] is causal if

∀k : 1 ≤ k ≤ ℓ− 1⇒ receive(mk) ≺P send(mk+1)

otherwise, the chain is non causal.

In other words, a causal message chain corresponds to the sequence of
messages which establishes a causal Z-path between two checkpoints. It also
corresponds to a formal definition of the notion of causal path of messages
used in previous chapters. An example of causal message chain is the one
formed by messages [m1,m2,m3] in Figure 6.1.b. Recall that a chain with
only one message is always causal.

For the sake of clarity, the Greek letter µ indicates a causal message chain.
Furthermore we denote with ζ.first (resp. ζ.last) the first (resp. last) message
of a message chain ζ.
|ζ| denotes the number of messages forming the chain ζ (i.e., the dimension

of ζ). In particular, |ζ| = ℓ means that the chain ζ consists of ℓ messages.
The operator minus is used to denote the removal of a subchain from a chain;
for example ζ − ζ.last (resp. ζ − ζ.first) denotes a chain obtained from ζ
by removing its last (resp. first) message; ζ − ζ̂ denotes a chain obtained by
removing the subchain ζ̂ from ζ where ζ̂ can be either the initial or the final
part of ζ.

Let us finally give the concept of sequence of checkpoint intervals related
to a message chain. To each message chain ζ = [m1,m2, . . . ,mℓ] is associated
a sequence of checkpoint intervals S(ζ) = (Ij1,z1 , Ij2,z2 , . . . , Ijℓ,zℓ) such that
send(mi) ∈ Iji,zi with (1 ≤ i ≤ ℓ).

70CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

Pi

(c)

ζ

Ci,x
ζ′

Pi

Ci,x ζ′

ζ

(d)

Pi

Ci,x

ζ

(a)

Pi

Ci,x

ζ

(b)

Figure 6.2: Examples of Applying of the Concatenation Relations.

6.1.2 Concatenation Relations

In this section two concatenation relations are introduced, which are used to
express and combine, in an easy way, checkpoint and communication patterns.

Causal Concatenation

The causal concatenation, denoted by the symbol ◦, can be applied to express
the causal combination of two objects (an object can be either a checkpoint
or a message chain). Such a concatenation is defined as follows:

Definition 6.1.3
An object a is causally concatenated to an object b, denoted a ◦ b, iff:

1. a = Ci,x, b = ζ and ∃v ≥ 0 : send(ζ.first) ∈ Ii,x+v; or

2. a = ζ, b = Ci,x and ∃v > 0 : receive(ζ.last) ∈ Ii,x−v; or

3. a = ζ, b = ζ ′ and receive(ζ.last) ≺P send(ζ ′.first).

Examples of causal concatenation are shown in Figures 6.2.a (ζ ◦ Ci,x), 6.2.b
(Ci,x ◦ ζ) and 6.2.c (ζ ◦ ζ ′).

Non-Causal Concatenation

The non-causal concatenation, denoted by the symbol •, can be applied to
express the non-causal combination of message chains. Such a concatenation
is defined as follows:

6.1. PRELIMINARY DEFINITIONS 71

Definition 6.1.4
A message chain ζ is non-causally concatenated to a message chain ζ ′ in the

checkpoint interval Ik,y, denoted ζ
k,y
• ζ ′, iff the following predicate holds:

NCC ≡ (receive(ζ.last) ∈ Ik,y) ∧
(send(ζ ′.first) ∈ Ik,y) ∧
(send(ζ ′.first) ≺P receive(ζ.last))

An example of non-causal concatenation ζ
i,x
• ζ ′ is shown in Figure 6.2.d. In

other words, a message chain ζ is non causally concatenated to a message chain
ζ ′ in the checkpoint interval Ik,y if both send(ζ ′.first) and receive(ζ.last)
belong to the same checkpoint interval Ik,y, with send(ζ ′.first) happening
before receive(ζ.last). For the sake of simplicity of the notation, whenever not
necessary the index of the interval is dropped from the non-causal relation.

6.1.3 Concatenation Operators

Let consider two message chains ζ = [m1, . . . ,mq] and ζ ′ = [m′
1, . . . ,m

′
p].

If ζ ◦ ζ ′ (or ζ • ζ ′) then by Definition 6.1.1, there exists in the checkpoint
and communication pattern of the distributed computation a message chain
ζ ′′ = [m1, . . . ,mq,m

′
1, . . . ,m

′
p]. Therefore, whenever two message chains are

concatenated (either causally or non-causally), then there exists in the com-
putation a chain resulting from that concatenation and containing all the
messages of the two original chains.

This property allows to use concatenation relations applied to message
chains also as concatenation operators generating message chains. For the
previous example, the generated message chain is ζ ′′ = ζ ◦ ζ ′ (or, in case of
non-causal concatenation, ζ ′′ = ζ • ζ ′).

6.1.4 A Formal Redefinition of the Z-Cycle

By using the concatenation relations, in this section the notion of Z-Cycle (ZC)
is reformulated. Basically, a ZC is a checkpoint and communication pattern
involving a checkpoint Ci,x and a chain ζ̂ such that:

ζ̂ ◦ Ci,x ◦ ζ̂

(an example of such a concatenation is shown in Figure 6.3.a) (2). However,
it is always possible to separate ζ̂ into two subchains, a causal chain µ and a

2For the sake of simplicity, ζ̂ ◦ Ci,x ◦ ζ̂ stands for (ζ̂ ◦ Ci,x) ∧ (Ci,x ◦ ζ̂).

72CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

Ci,x

Pi Pi

Pk

µ

Ci,x

Ck,y

(b)(a)

Ik,y

Ck,y+1
ζ

ζ̂

Figure 6.3: The Structure of a Z-Cycle.

message chain ζ such that ζ̂ = µ
k,y
• ζ, this concatenation is shown in Figure

6.3.b (this is an example of how the non-causal concatenation is used as an
operator on message chains). This observation gives rise to the following Z-
cycle definition3:

Definition 6.1.5

A ZC is a checkpoint and communication pattern ZC(Ci,x, µ
k,y
• ζ) such that:

ζ ◦ Ci,x ◦ µ
k,y
• ζ

6.2 A Characterization of the No-Z-Cycle Property

To get a characterization of theNZC property, successive embedded subsets of
Z-cycles, namely Elementary Z-Cycle (EZC), Prime Z-Cycle (PZC) and Core
Z-Cycle (CZC) are introduced, which are Z-cycles that satisfy progressively
stronger constraints on their checkpoint and communication pattern structure
as depicted in Figure 6.4. In particular, an EZC is a ZC(C, µ • ζ) imposing a
constraint on the dimension of ζ. A PCZ is an EZC imposing a constraint on
µ and, finally, a CZC is a PZC with a constraint on the sequence of checkpoint
intervals associated to ζ.

The lemmas in this section prove the following results:

(i) if there exists a ZC in (Ĥ, CĤ) then an EZC exists as well;

(ii) if there exists an EZC in (Ĥ, CĤ) then a PZC exists as well;

(iii) if there exists a PZC in (Ĥ, CĤ) then a CZC exists as well.

3Recall that although the notion of Z-cycle is here expressed in a different way, it is
equivalent to the Netzer-Xu formulation.

6.2. A CHARACTERIZATION OF THE NO-Z-CYCLE PROPERTY 73

In other words, each (non-core) Z-cycle involving a checkpoint C embeds a
core Z-cycle involving a checkpoint A (see Figure 6.4). This means that ZC is
empty if, and only if, CZC is empty as will be proved in the characterization
theorem (Section 6.2.4 of this chapter).

PZC

ZC

C

CZC

A

EZC

Figure 6.4: Relations Between ZC, EZC, PZC and CZC.

6.2.1 Elementary Z-Cycles

This section introduces the notion of Elementary Z-Cycle (EZC). It is inter-
esting because of the result in Lemma 6.2.1 stating that if there is a Z-cycle in
a checkpoint and communication pattern of a distributed computation then
there exists in that checkpoint and communication pattern an EZC whose size
of its chain ζ is smaller than, or equal to, the one of the Z-cycle.

Definition 6.2.1

ZC(Ci,x, µ
k,y
• ζ) is an Elementary Z-Cycle, denoted EZC(Ci,x, µ

k,y
• ζ) if there

does not exist any message chain ζ ′ such that |ζ ′| < |ζ| and ZC(Ci,x, µ
k,y
• ζ ′)

exists.

Lemma 6.2.1

If there exists ZC(Ci,x, µ
k,y
• ζ)

then there exists EZC(Ci,x, µ
k,y
• ζ ′) with |ζ ′| ≤ |ζ|.

Proof

Let us consider ZC(Ci,x, µ
k,y
• ζ) , if |ζ| = 1 then the claim follows. Otherwise

(i.e., |ζ| > 1), there are two cases:

• There does not exist a chain ζ∗ such that |ζ∗| < |ζ| and ZC(Ci,x, µ
k,y
• ζ∗)

exists. Hence, ZC(Ci,x, µ
k,y
• ζ) is an EZC by definition;

74CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

• There exists a chain ζ∗ such that |ζ∗| < |ζ| and ZC(Ci,x, µ
k,y
• ζ∗) exists.

In this case, let consider ZC(Ci,x, µ
k,y
• ζ∗). If that Z-cycle is elemen-

tary then the claim follows. Otherwise we iterate previous reasoning on

ZC(Ci,x, µ
k,y
• ζ∗). After a finite number of steps we get either an ele-

mentary Z-cycle or a Z-cycle whose size of ζ∗ is equal to one (it is then
elementary). Hence, the claim follows.

Q.E.D.

6.2.2 Prime Z-Cycles

This section introduces the notion of Prime Z-Cycle (PZC). It is interesting
because of the result in Lemma 6.2.3 stating that if there is an elementary Z-
cycle in a checkpoint and communication pattern of a distributed computation
then there exists in that checkpoint and communication pattern a PZC whose
size of its chain ζ is smaller than, or equal to, the one of the elementary Z-cycle.

Given a pair (Ci,x, Pk), let us consider the set of causal chains µ starting
after Ci,x whose recipient of µ.last is Pk denoted M(Ci,x, Pk). This set is
partially ordered by the relation:

µ ≺ µ′ ⇔ receive(µ.last) ≺P receive(µ′.last)

Letmin(M(Ci,x, Pk)) denote the set of theminimum elements inM(Ci,x, Pk)
(4). This set contains causal chains starting after Ci,x and sharing the last mes-
sage. By using these notions the concept of Prime-Z-Cycle (PZC) is introduced
as follows:

Definition 6.2.2

EZC(Ci,x, µ
k,y
• ζ) is a PZC, denoted PZC(Ci,x, µ

k,y
• ζ), iff µ ∈ min(M(Ci,x, Pk)).

As an example EZC(Ci,x, µ
′k,y• ζ) shown in Figure 6.5 is not a PZC while

EZC(Ci,x, µ
k,y
• ζ), shown in the same Figure, is a PZC. Let us introduce the

following lemma:

Lemma 6.2.2

If there exists EZC(Ci,x, µ
k,y
• ζ) such that |ζ| = 1

then there exists PZC(Ci,x, µ
′k,y• ζ).

4A chain µ ∈ M(Ci,x, Pk) is a minimum element if there does not exist any chain µ′ ∈
M(Ci,x, Pk) such that µ′ ≺ µ.

6.2. A CHARACTERIZATION OF THE NO-Z-CYCLE PROPERTY 75

Ci,x

Pk

Pi

Ck,y

ζ
µ ∈ min(M(Ci,x, Pk))

µ′ ̸∈ min(M(Ci,x, Pk))

receive(µ.last)
receive(µ′.last)

Figure 6.5: the Structure of an EZC and of a PZC.

Proof

Let us consider EZC(Ci,x, µ
k,y
• ζ) such that ζ = m (i.e., |ζ| = 1). We have two

alternatives:

1 if µ ∈ min(M(Ci,x, Pk)) then let consider µ′ = µ. By Definition 6.2.2

we get PZC(Ci,x, µ
′k,y• ζ) and the claim follows;

2 if µ ̸∈ min(M(Ci,x, Pk)) then let us consider µ′ ∈ min(M(Ci,x, Pk))
(note that µ′ exists as M(Ci,x, Pk) is not empty since it contains µ).
There are two cases:

2.1 receive(µ′.last)
e→send(m) (see Figure 6.6.a).

This is impossible as it would lead to a cycle in the happened-before
relation (i.e., send(m)

e→receive(µ′.last)) which is acyclic [33];

2.2 send(m)
e→receive(µ′.last) (see Figure 6.6.b).

Thus, by Definition 6.2.2 we get PZC(Ci,x, µ
′k,y• ζ) and the claim

follows.

Q.E.D.

Previous lemma says that if a checkpoint is involved in an Elementary Z-
cycle whose chain ζ has size one, then there exists a PZC involving the same
checkpoint. The following lemma extends the previous result to a chain ζ of
any size:

Lemma 6.2.3

If there exists EZC(Ci,x, µ
k,y
• ζ)

then there exists PZC(Ci,x, µ
′l,z• ζ ′) with |ζ ′| ≤ |ζ|.

Proof

Let us consider EZC(Ci,x, µ
k,y
• ζ). We have two alternatives:

76CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

Ci,x

(b)

Pk

Pi

mCk,y
µ′ µ

Ck,y

µµ′

Ci,x

m

Pk

Pi

(a)

Figure 6.6: Proof of Lemma 6.2.2.

1 if |ζ| = 1 then the claim follows from Lemma 6.2.2;

2 if |ζ| > 1 then if µ′ = µ ∈ min(M(Ci,x, Pk)) then the claim trivially
follows. Otherwise let us consider µ′ ∈ min(M(Ci,x, Pk)) (note that µ′

exists as M(Ci,x, Pk) is not empty since it contains µ). There are two
cases:

2.1 send(ζ.first)
e→receive(µ′.last) (see Figure 6.7.a).

In this case we get PZC(Ci,x, µ
′Ik,y• ζ) and the claim follows;

2.2 receive(µ′.last)
e→send(ζ.first) (see Figure 6.7.b).

In this case, by construction, we get ZC(Ci,x, [µ
′ ◦ µ′′]

h,w
• ζ ′) where

ζ = µ′′h,w• ζ ′ (note that |µ′′| ≥ 1) and |ζ ′| < |ζ| (see Figure 6.7.c).
From Lemma 6.2.1, there exists an elementary Z-cycle EZC(Ci,x, [µ

′◦
µ′′]

h,w
• ζ∗) with |ζ∗| ≤ |ζ ′| < |ζ|.

If we fall in case 2.2, the previous construction can be repeated on the

elementary Z-cycle EZC(Ci,x, [µ
′ ◦µ′′]

h,w
• ζ∗) and after a finite number of steps

either we fall in case 2.1 or we get EZC(Ci,x, µ̂
l,z
• ζ̂) with |ζ̂| = 1 thus the claim

follows from Lemma 6.2.2.
Q.E.D.

6.2.3 Core Z-Cycles

This section introduces the notion of Core Z-Cycle (CZC). It is interesting
because of the result in Lemma 6.2.5 stating that if there is a PZC involving a
checkpoint then there exists a CZC that involves a checkpoint (not necessarily
the same checkpoint involved in the PZC). Before introducing the notion of
CZC, let us introduce a precedence relation on checkpoint intervals:

6.2. A CHARACTERIZATION OF THE NO-Z-CYCLE PROPERTY 77

Ci,x

Pi

Pk

Ck,y
µ′

Ph

Ch,w

µ

µ′′

(c)

ζ′

Ci,x

Pk

Pi

Ck,y

µ′

(a)

ζ

Ci,x

Pi

Pk

Ck,y

µ
µ′ µζ

(b)

Figure 6.7: Proof of Lemma 6.2.3.

Definition 6.2.3
A checkpoint interval Ii,x precedes a checkpoint interval Ij,y, denoted Ii,x

I→Ij,y,
iff:

∃ei,x′ ∈ Ii,x, ∃ej,y′ ∈ Ij,y : ei,x′
e→ej,y′

A CZC is actually a PZC with a restriction on its structure. This restriction
derives from the sequence of checkpoint intervals related to its message chain
ζ as it can be seen from the following definition:

Definition 6.2.4

Let consider PZC(Ci,x, µ
k,y
• ζ) and let S(ζ) be the sequence of checkpoint in-

tervals associated to ζ. That PZC is a Core Z-Cycle, denoted CZC(Ci,x, µ
k,y
• ζ)

iff:

∀Iji,zi ∈ S(ζ)⇒ ¬(Iji,zi+1
I→Ik,y)

Figure 6.8 shows an example of a CZC involving Ci,x and an example of a PZC
which is not a CZC as it contradicts the restriction in Definition 6.2.4 (i.e.,

Ij,z+1
I→Ik,y due to the presence of the causal message chain µ′). Note that, in

the latter case, PZC(Ci,x, µ
k,y
• ζ) embeds a Z-cycle ZC(Cj,z+1, µ

′k,y• (ζ−ζ.last))

78CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

Pi

Pj

Cj,z Cj,z+1

µ′

Pk

ζ

ζ.last

Ck,y Ck,y+1

(b)

Pk

Pi

Pj

Cj,z

Ck,y
ζ

Ci,x

ζ.last
µ ∈ min(M(Ci,x, Pk))

(a)

Ci,x

µ ∈ min(M(Ci,x, Pk))

Figure 6.8: a Core Z-Cycle Involving Ci,x (a); an Example of non-Core Z-cycle
(b).

as shown in Figure 6.8.b. This recursive behavior will be exploited in the proof
of Lemma 6.2.5.

Let us now prove that if there exists a PZC in a distributed computation,
then there exists a CZC in that computation, assuming the size of the non-
causal message chain of the PZC equal to one and then we generalize the result
to a chain of any size:

Lemma 6.2.4

If there exists PZC(Ci,x, µ
k,y
• ζ) such that |ζ| = 1

then there exists CZC(Ci,x, µ
k,y
• ζ).

Proof (By Contradiction)

Let us consider PZC(Ci,x, µ
k,y
• ζ) with ζ = m and suppose that CZC(Ci,x, µ

k,y
• ζ)

does not exists. As m◦Ci,x◦µ
k,y
• m, send(m) ∈ Ik,y and µ ∈ min(M(Ci,x, Pk)),

there must exist Ck,y+1 such that:

Ik,y+1
I→Ik,y

In this case, by Definition 6.2.3, there exist an event e′ ∈ Ik,y+1 and an event

e′′ ∈ Ik,y such that e′
e→ e′′ which is not possible due to the fact that the

e→
relation is acyclic.

Q.E.D.

Lemma 6.2.5

If there exists PZC(Ci,x, µ
k,y
• ζ)

then there exists a CZC.

Proof

Let us consider PZC(Ci,x, µ
k,y
• ζ). We have two alternatives:

6.2. A CHARACTERIZATION OF THE NO-Z-CYCLE PROPERTY 79

1 if |ζ| = 1 then the claim follows from Lemma 6.2.4

2 if |ζ| > 1 then let consider the sequence of checkpoint intervals S(ζ).
There are two cases:

2.A ∀Iji,zi ∈ S(ζ) ⇒ ¬(Iji,zi+1
I→Ik,y).

By definition 6.2.4, we get CZC(Ci,x, µ
k,y
• ζ) and the claim follows;

2.B ∃Iji,zi ∈ S(ζ) : Iji,zi+1
I→Ik,y.

Let Ij,z+1 be the first checkpoint interval in S(ζ) satisfying the
condition of Case 2.B. There exists at least one causal message chain
starting after Cj,z+1 and ending in Ik,y or in a previous checkpoint
interval of Pk. Therefore, the set M(Cj,z+1, Pk) is not empty. Let
us consider µ′ ∈ min(M(Cj,z+1, Pk)); we have two cases:

2.B.1 send(ζ.first)
e→receive(µ′.last) (see Figure 6.9.a).

We get ZC(Cj,z+1, µ
′k,y• ζ∗) where ζ∗ = ζ−ζ̂ and send(ζ̂.first) ∈

Ij,z. From the successive application of Lemma 6.2.1 and Lemma

6.2.3, there exists PZC(Cj,z+1, µ̄
l,t
• ζ̄) with |ζ̄| ≤ |ζ∗| < |ζ|;

2.B.2 receive(µ′.last)
e→send(ζ.first) (see Figure 6.9.b).

We get ZC(Cj,z+1, [µ
′ ◦ µ′′]

b,s
• ζ ′) where µ′′Ib,s• ζ ′ = ζ − ζ̂ and

send(ζ̂.f irst) ∈ Ij,z, hence |ζ ′| < |ζ| (see Figure 6.9.c). By

Lemma 6.2.1 and Lemma 6.2.3 there exists PZC(Cj,z+1, µ̄
l,t
• ζ̄)

with |ζ̄| ≤ |ζ ′|. So we have |ζ̄| < |ζ|;
In both cases we obtain a PZC with |ζ̄| < |ζ|.

If we fall in case 2.B, the previous construction can be applied on the
obtained PZC. After a finite number of steps, either we fall in case 2.A or
|ζ̄| = 1 thus, by Lemma 6.2.4, we get a CZC.

Q.E.D.

6.2.4 A Characterization Theorem

Let us formally introduce the No-Core-Z-Cycle property NCZC:

Definition 6.2.5 A checkpoint and communication pattern (Ĥ, CĤ) of a dis-
tributed computation satisfies the No-Core-Z-Cycle (NCZC) property iff no
CZC exists in (Ĥ, CĤ)

The following characterization theorem is straightforwardly derived from
lemmas introduced in previous section:

80CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

Ci,x

Pi

Pi

Ci,x

Pj

Pk

µ′
µ′′Ck,y

ζ′

(c)

Cj,z+1

Pb

Cb,s

µζ̂
Cj,z

Pj

Pk

Ck,y µ′

µ

(a)

Pj

Pk

Ck,y

(b)

Cj,z+1

µ

µ′

Cj,z
ζ̂

ζ

ζ − ζ̂

ζ̂

Pi

Ci,x

Cj,z+1Cj,z

ζ∗

Figure 6.9: Proof of Lemma 6.2.5.

Theorem 6.2.6
A checkpoint and communication pattern (Ĥ, CĤ) of a distributed computation

satisfies the NZC property iff (Ĥ, CĤ) satisfies the NCZC property.

Proof

If part. By Lemma 6.2.1 if a ZC exists then an EZC exists in (Ĥ, CĤ). By

Lemma 6.2.3 if an EZC exists then a PZC exists in (Ĥ, CĤ). By lemma

6.2.5 if a PZC exists then a CZC exists in (Ĥ, CĤ). Thus, in terms of
properties, ¬(NZC)⇒ ¬(NCZC). Hence NCZC ⇒ NZC.

Only if part. If the computation satisfies NZC then no CZC exists as CZCs
are Z-cycles. So the computation satisfies NCZC.

Q.E.D.

6.3 Deriving VP-Accordant Protocols

6.3.1 Suspect Core Z-Cycles

From Theorem 6.2.6, a checkpoint and communication pattern (Ĥ, CĤ) of a dis-
tributed computation satisfies the NZC property if, and only if, no CZC exists

6.3. DERIVING VP-ACCORDANT PROTOCOLS 81

in (Ĥ, CĤ). Given CZC(Ci,x, µ
k,y
• ζ), it can be broken by placing an additional

local checkpoint taken between the send of ζ.first and the receive of µ.last
at process Pk as shown in Figure 6.10.a. So for any communication-induced
checkpointing protocol, the instant of time before the event receive(µ.last)
represents “the last opportunity” for taking an additional (forced) checkpoint
in order to remove that CZC from the checkpoint and communication pattern
of the computation.

Like a Z-cycle, a core Z-cycle is generally non-trackable on-the-fly at the
last opportunity time by a communication-induced checkpointing protocol.
This is due to a key factor: the message chain ζ could contain at least one
non-causal concatenation (for example the message chain ζ shown in Figure
6.10.a contains two non-causal concatenations). In other words a CZC is
trackable on-the-fly at the last opportunity time only if its chain ζ is causal.

The previous argument shows that the best a communication-induced pro-
tocol can do to prevent the formation of core Z-cycles is to remove from
(Ĥ, CĤ) those checkpoint and communication patterns whose structure rep-
resents the common causal part of any core Z-cycle which is detectable by
a process at the last opportunity time. Those considerations lead to the in-
troduction of a checkpoint and communication pattern, namely Suspect Core
Z-Cycle (SCZC), which is trackable by a communication-induced checkpoint-
ing protocol. Such pattern is structured as follows:

Definition 6.3.1
A Suspect Core Z-Cycle (SCZC) is a checkpoint and communication pattern
SCZC(Ij,z, Ci,x, µ, Ik,y) such that:

∃m,m′ : Cj,z ◦m ◦ Ci,x ◦ µ
k,y
• m′

with

(i) send(m) ∈ Ij,z
(ii) µ ∈ min(M(Ci,x, Pk))

(iii) ̸ ∃e ∈ Ij,z+1 : e
e→receive(µ.last)

As an example SCZC(Ij,z, Ci,x, µ, Ik,y) is shown in Figure 6.10.b while
Figure 6.10.c shows a checkpoint and communication pattern which is not an
SCZC as it violates the constraint (iii) of previous definition (due to the causal
message chain µ′). Trivially, the presence of a CZC implies the existence of
an SCZC (the converse being not true) so, if no SCZC exists in a checkpoint
and communication pattern of a distributed computation then no CZC exists
and, then, according to Theorem 6.2.6, the execution satisfies the NZC prop-
erty. Let us now state a theorem, actually a sufficient condition for the NZC
property, that will be used to design communication-induced protocols shown
in the following sections:

82CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

Pk

Pi

Ci,x

Pj

Ck,y

Cj,z

ζ

ζ.last

ζ.first

µ

Pl

(a)
forced checkpoint at
last opportunity time

Pk

Pi

Pj

Ck,y

Pl

Ci,x

Cj,z

µ

SCZC

(b)

Pk

Pi

Pj

Ck,y

Cj,z

Pl

µCj,z+1

Ci,x

(c)

m

m′ µ′

Figure 6.10: an Example of CZC non-Trackable on-the-Fly by a
Communication-Induced Checkpointing Protocol (a); an Example of SCZC
Pattern (b); an Example of non SCZC Pattern (c).

Theorem 6.3.1
If a checkpoint and communication pattern of a distributed computation (Ĥ, CĤ)
does not include any SCZC (i.e., it satisfies the No-Suspect-Core-Z-Cycle
property NSCZC) then (Ĥ, CĤ) satisfies the NZC property.

Proof
From the structure of the CZC and of the SCZC, it trivially follows, in terms of
properties, NSCZC ⇒ NCZC. From Theorem 6.2.6 we have NCZC ⇒ NZC.
Hence we get NSCZC ⇒ NZC. Q.E.D.

The reader could now wonder if the SCZC is the right pattern to prevent
in order to remove CZCs. In particular, why the SCZC structure includes
only the last checkpoint interval passed through by ζ (i.e., Ij,z) and not all
the checkpoint intervals associated to the final causal part of the non-causal
message chain ζ associated to a CZC. This causal part would represent the
larger part of ζ visible by Pk at the last opportunity time.

6.3. DERIVING VP-ACCORDANT PROTOCOLS 83

Ci,x

Ck,y

Pi

Pk

Pj

µ ∈ min(M(Ci,x, Pk))

last opportunity time

µ′

Cj,z Cj,z+1m2

m1
m3

Figure 6.11: A set of PZCs Involving Ci,x.

Let MC be the set of message chains ζ of minimal length starting af-
ter Ck,y, terminating before Ci,x and sharing the last message ζ.last. This
defines a set of PZCs X one for each distinct ζ in MC. If we consider Z-
cycles involving Ci,x in Figure 6.11 we have MC≡ {[m1,m2], [m3,m2]} and

X≡ {PZC(Ci,x, µ
k,y
• [m1,m2]), PZC(Ci,x,

k,y
• [m3,m2])}.

Let us assume the causal message chain µ′, depicted by a dotted line
in Figure 6.11, does exist. As a consequence we have ∃e ∈ Ij,z+1 : e →
deliver(µ.last), which implies Ij,z+1

I→Ik,y. Hence, each PZC in X is not a
CZC (see Definition 6.2.4).

Let us assume the causal message chain µ′ in Figure 6.11 does not exist.
In such a case, at the last opportunity time Pk cannot safely conclude that no
CZC can be formed due to a message chain ζ ∈ MC which relies on a non-
causal concatenation in Ij,z. For example, the non-causal concatenation form-
ing the message chain [m3,m2] is out of the usable knowledge of Pk. This chain

gives rise to CZC(Ci,x, µ
k,y
• [m3,m2]). Hence, a communication-induced proto-

col is obliged to direct a forced checkpoint before executing receive(µ.last) if
no information concerning the definite delimitation of the checkpoint interval
Ij,z has been notified to Pk by means of a causal message chain.

In conclusion, it is not possible for a communication-induced protocol
to prevent checkpoint and communication patterns less constrained than the
SCZC pattern in order to do a safe removal of CZCs.

6.3.2 A Remark on Characterizations Stronger than NCZC

Imposing additional constraints on the structure of a CZC can lead to charac-
terizations stronger than NCZC. As an example, let consider the subset X of

84CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

CZC such that (i) the length of µ is minimal, and (ii) ζ is a member of a set
of message chains that establish the first Z-path between Ck,y and Ci,x (this
set contains message chains sharing the last message) 5. The existence of any
CZCs in the execution implies the existence of a Z-cycle in X, thus, if X is
empty, then CZC is empty.

Although the latter characterization could be interesting from a theoreti-
cal point of view, from a practical one, it does not add information, suitable
for communication-induced protocols, in order to reduce the number of forced
checkpoints compared to the one provided by CZC. In other words, this charac-
terization does not help to find checkpoint and communication patterns more
refined than SCZC and detectable on-the-fly. More specifically, the informa-
tion concerning the “time” in which the chain ζ is established does not help as
ζ is, generally, non-causal and, thus, it cannot be tracked at the last opportu-
nity time by a protocol as shown in the previous section. The information on
the length of µ does not help to save forced checkpoints as the concept of min
is related to a set of causal message chains which includes the one of minimal
length, thus, preventing a non-causal concatenation (e.g. µ •m) due to either
any chain of the set min(M(Ci,x, Pk)) or the one with minimal length has the
same effect in terms of forced checkpoints.

6.3.3 A Checkpointing Protocol (P1) Preventing SCZCs

The protocol presented in this section, namely P1, tracks on-the-fly all the
SCZC patterns, and breaks them by introducing a forced checkpoint before
the receipt of message µ.last (i.e., it breaks them at last opportunity time).
This is done by exploiting the control information piggybacked on application
messages, that encodes the causal past of the execution with respect to the
event of the receive of a message, and the local history of a process (i.e., it
fully exploits the usable knowledge at that event). The protocol uses a vector
clock and a matrix of integers as control information.

Tracking SCZC Patterns

In order to track the formation of SCZC(Ij,z, Ci,x, µ, Ik,y), upon the arrival of
a message µ.last, process Pk has to verify whether conditions for the existence
of that checkpoint and communication pattern are satisfied. In the following
paragraphs the data structures to accomplish this task are introduced.

Tracking µ ∈ min(M(Ci,x, Pk)).
To detect if µ ∈ min(M(Ci,x, Pk)), a vector clock mechanism is used consider-
ing checkpoints of processes as relevant events of the computation [38]. Each

5In such a case we have a “temporal” and a “spatial” constraint both on ζ and on µ.

6.3. DERIVING VP-ACCORDANT PROTOCOLS 85

process Pk maintains a vector clock V Ck whose size corresponds to the number
of processes n. V Ck[i] stores the maximum checkpoint rank of Pi seen by Pk

and V Ck[k] stores the rank of the last checkpoint taken by Pk. V Ck is initial-
ized to zero except the k-th entry which is initialized to one. Each application
message m sent by Pk piggybacks the current value of V Ck (denoted m.V C).
Following the classical updating rule of a vector clock, upon the receipt of a
message m, V Ck is updated from m.V C by taking a component-wise maximum.

A causal message chain µ including message m as µ.last is prime (i.e., µ
belongs to some min(M(Ci,∗, Pk)), if, upon the receipt of m at process Pk, the
following predicate holds:

∃i : (m.V C[i] > V Ck[i])

Tracking µ
k,y
• m′.

To detect if there exists a non-causal concatenation between a prime causal
message chain µ and a message m′ in the interval Ik,y, process Pk maintains
a boolean variable after first sendk. This variable is set to TRUE when a
send event occurs. It is set to FALSE each time a local checkpoint is taken.
Hence, upon the receipt of a message m (with m = µ.last), Pk detects that

µ
k,y
• m′ if the following predicate hold:

after first sendk ∧ (∃i : (m.V C[i] > V Ck[i]))

Tracking Cj,z ◦m ◦ Ci,x.
Each process Pk maintains a vector of integers Imm Predk of size n and a
matrix of integers Predk, of size n×n. Imm Predk[ℓ] represents the maximum
rank of the checkpoint interval from which process Pℓ sent a message m which
has been received by Pk in its current checkpoint interval Ik,y−1 (in other
words Cℓ,Imm Pred[ℓ] precedes checkpoint Ck,y due to the ≺ckpt relation). Each
entry of this vector is set to -1 every time a checkpoint is taken by Pk.

Predk[i, j] represents, to the knowledge of Pk, the maximum rank of the
checkpoint interval from which process Pj sent a message m which has been
received by Pi in a checkpoint interval Ii,x−1 with x ≤ V Ck[i]. Each entry
of the matrix Predk is initialized to -1. Its content is piggybacked on each
message m sent by Pk (m.P red) and the rules to update its entries are the
following:

1. Whenever a checkpoint is taken by Pk, Predk[k,−] is updated according
to the following rule:

∀j Predk[k, j] = max(Predk[k, j], Imm Predk[j])

86CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

j

i α

Ci,x

Pi

Pk

Pj

Cj,α Cj,α+1

m.Pred =

Figure 6.12: Example of Values Stored in m.Pred.

2. Upon the arrival of a message m at Pk:

∀ℓ, t Predk[ℓ, t] = max(Predk[ℓ, t], m.P red[ℓ, t])

Figure 6.12 shows an example of a checkpoint and communication pattern
and the content of m.Pred[i, j] associated to that pattern.

Tracking ̸ ∃e ∈ Ij,z+1 : e
e→receive(µ.last).

Upon the arrival of a message m included in a prime causal chain (recall that
m ends a prime causal chain if ∃i : (m.V C[i] > V Ck[i])), in order to track the
above condition, we need to know if there exists a j such that m.P red[i, j] + 1
does not belong to the causal past of the receipt of m. This knowledge is
encoded in m.V C[j] and V Ck[j]. Hence, the predicate becomes:

(∃j : m.P red[i, j] + 1 > max(m.V C[j], V Ck[j]))

Preventing SCZC Patterns

Upon the arrival of a message m at process Pk in Ik,y, if the following predicate
holds:

P1 ≡ after first sendk ∧
(∃i : (m.V C[i] > V Ck[i]) ∧
(∃j : m.P red[i, j] + 1 > max(m.V C[j], V Ck[j])))

then, process Pk detects that at least one SCZC(Ij,Predk[i,j], Ci,x, µ, Ik,y) is
going to be formed with m = µ.last and V Ck[i] < x ≤ m.V C[i]. In this case
Pk directs a forced checkpoint Ck,y+1 before the receipt of m.

6.3. DERIVING VP-ACCORDANT PROTOCOLS 87

init Pk:

take a checkpoint;

after first sendk := FALSE;
∀i : i ̸= k V Ck[i] := 0; V Ck[k] := 1;
∀i,∀j Predk[i, j] := −1; ∀h Imm Predk[h] := −1;

when m arrives at Pk from Pl:

if after first sendk ∧ (∃i : (m.V C[i] > V Ck[i])∧
(∃j : m.P red[i, j] + 1 > max(m.V C[j], V Ck[j])))

then take ckpt(); % forced checkpoint %

∀i V Ck[i] := max(V Ck[i], m.V C[i]); % component-wise maximum %

∀i,∀j Predk[i, j] := max(m.P red[i, j], P redk[i, j]);
Imm Predk[l] := max(Imm Predk[l], m.V C[l]);

procedure send(m, Pj):

m.content = data; m.V C := V Ck; m.P red := Predk; % packet the message %

send m to Pj;

after first sendk := TRUE;

when a basic checkpoint is scheduled from Pk:

take ckpt();

procedure take ckpt():

take a checkpoint;

∀h Predk[k, h] := max(Predk[k, h], Imm Predk[h]); % component-wise maximum %

∀h Imm Predk[h] := −1;
V Ck[k] := V Ck[k] + 1;
after first sendk := FALSE;

Figure 6.13: Protocol P1

The behavior of process Pk is shown in Figure 6.13 (all the procedures and
the message handler are executed in atomic fashion).

From an operational point of view, the elements of the diagonal of the
matrix Pred are never used by the protocol. Hence, when implementing the
protocol, the vector clock V C can be embedded in that diagonal. Thus, the
resulting control information piggybacked on application messages boils down
to a matrix of n× n integers.

6.3.4 A Comparison with Previous VP-Accordant Protocols

As protocol P1 is, to our knowledge, the first VP-accordant protocol that
ensures NZC but not RDT , it is expected that it generates less overhead, in
terms of forced checkpoints, compared to other VP-accordant protocols since
they ensure a stronger property.

88CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

Before comparing P1 to previous VP-accordant protocols, a technical de-
scription of such protocols is sketched by using the introduced concatenation
relations. The VP-accordant protocols selected for the comparison are the
Russell’s protocol [50], the FDAS protocol [64] and the protocol by Baldoni
et al. [4]. The other VP-accordant protocols (i.e., CAS, CBR, CASBR, FDI),
being derivations of the FDAS protocol, are not considered in the comparison.

Russell’s Protocol [50].
This protocol accepts only causal message chains in a computation. It actually
prevents the formation of ⟨send · receive⟩ (i.e., m •m′) patterns in any check-
point interval by means of forced checkpoints, so no non-causal concatenation
of messages can ever occur, preventing the formation of Z-cycles.

FDAS Protocol [64].
FDAS avoids the formation of checkpoint and communication patterns with
the following structure:

Ci,x ◦ µ
k,y
• m′

with µ ∈ min(M(Ci,x, Pk)). As the previous pattern is a part of the structure
of a PZC, the prevention of all those patterns guarantees no prime Z-cycle
in the checkpoint and communication pattern of the distributed computation
and thus the NZC property.

Baldoni et al. Protocol [4] (BHMR).
This protocol prevents the formation of dependences between two checkpoints
due to non-causal message chains composed by two causal message chains (i.e.,

ζ = µ
k,y
• µ′) if they are not doubled, in a visible way, by a causal message

chain. In terms of concatenation relations, we get that a non-causal message

chain ζ = µ
k,y
• µ′ is doubled by a causal one µ′′ if the pair of checkpoints

related by ζ is also related by µ′′ (i.e., if Ci,x ◦ ζ ◦ Cj,y then Ci,x ◦ µ′′ ◦ Cj,y).
The doubling is visible by Pk (the only process able to break ζ) if there exists
a causal message chain µ′′′ such that µ′′ ◦ µ′′′ belongs to min(M(Ci,x, Pk)).

This protocol prevents the formation of any CZC(Ci,x, µ
k,y
• ζ). In partic-

ular there are two cases:

• ζ = µ′ i.e., ζ is a causal message chain. CZC(Ci,x, µ
Ik,y• µ′) is a par-

ticular dependence between Ci,x and itself that cannot be doubled, so
the BHMR protocol prevents it by taking a forced checkpoint before the
receipt of µ.last;

6.3. DERIVING VP-ACCORDANT PROTOCOLS 89

• ζ = µ1•µ2•. . .•µℓ with ℓ > 1 where each pair of successive causal message
chains establishes a dependence between two distinct checkpoints that
it is not doubled. Note that, that composition of ζ must exist, otherwise
we fall in the previous case. Then the protocol prevents this pattern by
taking ℓ forced checkpoints. ℓ−1 forced checkpoints are taken to prevent
each non-causal concatenation of two successive causal message chains
composing ζ. The last forced checkpoint is taken by Pk to prevent the

pattern µ
k,y
• ζ.first.

The Comparison

It follows trivially that the Russell’s pattern, m•m′, and the FDAS’s pattern,

Ci,x◦µ
k,y
• m′ are a part of an SCZC. When considering the same usable knowl-

edge (i.e., the protocol decides to take a forced checkpoint based on the same
past checkpoint and communication pattern), each time the proposed proto-
col P1 takes a forced checkpoint, Russell’s protocol takes a forced checkpoint
and each time P1 takes a forced checkpoint, FDAS protocol takes a forced
checkpoint.

As far as BHMR is concerned, only a qualitative comparison can be done
between patterns prevented by the protocols. Figure 6.14.a shows a checkpoint
and communication pattern in which BHMR protocol takes a forced checkpoint
while the proposed protocol P1 does not take it. Whereas Figure 6.14.b shows
a scenario in which the proposed protocol takes a forced checkpoint while
BHMR protocol does not take it. Note that the probability that checkpoint
and communication patterns, like the one proposed in Figure 6.14.a, occur in
a computation is extremely higher than that of the pattern depicted in Figure
6.14.b. For a quantitative comparison between the two protocols realized
through a simulation study the reader can refer to Section 6.5 of this chapter.

6.3.5 Reducing the Size of the Control Information of P1: Pro-
tocol P2

In this section a communication-induced checkpointing protocol, namely P2,
is presented. The protocol, compared to P1, has control information with
reduced size (the space-complexity decreases form O(n2) to O(n)). In P2
a forced checkpoint is taken upon the receipt of a message m whenever a
predicate P2 is evaluated to true. The following relation holds between the
predicate P1 proper of protocol P1 and the predicate P2:

P1 ⇒ P2

Such an inclusion between predicates guarantees that also under P2 no

90CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

Ci,1

Ck,1

Pk

Pi

Ck,3

Ci,2

Pl

Cl,2Cl,1

(a)

Ck,2

Ci,1

Ck,1

Pk

Pi

Ci,2

Pl

Cl,1

Pm

Cm,3Cm,2Cm,1

Cl,2

Cl,3

(b)

Ck,2

Figure 6.14: Two Checkpoint and Communication Patterns for a Comparison
between BHMR and the Proposed Protocol P1.

SCZC is ever formed. Thus also P2 guarantees that the resulting checkpoint
and communication pattern of the distributed computation satisfies NZC

The advantage of P2 is that it can be tracked on-the-fly by using two
vectors of n integers. The disadvantage is that, due to the inclusion between
predicates, P2 potentially6 induces processes to take more forced checkpoints
compared to P1.

The predicate P2 is structured as follows:

P2 ≡ after first sendk ∧
(∃i : (m.V C[i] > V Ck[i]) ∧
(∃j : max1≤h≤nm.P red[h, j] + 1 > max(m.V C[j], V Ck[j])))

While P1 considers only the entry with index (i, j) of the matrix m.P red,
P2 takes into account the maximum over all the rows of the matrix. This
difference allows P2 to be tracked by using a vector of n entries instead of a
matrix. More technically, process Pk is endowed with all the data structures
used in protocol P1 except the matrix Predk. Instead, Pk owns a vector
Max Predk of n integers. Max Predk[j] represents, to the knowledge of Pk,
the maximum rank of the checkpoint interval from which process Pj sent a
message m which has been received by whichever process Pi in a checkpoint

6As already discussed in Section 3.1 of Chapter 3, the inclusion between predicates means
that P1 takes a forced checkpoint whenever P2 does it only under the same causal past.
As there is no guaranty that the computation evolves at the same way under different
checkpointing protocols, performance of P1, in terms of forced checkpoints, is not guaranteed
to be better than that of P2. This is why the term “potentially” is used.

6.3. DERIVING VP-ACCORDANT PROTOCOLS 91

interval Ii,x−1 with x ≤ V Ck[i]. All the entries of Max Predk are initialized to
-1, and its content is piggybacked on each message m sent by Pk (m.Max Pred).
The rules to update its entries are the following:

1. Whenever a checkpoint is taken by Pk:

∀j Max Predk[j] = max(Max Predk[j], Imm Predk[j])

2. Upon the arrival of a message m at Pk:

∀j Max Predk[j] = max(Max Predk[j], m.Max Pred[j])

By using Max Predk, P2 can be expressed as:

P2 ≡ after first sendk ∧
(∃i : (m.V C[i] > V Ck[i]) ∧
(∃j : m.Max Pred[j] + 1 > max(m.V C[j], V Ck[j])))

The resulting checkpointing protocol P2 is shown in Figure 6.3.5.

6.3.6 A Comparison with VP-Enforced Protocols

This section presents a performance comparison between the proposed check-
pointing protocols (P1 and P2) and VP-enforced ones. As VP-enforced pro-
tocols are not based on the prevention of a particular type of sub-patterns,
the comparison is not realized at a theoretical level (i.e., by finding inclusions
between predicates triggering forced checkpoints at the receipt of a message),
but through simulation results.

The VP-enforced protocol considered here is the one by Briatico et al.
[12], hereafter BCS (note that all the protocols BCS, P1 and P2 ensure the
same property, i.e., NZC). Among the set of checkpointing protocols, we
chose BCS, first, for its simplicity of implementation, and, second, because
simulation studies ([6]) have shown that, in the class of VP-enforced protocols,
BCS exibiths good performance, in terms of reduction of forced checkpoints7.

7As shown in Chapter 5 the total number of checkpoints can be reduced in the case of
periodic basic checkpoints by adopting the skipping technique [36]. However, in this section
we consider also the case in which checkpoints are not triggered on a periodic basis; this is
why the BCS protocol has been selected.

92CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

init Pk:

take a checkpoint;

after first sendk := FALSE;
∀i : i ̸= k V Ck[i] := 0; V Ck[k] := 1;
∀i Max Predk[i] := −1; ∀h Imm Predk[h] := −1;

when m arrives at Pk from Pl:

if after first sendk ∧ (∃i : (m.V C[i] > V Ck[i])∧
(∃j : m.Max Pred[j] + 1 > max(m.V C[j], V Ck[j])))

then take ckpt(); % forced checkpoint %

∀i V Ck[i] := max(V Ck[i], m.V C[i]); % component-wise maximum %

∀i Max Predk[i] := max(m.Max Pred[i],Max Predk[i]);
Imm Predk[l] := max(Imm Predk[l], m.V C[l]);

procedure send(m, Pj):

m.content = data; m.V C := V Ck; m.Max Pred := Max Predk; % packet the message %

send m to Pj;

after first sendk := TRUE;

when a basic checkpoint is scheduled from Pk:

take ckpt();

procedure take ckpt():

take a checkpoint;

V Ck[k] := V Ck[k] + 1;
∀h Max Predk[h] := max(Max Predk[h], Imm Predk[h]); % component-wise maximum %

∀h Imm Predk[h] := −1;
after first sendk := FALSE

Figure 6.15: Protocol P2.

Simulation Model and Results

The performance comparison studies, for each protocol, the number of forced
checkpoints per message receive (R) as a function of the average checkpoint
interval size (for example, R equal to 0.2 means a forced checkpoint is taken,
on the average, each 5 message receives) under two distinct strategies adopted
by the processes for taking basic checkpoints:

S1 : each process schedules N basic checkpoints periodically and the period
between two succesive basic checkpoints is the same at all processes;

S2 : each process schedules N basic checkpoints randomly distributed in
the whole computation (the scheduling of checkpoints follows a distinct
distribution at each process).

6.3. DERIVING VP-ACCORDANT PROTOCOLS 93

We simulate an uniform point-to-point environment in which each process
can send a message to any other and the destination of each message is an
uniformly distributed random variable. We assume a system with n = 8
processes; each process executes internal, send and receive operations with
probability pi = 0.9, ps = 0.05 and pr = 0.05, respectively. The time to execute
an operation in a process and the message propagation time are exponentially
distributed with mean value equal to 1 and 5 time units respectively.

Let Average Checkpoint Interval (ACI) be the average distance, in terms of
events, between two basic checkpoints. Experiments were conducted varying
ACI from 100 to 10000 events and measuring the value of R. Each simula-
tion run consists of one million of events and for each value of ACI several
simulation runs were executed with different seeds and the result were within
five percent of each other, thus, variance is not reported in the plots. As we
are interested only in counting how many local states are recorded as forced
checkpoints by the protocols, the overhead due to the taking of checkpoints is
not considered (i.e., in the simulation model the taking of a checkpoint is an
istantaneous action). However, we observed that no relevant impact on the
obtained measures is noted when considering the time to take a checkpoint
longer than zero.

Results of the simulation study are reported in Figure 6.16. We would like
to remark that strategy S1 is the most favourable to BCS as the timestamps
(i.e., the sequence numbers) increase on average at the same speed at all
processes. As an extreme, if all processes would take basic checkpoints at the
same physical time, no forced checkpoint will be ever taken. The behaviors of
P1 and P2 are flat around 0.01.

Strategy S2 represents a bad scenario for BCS as the distributions of the
basic checkpoints at distinct processes are non-correlated. So timestamps
increase at different speeds at distinct processes and, then, BCS performance
depends on ACI as depicted in Figure 6.16. The behaviors of P1 and P2 are,
also in this case, flat and quite close to those under strategy S1. Furthermore,
no relevant difference is noted for the value of R of P1 and P2 under both
strategies.

From previous plots, a main observation comes out. Performance of both
P1 and P2 is more stable compared to the one of BCS with respect to ACI
and the basic checkpointing strategy used. This comes from the fact that a
VP-accordant protocol is not influenced by the speed a timestamp increases
in a process. Its performance depends only on the particular checkpoint and
communication subpatterns are going to be formed, which are not directly
related to ACI and the strategy used. This makes a VP-accordant protocol
particularly appealing to be implemented in a checkpointing layer on a general-
purpose system.

94CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

1000 10000
Average Checkpoint Interval (Events)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R

P1 (S1)
P2 (S1)
BCS (S1)
P1 (S2)
P2 (S2)
BCS (S2)

Figure 6.16: R vs. ACI.

6.4 Consistent Global Checkpoints that Contain a
Given Local Checkpoint

In this section a distributed protocol for collecting a consistent global check-
point that contains a specific checkpoint Ck,x of process Pk is introduced (such
process is the initiator of the distributed protocol). The assumption under-
lying the protocol is that the checkpoint and communication pattern of the
distributed computation satisfies NZC. Before describing the protocol, recall
that an ordered pair of checkpoints (Cj,y, Ck,x) is consistent if, and only if,
there does not exist any message m such that Cj,y ≺ckpt Ck,x.

By using the notion of consistency of a pair of local checkpoints, the no-
tion of consistent global checkpoint can be reformulated as follows. A global
checkpoint GC is consistent if, and only if, every ordered pair of checkpoints
in GC is consistent. As an example, in Figure 6.17.b the global check-
point GC = {C1,3, C2,2, C3,2} is consistent, whereas the global checkpoint
GC = {C1,2, C2,2, C3,2} is not consistent due to the ordered pair (C1,2, C3,2).

6.4.1 Consistent Global Checkpoint Collection

We suppose that, when a checkpoint Ck,x is taken by Pk, a Tentative-Global-
Checkpoint vector TGCk,x of n integers is recorded on stable storage together
with Ck,x. The j-th entry of TGCk,x records the rank associated to a check-

6.4. CONSISTENT GLOBAL CHECKPOINTS THAT CONTAIN A
GIVEN LOCAL CHECKPOINT 95

2
2

2

C1,1 C1,2 C1,3

C2,1 C2,2

C3,1 C3,2

P1

P2

m

(a)

P3

TGC2,2 =

C1,1 C1,2 C1,3

C2,1

C3,1 C3,2

P1

P2

m

(b)

P3

TGC2,2

C2,2

Figure 6.17: Examples of Tentative Global Checkpoints.

point of process Pj . The value of TGCk,x[j] is such that all the ordered pairs
of checkpoints (Cj,l, Ck,x) with l ≥ TGCk,x[j] are consistent. The k-th entry
records the rank of Ck,x (that is x). Note that this does not imply TGCk,x

identifies a consistent global checkpoint as pairs of checkpoints whose ranks
are stored in TGCk,x might be non-consistent. As an example, in Figure 6.17.a
TGC2,2 = [2, 2, 2] identifies a global checkpoint which is not consistent as the
ordered pair (C1,2, C3,2) is not consistent.

In order to maintain this information, a local vector Vk of n integers is kept
by Pk. All the entries are initialized to -1. When Pk receives a message m
from Pj then Vk is updated as follows: Vk[j] := max(Vk[j],m.V C[j]). Hence,
Vk[j] represents the maximum rank of a checkpoint interval of Pj from which
a message received by Pk has been sent. Whenever a checkpoint Ck,x is taken,
the vector TGCk,x is generated according to the following rules:

(1) ∀j ̸= k TGCk,x[j] := Vk[j] + 1;

(2) TGCk,x[k] := x.

When a process Pk has to collect a consistent global checkpoint containing
Ck,x, it sends to all the other processes a checkpoint collection(GCk) message,
where GCk is a copy of TGCk,x. The content of GCk represents Pk’s proposal
for the consistent global checkpoint containing Ck,x. In other words, Pk re-
quests to include in the consistent global checkpoint the checkpoint of Pj with
rank equal to GCk[j].

Upon the receipt of the checkpoint collection(GCk) message, process Pj

becomes aware that Pk started a collection which must include Ck,GCk[k] and
should include Cj,GCk[j]. There are two possible cases:

(1) ∀h⇒ GCk[h] ≥ TGCj,GCk[j][h].

96CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

procedure collection containing(Ck,x):

1.Π := {P1, . . . , Pn} − {Pk};
2.GCk := TGCk,x;

3.while Π ̸= ∅
4. send checkpoint collection(GCk) to each Pj ∈ π;
5. wait for reply(GCj) from all Pj ∈ Π;
6. Π := {Pj | ∃l : GCl[j] > GCk[j]};
7. ∀t GCk[t] := max1≤l≤n(GCk[t], GCl[t]);
8.endwhile

when checkpoint collection(GCj) arrives at Pk from Pj:

9.∀l GCk[l] := max(GCk[l], TGCk,GCj [k][l]);

10.send reply(GCk) to Pj;

Figure 6.18: The Collection Protocol.

In this case, for each h ̸= j the ordered pair (Ch,GCk[h], Cj,GCk[j]) is
consistent;

(2) ∃h ̸= j : GCk[h] < TGCj,GCk[j][h] (i.e., ∃m : Ch,GCk[h] ≺ckpt Cj,GCk[j]).
In this case, there exists at least one checkpoint Ch,GCk[h] requested by
Pk such that the ordered pair (Ch,GCk[h], Cj,GCk[j]) is not consistent.

If case (1) is verified for each Pj , then {C1,GCk[1], . . . , Cn,GCk[n]} is consis-
tent. If there exists a process Pj which falls in case (2), the global checkpoint
{C1,GCk[1], . . . , Cn,GCk[n]} is not consistent, hence the original proposal by Pk

has to be modified. As an example, considering the execution shown on Fig-
ure 6.17.a the proposal GC2 = TGC2,2 = [2, 2, 2], corresponding to a global
checkpoint which is not consistent (due to the ordered pair (C1,2, C3,2)), has
to be modified by P3 in order to include checkpoint C1,3 of process P1 (see
Figure 6.17.b). The complete structure of the collection protocol is described
in Figure 6.4.1. The protocol executes a sequence of rounds. In each round,
the initiator sends its proposal and waits for possible updates. If the proposal
was updated, then a new round is started, otherwise the proposal identifies a
consistent global checkpoint containing Ck,x.

As a first action process Pk sends its proposalGCk to all processes in the set
Π (line 4) which initially contains all the processes except Pk (line 1). Then it
waits for the reply message, one from each process (line 5). Each reply contains
either GCk or a new proposal formulated by the sender Pj . The new proposal
contains local checkpoints that could form a consistent global checkpoint in-
cluding Ck,x and Cj,GCk[j]. As an example, considering the computation shown
in Figure 6.17.b if process P3 receives a checkpoint collection(GC2) message

6.5. APPLICATIONS OF THE PRESENTED PROTOCOLS 97

with GC2 = TGC2,2, then it sends back a reply message with GC3 = [3, 2, 2].
Once collected all the replies, Pk computes (i) the new proposal as the

component-wise maximum among all the proposals (line 7) and (ii) the set of
processes that changed their checkpoints with respect to the previous proposal
done by Pk (line 6). The set and the new proposal correspond to Π and GCk

of the next iteration. The procedure ends when all processes agree on the
proposal done by Pk (i.e., Π = ∅ - line 3).

Actually the proposed protocol is a distributed version of the collection
protocols presented in [29], therefore, for termination guarantee and correct-
ness the reader can refer to latter paper. The collection protocol in [29] relies
on the presence of a checker process. Each time a checkpoint A is taken, the
dependency vector associated to that checkpoint is sent to the checker process.
Then the checker process examines an n×n matrix formed by the vector asso-
ciated to A and vectors received from other processes and computes the global
checkpoint which, at the time the matrix is analyzed, contains A and is the
closest one to the end of the computation. The major difference between such
protocol and the presented one is that the latter does not require exchange
of information whenever a checkpoint is taken. On the other hand, is has the
disadvantage that the consistent global checkpoint identified is the minimum
one containing a given checkpoint.

6.5 Applications of the Presented Protocols

In this section a discussion on two applications of the proposed protocols is
presented, posing attention on advantages and disadvantages of the protocols
compared to previous solutions.

6.5.1 Recovery from Transient Failures in Long Running Sci-
entific Applications

For long running scientific applications checkpointing is used to reduce the
total execution time in the presence of transient failures. As already out-
lined in Chapter 5, in this context, the goodness of a checkpointing protocol
is usually measured in terms of overhead imposed during failure free periods
and efficiency of recovery. This latter parameter depends on the amount of
information which must be exchanged among processes for determining a con-
sistent global checkpoint from which the application must be restarted after
the failure. The selected consistent global checkpoint should be as close as
possible to the end of the computation in order to minimize the extent of
rollback (i.e., the amount of lost work).

The protocol by Briatico et al. [12] (and also all the existing VP-enforced
protocols associating a timestamp to each checkpoint) guarantees that check-

98CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

points timestamped with the same value are members of a consistent global
checkpoint. As already discussed in Chapter 3, this feature allows the design
of simple and efficient schemes for identifying a consistent global checkpoint
containing Ck,x for resuming the application [36] which do not need exchange
of dependency information. However, unless dependency information is ex-
changed between the processes, the identified global checkpoint is neither the
maximum nor the minimum consistent global checkpoint including Ck,x.

The checkpointing protocols P1 and P2 presented in this chapter, com-
pared to any VP-enforced protocol, allow smaller checkpointing overhead
whenever basic checkpointing strategies at distinct processes are not corre-
lated. From the point of view of recovery, the proposed scheme for identify-
ing a consistent global checkpoint containing a given checkpoint Ck,x requires
processes to exchange dependency information, furthermore, it identifies the
minimum consistent global checkpoint associated to that checkpoint. There-
fore, there is no guarantee that the extent of rollback obtained by resuming
the execution from that global checkpoint is minimal.

However, as failures are usually rare events, a scheme which reduces the
failure free overhead at the expense of the efficiency during recovery is always
the best choice. Therefore, it can be concluded that the proposed protocols
are well suited in any case there is no a priori knowledge about correlation of
basic checkpointing strategies adopted at distinct processes.

6.5.2 The Output Commit Problem

One of the major problems in service-providing application is the output com-
mit. In case of rollback of one of these applications, the maximum extent
of rollback is such that no output must be revoked. For example, a printer
cannot rollback the effects of printing a character; an automatic machine can-
not recover the money it dispensed to a customer; a deleted file cannot be
recovered (unless its state is included as part of the checkpoint [53, 66]).

The output commit problem has been tackled in the past assuming piece-
wise deterministic (PWD) execution model [20, 54]. Under the PWD assump-
tion the execution of a process is seen as a sequence of state intervals. A new
state interval starts whenever a non-deterministic event occurs (for example
the receive of a message). All non-deterministic events are logged so that the
process can always reply its execution from its last taken checkpoint.

An output is recorded in a checkpoint Ck,x of Pk if the output message is
sent in a checkpoint interval Ik,x−ϵ with ϵ > 0. Recently, Wang has shown [64]
that the output commit problem can be translated into the problem of deter-
mining the minimum consistent global checkpoint recording all the outputs.
This problem can be easily solved through RDT as this property allows a pro-
cess Pk to associate on-the-fly to a checkpoint Ck,x the minimum consistent

6.5. APPLICATIONS OF THE PRESENTED PROTOCOLS 99

global checkpoint containing it.
More technically, as already outlined in Chapter 3, if RDT is satisfied,

then the minimum consistent global checkpoint associated to a given local
checkpoint Ck,x is easily computed on-the-fly at the time Ck,x is taken by
piggybacking on each message a transitive dependency vector. As shown by
Mattern [38], the union of consistent global checkpoints generates a consistent
global checkpoint (such a result has been shown by Mattern to hold for the
set of consistent global states of a computation; as the set of consistent global
checkpoints is a subset of the set of consistent global states, then the result also
holds for consistent global checkpoints). Therefore, the minimum consistent
global checkpoint recording all the outputs can be computed by:

(i) collecting vectors identifying the consistent global checkpoint associated
to the earliest checkpoint recording an output at each process, and

(ii) performing a component-wise maximum among all collected vectors.

But, which is the cost incurred to ensure the RDT property? If (Ĥ, CĤ)
satisfies the RDT property, then it also satisfies the NZC property. As al-
ready discussed, this implication between properties usually implies that pro-
tocols which ensure theRDT induce processes to take more forced checkpoints
compared to protocols ensuring NZC. As a quantitative example of the per-
formance distance in terms of forced checkpoints we report in Figure 6.19 the
ratio R (i.e., forced checkpoints by a message receive), measured in the same
simulation environment described in Section 6.3.6 of this chapter, for the case
of the protocol presented by Baldoni et al. in [4] (BHMR), which has been
demonstrated through previous performance studies to be the one inducing
less forced checkpoints to guarantee RDT (results are reported for both basic
checkpointing strategies S1 and S2 described in section 6.3.6). The obtained
data are compared to those obtained with the proposed protocol P1.

There is a distance of an order of magnitude between values of R obtained
with the protocol P1 and those obtained by BHMR (values of R for the pro-
tocol P2, being very similar to those of P1, are not reported in Figure 6.19).

Plots demonstrate that the usage of system resources spent for checkpoint-
ing can be reduced by using one of the two checkpointing protocols presented
in this chapter. The drawback incurred is that to a local checkpoint cannot
be associated on-the-fly the minimum consistent global checkpoint containing
it. However, the acceptability of this drawback is justified by the following
observation: the minimum consistent global checkpoint containing Ck,x has to
be identified only if Ck,x is the earliest checkpoints recording the last output
produced by Pk. RDT guarantees such identification on-the-fly for any check-
point but at the expense of sometimes unacceptable checkpointing overhead.
In order to avoid such an overhead one of the checkpointing protocols (P1

100CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

1000 10000
Average Checkpoint Interval (Events)

0.00

0.10

0.20

0.30

0.40

0.50

R
P1 (S1)
BHMR (S1)
P1 (S2)
BHMR (S2)

Figure 6.19: R vs. ACI.

or P2) here proposed can be adopted and, periodically the consistent global
checkpoint collection protocol presented can be run in order to associate to
the earliest checkpoint Ck,x recording an output a consistent global checkpoint
including it. The ranks of checkpoints identified during the collection can be
recorded onto stable storage in a vector GCk,x associated to Ck,x. This vector
is then used whenever the minimum consistent global checkpoints recording
all the outputs is reclaimed.

Chapter 7

Consistent Checkpointing in
Distributed Databases

Checkpointing the state of a database is important for audit or recovery pur-
poses. When compared to its counterpart in distributed computations, the
database checkpointing problem has additionally to take into account the seri-
alization order of the transactions that manipulates the data objects forming
the database. Actually, transactions create dependences among data objects
which makes harder the problem of defining consistent global checkpoints in
database systems.

Of course, it is always possible, in a database environment, to design a
special transaction, that reads all data objects and saves their current values.
The underlying concurrency control mechanism ensures that this transaction
gets a consistent state of the data objects. However, this strategy is inefficient,
intrusive (from the concurrency control point of view [52]) and not practical
since, a read only transaction may take a very long time to execute and may
cause intolerable delays for other transactions [41]. Moreover, as pointed out
in [51], this strategy may drastically increase the cost of rerunning aborted
transactions. So, it is preferable to base global checkpointing:

(1) on local checkpoints of data objects taken by their managers, and

(2) on a mechanism ensuring mutual consistency of local checkpoints (this
will ensure that it will always be possible to get consistent global check-
points by piecing together local checkpoints).

In this chapter, latter approach to checkpointing is explored. The consid-
ered database is such that each data object can be individually checkpointed
(note that a data object could include, practically, a set of physical data items).
If these checkpoints are taken in an independent way, there is the risk that

101

102
CHAPTER 7. CONSISTENT CHECKPOINTING IN DISTRIBUTED

DATABASES

no consistent global checkpoint can ever be formed, similarly to what happens
in distributed computations. So, some kind of coordination is necessary when
local checkpoints are taken in order to ensure their mutual consistency.

This chapter introduces a characterization of mutual consistency of local
checkpoints. More precisely, the two following issues are considered:

• let us consider the question Q̄(S): “Given an arbitrary set S of check-
points of data objects, can this set be extended to get a global checkpoint
(i.e., a set including exactly one checkpoint from each data object) that
is consistent?”. The answer to this question is well known when the set
S includes exactly one checkpoint per data object [41], it becomes far
from being trivial, when the set S is incomplete, i.e., when it includes
checkpoints from only a subset of data objects. When S includes a single
data checkpoint, the previous question is equivalent to “Can this local
checkpoint belong to a consistent global checkpoint?”.

• let us consider the property P(C): “Local checkpoint C belongs to a
consistent global checkpoint”. Two non-intrusive checkpointing proto-
cols are introduced, the first one ensures the previous property P when
C is any local checkpoint of a data object. The second one ensures P
when C belongs to a predefined set of local checkpoints of a data object.

Q̄(S) is analogous to question Q(S) stated in Chapter 2, to which the
answer has been provided by Netzer and Xu. To provide an answer to ques-
tion Q̄(S), this chapter presents a study on the kind of dependences both the
transactions and their serialization order create among checkpoints of distinct
data objects. Therefore, the direction pointed out in [11], where it is said
that “Although the problems of concurrency control and recoverability are
frequently discussed separately, they are actually closely related” is investi-
gated. More specifically, in this chapter it is shown that, while some data
checkpoint dependences are causal, and consequently can be captured on-the-
fly, some others are “hidden”, in the sense that, they cannot be revealed by
causality (analogously to what happens for dependences between checkpoints
of processes of a distributed computation due to the presence of non-causal
Z-paths). It is the existence of those hidden dependencies that actually makes
non-trivial the answer to the previous question. Such an answer is here pro-
vided by exploiting concepts of the Netzer-Xu theory properly redefined and
enriched for the context of databases.

Starting from the obtained theoretical results, Section 7.5 of this chapter is
devoted to the design of “transaction-induced” data checkpointing protocols
ensuring the property P (namely, “Local checkpoint C belongs to a consis-
tent global checkpoint”). These protocols allow managers of data objects to

7.1. DATABASE MODEL 103

take checkpoints independently on each other1 (these checkpoints are called
basic as in the context of communication-induced checkpointing protocols for
distributed computations), and use transactions as a means to diffuse infor-
mation, among data managers, encoding dependences on the previous states
of data objects. When a transaction that accessed a data object is commit-
ted, the data manager of this object may be directed to take a checkpoint
to guarantee that previously taken checkpoints belong to consistent global
checkpoints (as in the context of communication-induced checkpointing, such
a checkpoint is called forced checkpoint). This is done by the data manager
which exploits both its local control data and the information exchanged at
the transaction commit point. The presented protocols are actually adapta-
tions to the context of distributed databases of the protocols by Briatico et
al. [12] and the protocol by Wang and Fuchs [61].

7.1 Database Model

We consider a classical distributed database model. The system consists of
a finite set of data objects, a set of transactions and a concurrency control
mechanism [10, 26].

7.1.1 Data Objects

Each data object is managed by a data manager DM . A set of data objects
can be managed by the same data manager DM . For the sake of clarity, we
suppose that the set of data managed by the same DM constitutes a single
logical data. So, there is a data manager DMx per data x (2).

7.1.2 Transactions

A transaction is defined as a partial order on read and write operations on data
objects and terminates with a commit or an abort operation. Ri(x) (resp.
Wi(x)) denotes a read (resp. write) operation issued by transaction Ti on
data object x. Each transaction is managed by an instance of the transaction
manager (TM) that forwards its operations to the scheduler which runs a
specific concurrency control protocol. The write set of a transaction is the set
of all the data objects it wrote.

1They can be taken, for example, during CPU idle time.
2Notations adopted in this chapter slightly differ from those of previous chapters. As an

example, x, y and z denote here data objects instead of ranks of checkpoints. Furthermore,
as it will be clear later, checkpoints of data objects are identified by a subscript and a
superscript, instead of a subscript only.

104
CHAPTER 7. CONSISTENT CHECKPOINTING IN DISTRIBUTED

DATABASES

7.1.3 Concurrency control

A concurrency control protocol schedules read and write operations issued by
transactions in such a way that any execution of transactions is strict and
serializable. This is not a restriction as concurrency control mechanisms used
in practice (e.g., two-phase locking 2PL and timestamp ordering) generate
schedules ensuring both properties [11]. The strictness property states that
no data object may be read or written until the transaction that currently
writes it either commits or aborts. So, a transaction actually writes a data
object at its commit point. Hence, at some abstract level, which is the one
considered by our checkpointing mechanisms, transactions execute atomically
at their commit points. If a transaction is aborted, strictness ensures no
cascading aborts and the possibility to use before images for implementing
abort operations which restore the value of an object before the transaction
access. For example, a 2PL mechanism, that requires transactions to keep
their write locks until they commit (or abort), generates such a behavior [11].

7.2 Distributed Database

A distributed database consists of a finite set of sites, each site containing
one or several (logical) data objects. So, each site contains one or more data
managers, and possibly an instance of the TM . TMs and DMs exchange
messages on a communication network which is asynchronous (message trans-
mission delays are unpredictable but finite) and reliable (each message will
eventually be received).

7.2.1 Execution

Let T = {T1, . . . , Tn} be a set of transactions accessing a set O = {o1, . . . , om}
of data objects (to simplify notations, data object oi is identified by its index
i). An execution E over T is a partial order on all read and write operations of
the transactions belonging to T ; this partial order respects the order defined
in each transaction. Moreover, let <x be the partial order defined on all
operations accessing a data object x, i.e., <x orders all pairs of conflicting
operations (two operations are conflicting if they access the same object and
one of them is a write operation).

Given an execution E defined over T , T is structured as a partial order
T̂ = (T,<T) where <T is the following (classical) relation defined on T :

Ti <T Tj ⇐⇒ (i ̸= j) ∧ (∃x⇒ (Ri(x) <x Wj(x)) ∨
(Wi(x) <x Wj(x)) ∨ (Wi(x) <x Rj(x)))

7.3. CONSISTENT GLOBAL CHECKPOINTS 105

7.3 Consistent Global Checkpoints

This section is devoted to the introduction of the notion of consistent global
checkpoints of the distributed database. This is done by recalling the notion
of dependence between states of data objects.

7.3.1 Local States and Their Relations

Each write on a data object x issued by a transaction defines a new version
of x. Let σi

x denote the i-th version of x; σi
x is called a local state (σ1

x is
the initial local state of x). Transactions establish dependences between local
states. This can be formalized in the following way. When Tk issues a write
operation Wk(x), it changes the state of x from σi

x to σi+1
x . More precisely,

σi
x and σi+1

x are the local states of x, just before and just after the execution3

of Tk, respectively. This can be expressed in the following way by extending
the relation <T to include local states:

Tk changes x from σi
x to σi+1

x ⇐⇒ (σi
x <T Tk) ∧ (Tk <T σi+1

x)

Let <+
T be the transitive closure of the extended relation <T . When we con-

sider only local states, we get the following happened-before relation denoted
<LS (which is similar to Lamport’s happened-relation defined on events [33]
in a distributed computation):

Definition 7.3.1 (Precedence on local states, denoted <LS)

σi
x <LS σj

y ⇐⇒ σi
x <+

T σj
y

σix
x

σ
iy
y

σiz
z

σ
iy+1
y

σix+1
x

σiz+1
z

T2 <T T1T1 (T2)

z

y

xσix
x

σ
iy
y

σiz
z

σ
iy+1
y

σix+1
x

σiz+1
z

T1 (T2) T1 <T T2

x

y

z

(b) T2 precedes T1(a) T1 precedes T2

Figure 7.1: Partial Order on Local States.

As the relation <T defined on transactions is a partial order, it is easy to
see that the relation <LS defined on local states is also a partial order. Figure

3Remind that, as we consider strict and serializable executions, “Just before and just
after the execution of Tk” means “Just before and just after Tk is committed”.

106
CHAPTER 7. CONSISTENT CHECKPOINTING IN DISTRIBUTED

DATABASES

7.1 shows examples of relation <LS . It considers three data objects x, y, and z,
and two transactions T1 and T2. Transactions are defined in the following way:

T1 : R1(x); W1(y); W1(z); commit1
T2 : R2(y); W2(x); commit2

As there is a read-write conflict on x, two serialization orders are possible.
Figure 7.1.a shows the case T1 <T T2 while Figure 7.1.b shows the case T2 <T

T1. Each horizontal axis depicts the evolution of the state of a data object.
For example, the second axis is devoted to the evolution of y: σ

iy
y and σ

iy+1
y

are the states of y before and after T1, respectively.

Let us consider Figure 7.1.a. It shows that W1(y) and W1(z) add four pairs
of local states to the relation <LS , namely:

σiy
y <LS σiy+1

y ; σiz
z <LS σiz+1

z ; σiy
y <LS σiz+1

z ; σiz
z <LS σiy+1

y

The relation <T adds two pairs of local states to <LS :

σiy
y <LS σix+1

x ; σiz
z <LS σix+1

x

The latter two dependences are due to the serialization order.

Precedence on local states, due to write operations of transactions T1 and
T2, are indicated with continuous arrows, while the ones due to the serialization
order are indicated with dashed arrows. Figure 7.1.b shows precedences on
local states when the serialization order is reversed.

7.3.2 Consistent Global States

A global state of the database is a set of local states, one from each data object.
A global state G = {σi1

1 , σi2
2 , . . . , σim

m } is consistent if it does not contain two
dependent local states, i.e., if:

∀x, y ∈ [1, . . . ,m]⇒ ¬(σix
x <LS σiy

y)

Let us consider again Figure 7.1.a. The three global states (σix
x , σ

iy
y , σiz

z),

(σix
x , σ

iy+1
y , σiz+1

z) and (σix+1
x , σ

iy+1
y , σiz+1

z) are consistent. The global state

(σix+1
x , σ

iy
y , σiz+1

z) is not consistent either because σ
iy
y <LS σix+1

x (due to the

fact T1 <T T2) or because σ
iy
y <LS σiz+1

z (due to the fact T1 writes both y and
z). Intuitively, a non-consistent global state of the database is a global state
that could not be seen by any omniscient observer of the database.

7.4. EXTENSION OF NETZER-XU THEORY TO DISTRIBUTED
DATABASES 107

7.3.3 Consistent Global Checkpoints

A local checkpoint (or equivalently a data checkpoint) of a data object x is a
local state of x that has been saved in a safe place4 by the data manager of
x. So, all the local checkpoints are local states, but only a subset of local
states are defined as local checkpoints. Let Ci

x (i ≥ 1) denote the i-th local
checkpoint of x; i is called the rank of Ci

x (5). Note that Ci
x corresponds to

some σj
x with i ≤ j. A global checkpoint is a set of local checkpoints one for

each data object. It is consistent if it is a consistent global state.

We assume that all initial local states are checkpointed. Moreover, we also
assume that, when we consider any point of an execution E, each data object
will eventually be checkpointed.

7.4 Extension of Netzer-Xu Theory to Distributed
Databases

This section extends the Netzer-Xu theory to distributed databases. This
is done by introducing the notion of Dependence Path on data checkpoints,
which is analogous to the Z-path on checkpoints of process states in distributed
computations. Then the theorem stating the necessary and sufficient condition
for mutual consistency is proved. The structure of the proof of the theorem
is similar to the one of a theorem presented in [2] which proves an analogous
result for the case of shared memory.

7.4.1 Dependence on Data Checkpoints

As indicated in the previous section, due to write operations of each transac-
tion, or due to the serialization order, transactions create dependences among
local states of data objects. Let us consider the following 7 transactions ac-
cessing data objects x, y, z and u:

T1 : R1(u); W1(u); commit1
T2 : R2(z); W2(z); commit2
T3 : R3(z); W3(z); W3(x); commit3
T4 : R4(z); R4(u); W4(z); commit4
T5 : R5(z); W5(y); W5(z); commit5
T6 : R6(y); W6(y); commit6
T7 : R7(x); W7(x); commit7

4For example, if x is stored on a disk, a copy is saved on another disk.
5Checkpoints of data objects are denoted by a subscript and a superscript in order to

distinguish them from checkpoints of process states.

108
CHAPTER 7. CONSISTENT CHECKPOINTING IN DISTRIBUTED

DATABASES

T1

T2
T7

T4 T5 T6

T3

Figure 7.2: A Serialization Order.

����
����
����
����

����
����
����
����

�����
�����
�����

�����
�����
�����

�����������
�����������
�����������

�����������
�����������
�����������

�����
�����
�����
�����

T1

z

u

y

x

T2

T3

T3

T5

T5

T4

T6

T7

σ5
x σ6

x

σ4
y

σ7
z σ8

z σ9
z

σ8
u

σ7
x ≡ Cδ

x

σ10
z ≡ Cβ+1

z

σ7
u ≡ Cα

u

σ6
z ≡ Cβ

z

σ5
y σ6

y ≡ Cγ
y

Figure 7.3: Data Checkpoint Dependences.

Figure 7.2 depicts the serialization imposed by the concurrency control
mechanism. Figure 7.3 describes dependences between local states generated
by this execution. Five local states are defined as data checkpoints (they
are indicated by dark rectangles). We study dependences between those data
checkpoints. Let us first consider Cα

u and Cγ
y . C

α
u is the (checkpointed) state

of u before T1 wrote it, while C
γ
y is the (checkpointed) state of y after T6 wrote

it (i.e., just after T6 is committed). The serialization order (see Figure 7.2)
shows that T1 <T T6, and consequently Cα

u <LS Cγ
y , i.e., the data checkpoint

Cγ
y is causally dependent [33] on the data checkpoint Cα

u (Figure 7.3 shows that
there is a directed path from Cα

u to Cγ
y). Now let us consider the pair of data

checkpoints consisting of Cα
u and Cδ

x. Figure 7.3 shows that Cα
u precedes T1,

and that Cδ
x follows T7. Figure 7.2 indicates that T1 and T7 are not connected

in the serialization graph. So, there is no causal dependence between Cα
u and

Cδ
x (Figure 7.3 shows that there is no directed path from Cα

u to Cδ
x). But there

is no consistent global checkpoint including both Cα
u and Cδ

x. In particular,
adding Cγ

y and Cβ
z to Cα

u and Cδ
x cannot produce a consistent global state as

Cβ
z <LS Cδ

x; adding Cβ+1
z instead of Cβ

z has the same effect as Cα
u <LS Cβ+1

z .
So there is a hidden dependence between Cα

u and Cδ
x which prevents them to

belong to the same consistent global checkpoint.

7.4. EXTENSION OF NETZER-XU THEORY TO DISTRIBUTED
DATABASES 109

7.4.2 Dependence Path

In this section an unified definition of dependence is provided which takes into
account both causal and hidden dependences.

Definition 7.4.1 (Interval)
A checkpoint interval Iix is associated with data checkpoint Ci

x. It consists of
all the local states σk

x such that:

(σk
x = Ci

x) ∨ (Ci
x <LS σk

x <LS Ci+1
x)

As an example, Figure 7.3 shows that Iβz includes 4 consecutive local states
of z. Note that, due to the assumptions on data checkpoints stated in Section
7.3.3, any local state belongs to exactly one interval. Let us call an edge of
the partial order on local states (<LS) a dependence edge.

Definition 7.4.2 (Dependence Path)6

There is a dependence path (DP) from a data checkpoint Ci
x to Cj

y (denoted

Ci
x

DP→ Cj
y) iff:

(i) x = y and i < j; or

(ii) there is a sequence (d1, d2, . . . , dr) of dependence edges, such that:

(1) d1 starts after Ci
x;

(2) ∀dq : 1 ≤ q < r: let Ikz be the interval in which dq arrives; then dq+1

starts in the same or in a later interval (i.e., an interval Ihz such that
k ≤ h)7;

(3) dn arrives before Cj
y.

In the example depicted in Figure 7.3, the hidden dependence between Cα
u

and Cδ
x can be now denoted Cα

u
DP→ Cδ

x as Cα
u = σ7

u <LS σ9
z (due to relation

<T), σ
7
z <LS σ6

x and σ6
x <LS σ7

x = Cδ
x. Note that σ9

z and σ7
z belong to the

same checkpoint interval Iβz .

6This definition generalizes the Z-path notion introduced in [40]. Recall that a Z-path is
a sequence of messages establishing a relation between two checkpoints of distinct processes.
While a message is a “concrete entity”, a dependence edge is an “abstract entity”. So, as
it will be shown by the theorem in next section, the dependence edge abstraction allows to
extend results of [40] to data checkpoints.

7Note that dq+1 can “start” before dq “arrives”. This is where the dependence is “hidden”.
If ∀q dq+1 “starts” after dq “arrives”, then, the dependence path (d1, d2, . . . , dr) is purely
causal.

110
CHAPTER 7. CONSISTENT CHECKPOINTING IN DISTRIBUTED

DATABASES

7.4.3 Necessary and Sufficient Condition

Theorem 7.4.1
Let I ⊆ {1, . . . ,m} and S = {Cix

x }x∈I be a set of data checkpoints. Then S is
a part of a consistent global checkpoint if and only if:

R ≡ ∀x, y ∈ I ⇒ ¬(Cix
x

DP→ Ciy
y)

Proof
If Part. It is proved that ifR is satisfied then S can be included in a consistent
global checkpoint. Let us consider the global checkpoint defined as follows:

• if x ∈ I, we take Cix
x ;

• if x ̸∈ I, for each y ∈ I we consider the integer mx(y) = min{i | ¬(Ci
x

DP→
C

iy
y)} (with mx(y) = 1 if iy = 1 or if this set is empty). Then we take

Cix
x with ix = maxy∈I(mx(y)). Let us note that, from that definition, it

is possible that ix = 1 (in that case, Cix
x is an initial data checkpoint).

By construction, this global checkpoint satisfies the two following properties :

∀x ̸∈ I, ∀y ∈ I ⇒ ¬(Cix
x

DP→ Ciy
y) (7.1)

∀x ̸∈ I such that ix > 1, ∃z ∈ I : (iz > 1) ∧ (Cix−1
x

DP→ Ciz
z) (7.2)

We show that {Ci1
1 , Ci2

2 , . . . , Cim
m } is consistent. Assume the contrary. So,

there exists x and y and a dependence edge d that starts after Cix
x and arrives

before C
iy
y . So, it follows that:

(iy > 1) ∧ (Cix
x

DP→ Ciy
y) (7.3)

Four cases have to be considered:

1. x ∈ I, y ∈ I. (7.3) is contradicted by assumption R.

2. x ∈ I, y ̸∈ I. Since iy > 1, from (7.2) we have: ∃z ∈ I : (iz >

1) ∧ (C
iy−1
j

DP→ Ciz
z).

As, at data x both the dependence edge ending the path Cix
x

DP→ C
iy
y , and

the dependence edge starting the path C
iy−1
y

DP→ Ciz
z belong to the same

interval, we conclude from (7.2) that ∃z ∈ I : (iz > 1) ∧ (Cix
x

DP→ Ciz
z)

which contradicts the assumption R.

3. x ̸∈ I, y ∈ I. (7.3) contradicts (7.1).

7.4. EXTENSION OF NETZER-XU THEORY TO DISTRIBUTED
DATABASES 111

4. x ̸∈ I, y ̸∈ I. Since iy > 0, from (7.2) we have: ∃z ∈ I : (iz >

1) ∧ (C
iy−1
y

DP→ Ciz
z).

As in case 2, we can conclude that ∃z ∈ I : (iz > 1) ∧ (Cix
x

DP→ Ciz
z)

which contradicts (7.1).

Only If Part. It is proved that, if there is a consistent global checkpoint
{Ci1

1 , Ci2
2 , . . . , Cin

n } including S, then R holds for any I ⊆ {1, . . . ,m}. Assume

the contrary. So, there exist x ∈ I and y ∈ I such that (Cix
x

DP→ C
iy
y). From

the definition of
DP→ , there exists a sequence of dependence edges d1, d2, . . . , dp

such that:

d1 starts in Iixx ,
d1 arrives after Ii1x1

, d2 starts in Ij1x1
with i1 ≤ j1

. . .

dp−1 arrives in I
ip−1
xp−1 , dp starts in I

jp−1
xp−1 with jp−1 ≤ ip−1

dp arrives in I
iy−1
y

We show by induction on p that, ∀t ≥ iy, C
ix
x and Ct

y cannot belong to the
same consistent global checkpoint.

Base step. p = 1. In this case, d1 starts after Cix
x and arrives before C

iy
y , and

consequently the pair (Cix
x , C

iy
y) cannot belong to a consistent global check-

point.
Induction step. We suppose the result true for some p ≥ 1 and show that it
holds for p+ 1. We have:

d1 starts in Iixx ,
. . .

dp arrives in I
ip
xp , dp+1 starts in I

jp
xp with ip ≤ jp

dp+1 arrives in I
iy−1
y

From the assumption induction applied to the path of dependence edges
d1, . . . , dp, we have: for any t ≥ ip + 1, Cix

x and Ct
xp

cannot belong to the

same consistent global checkpoint. Moreover, dp+1 starts in I
jp
xp and arrives in

I
iy−1
y imply that, for any h ≤ jp and for any t ≥ iy, C

h
xp

and Ct
y cannot belong

to the same consistent checkpoint. Since ip ≤ jp, it follows that no checkpoint

of xp can be included with Cix
x and C

iy
y to form a consistent global checkpoint.

Q.E.D.

112
CHAPTER 7. CONSISTENT CHECKPOINTING IN DISTRIBUTED

DATABASES

7.5 Deriving “Transaction-Induced” Checkpointing
Protocols

This section shows how previous theoretical results can be exploited to derive
checkpointing protocols for distributed databases.

Supposing that the set S includes only a checkpoint C of a data object,
the previous theorem leads to an interesting corollary:

Corollary 7.5.1

C belongs to a consistent global checkpoint iff ¬(C DP→ C).

Hence, providing checkpointing protocols ensuring that ¬(C DP→ C), guar-
antees the property P(C) defined at the beginning of this chapter. These type
of protocols are interesting for two reasons:

1. They avoid wasting time in taking a data checkpoint that will never be
used in any consistent global checkpoint, and

2. In case checkpointing is used for recovery purposes, no domino effect
can ever take place as any data checkpoint belongs to a consistent global
checkpoint.

To this purpose, let us assume that to each checkpoint Ci
x is associated

a sequence number, denoted Ci
x.sn, and that that each data manager DMx

has a variable snx, which stores the sequence number of the last checkpoint
of x (it is initialized to zero); furthermore, let ix denotes the rank of the last
checkpoint of x.

Consider the following property T S: “Let Sn be the set formed by data
checkpoints with sequence number n. If Sn includes a checkpoint per data
object, then it constitutes a consistent global checkpoint”. In what follows
two checkpointing protocols are provided:

• the first protocol (A) guarantees P for all local checkpoints, and guar-
antees T S for any value of n.

• The second protocol (B) ensures P only for a subset of local checkpoints,
and T S for some particular values of n.

As already mentioned, actually those protocols can be seen as adaptations (to
the data-object/transaction model) of protocols in [12, 61].

In the proposed protocols, data managers can take checkpoints indepen-
dently of each other (basic checkpoints), for example, by using a periodic al-
gorithm which could be implemented by associating a timer with each data

7.5. DERIVING “TRANSACTION-INDUCED” CHECKPOINTING
PROTOCOLS 113

manager (a local timer is set whenever a checkpoint is taken; and a basic
checkpoint is taken by the data manager when its timer expires). Data man-
agers are directed to take additional data checkpoints (forced checkpoints) in
order to ensure P or T S. The decision to take forced checkpoints is based on
the control information piggybacked by commit messages of transactions.

The protocols consist of two interacting parts. The first part, shared by
both protocols, specifies the checkpointing-related actions of transaction man-
agers. The second part defines the rules data managers have to follow to take
data checkpoints.

7.5.1 Protocols A and B: Behavior of a Transaction Manager

Let WTi be the write set of a transaction Ti managed by a transaction man-
ager TMi. We assume each time an operation of Ti is issued by TMi to a data
manager DMx, it returns the value of x plus the value of its current sequence
number snx. TMi stores in MAX SNTi the maximum value among the se-
quence numbers of the data objects read or written by Ti. When transaction
Ti is committed, the transaction manager TMi sends a commit message to
each data manager DMx involved in WTi . Such commit messages piggyback
MAX SNTi .

7.5.2 Protocol A: Behavior of a Data Manager

As far as checkpointing is concerned, the behavior of a data manager DMx

is defined by the two following procedures namely take-basic-ckpt and
take-forced-ckpt. They define the rules associated with checkpointing.

take-basic-ckpt(A) :
When the timer expires:

(AB1) ix ← ix + 1; snx ← snx + 1;
(AB2) Take checkpoint Cix

x ; Cix
x .sn← snx;

(AB3) Reset the local timer.

take-forced-ckpt(A) :
When DMx receives commit(MAX SNTi) from TMi:

if snx < MAX SNTi then
(A1) ix ← ix + 1; snx ←MAX SNTi ;
(A2) Take a (forced) checkpoint Cix

x ;
Cix
x .sn← snx;

(A3) Reset the local timer.
endif;
(A4) process the commit message.

114
CHAPTER 7. CONSISTENT CHECKPOINTING IN DISTRIBUTED

DATABASES

From the increase of the timestamp variable snx of a data object x, and
from the rule associated with the taking of forced checkpoints (which forces a

data checkpoint whenever snx < MAX SNTi), the condition ¬(Cix
x

DP→ Cix
x)

follows for any data checkpoint Cix
x . Actually, this simple protocol ensures

that, if Cix
x

DP→ C
iy
y , then Cix

x .sn < C
iy
y .sn (analogously to the protocols in

[12, 36, 28] discussed in Chapter 3).

It follows from the previous observation that if two data checkpoints have

the same sequence number, then they cannot be related by
DP→ . So, all the

sets Sn that exist are consistent. Note that the take-forced-ckpt(A) rule
may produce gaps in the sequence of timestamps assigned to data checkpoints
of a data object x. When no data checkpoint of a data object x has sequence
number n, then the first data checkpoint of x with sequence number greater
than n can be included in a set containing data checkpoints with sequence
number n, to form a consistent global checkpoint (analogously to what happens
in checkpoint and communication patterns of distributed computations when
considering the protocol by Briatico et al. [12]).

7.5.3 Protocol B: Behavior of a Data Manager

This protocol introduces a system parameter Z ≥ 1 known by all the data
managers [61]. When considering a data object x, this protocol ensures

¬(Cx
DP→ Cx) only for a subset of data checkpoints, namely, those whose

sequence numbers are equal to a × Z (where a ≥ 0 is an integer). Moreover,
when there is a data checkpoint with sequence number a × Z for each data
object x, then the global checkpoint SaZ exists and is consistent.

The rule take-basic-ckpt(B) is the same as the one of the protocol A.
In addition to the previous control variables, each data manager DMx has an
additional variable Vx, which is incremented by Z each time a data checkpoint
with sequence number aZ is taken. The rule take-forced-ckpt(B) is the
following:

take-forced-ckpt(B) :
When DMx receives commit(MAX SNTi) from TMi:

if Vx < MAX SNTi then
(B1) ix ← ix + 1; snx ← ⌊MAX SNTi/Z⌋ × Z;
(B2) Take a (forced) checkpoint Cix

x ;
Cix
x .sn← snx;

(B3) Reset the local timer;
(B4) Vx ← Vx + Z.

endif;
(B5) Process the commit message.

7.5. DERIVING “TRANSACTION-INDUCED” CHECKPOINTING
PROTOCOLS 115

7.5.4 Short Comparison with Previous Protocols

This section presents three checkpointing protocols proposed in the context
of distributed databases [41, 43, 52]. Then the main differences among these
protocols and the solutions proposed in this chapter are discussed.

The protocol in [52] determines a consistent global checkpoint by means of
a two phase protocol using a checkpoint coordinator process that exchanges
messages with its checkpoint subordinates processes one for each site. Each
site maintains an independent local timestamp (like Lamport scalar clocks
[33]) and a timestamp is associated with each transaction8. The first phase
is used to agree on a common timestamp value among all sites. This value,
say n, actually slits database’s transactions into two groups the one that has
a timestamp less or equal to n and the ones with timestamp greater than
n. In the second phase, the checkpoint process in each site is delayed till all
transactions whose timestamp is less than or equal to n are committed. Once
the checkpoint process dumped the database state in a safe place, transactions
whose timestamp is greater than n are executed. Note that during the first
phase, the transactions are not stopped, however their updates are stored in
a private area that can be read by the checkpointing process to execute a
transaction-consistent dump. A similar approach using control messages to
split transactions in two groups in order to get globally transaction consistent
checkpoints has been proposed by Kim and Park in [30].

The protocol in [43] assumes each data object has a colour either black or
white. Before the checkpointing process starts all data objects are white. The
black colour indicates that the data object has been read by the checkpointing
process. The checkpointing process continues till all data objects are black.
Transactions takes a colour from the data objects they access. A transaction
is white (resp. black) if all data object it accessed were white (resp. black). A
transaction is grey if it accessed at least one black and one white data object.
In a first version of the protocol, written by Pu ([42]), the protocol aborted each
grey transaction in order to ensure serializability and to determine transaction-
consistent global checkpoints. The protocol in [43] is a more refined version of
[42], namely save some, which avoids to abort grey transactions by saving the
before values of the data objects updated by each grey or white transaction
in a private memory area accessible to the checkpointing process. This allows
to execute a transaction consistent dump of the database. Compared to [52],
the protocol in [43] splits transaction into two groups in a lazy way (by means
of an “infection” from data objects) without exchanging control messages.
However this approach increases the transaction response time and requires an
unbounded memory capacity (the private memory required for saving before

8As it uses timestamps, this protocol is well suited to concurrency control based on
timestamp.

116
CHAPTER 7. CONSISTENT CHECKPOINTING IN DISTRIBUTED

DATABASES

values could be larger than the size of the database itself) as it is expected
that grey transactions will be a wider majority of all transactions.

The protocol in [41] modifies [43] in order to bound the size of the required
private memory. The checkpoint process is implemented as a set of read-only
transactions one for each data object. Each data object has a colour white,
grey or black. Initially each data object is white. Transactions can be black or
white. Initially checkpointing transactions are black and normal transactions
can be either black or white. A normal transaction turns black after either
overwriting a gray data object or accessing a black data object. A data object
changes from white to gray (resp. black) when a finally black transaction (i.e.,
a transaction which is black at the commit time) reads (resp. overwrites) it.
A data object changes from grey to black when written by any transaction.
A consistent global checkpoint of the database is formed by the final non-
black state of each data object. The introduction of the grey colour actually
delays the time of reading of the data object by the checkpoint transaction,
this reduces the size of the required private memory compared to [43]. On
the other hand, transaction response time is increased by the previous delay
and by the fact that the concurrency control has to manage the checkpointing
transactions.

Compared to [52], the checkpointing protocols presented in this chapter
employ a lazy coordination among data managers (neither control messages
or a checkpoint coordinator is required). As opposed to [43] and [41], the pro-
posed protocols do not overload the concurrency control with special purpose
checkpointing transactions and do not need to manage colours. Moreover,
they do not need private memory to be read by the checkpointing process to
store partial transaction updates. On the negative side, the safe memory area
where storing a copy of the checkpointed data objects can be larger than the
size of the entire database (many checkpoints with distinct sequence numbers
of a data object can be stored in the safe area at the same time). However,
this size can be kept as small as possible by running frequently a garbage
collection procedure.

Bibliography

[1] R. Baldoni, G. Cioffi, J.M. Hélary and M. Raynal, Direct Dependency-
Based Determination of Consistent Global Checkpoints, Tech. Rep. 12-
98, Dipartimento di Informatica e Sistemistica, Universita’ di Roma “La
Sapienza”, 1998.

[2] R. Baldoni, J.M. Hélary and M. Raynal, Consistent Records in Asyn-
chronous Computations, Acta Informatica 35:441-455, 1998.

[3] R. Baldoni, J.M. Hélary and M. Raynal, Rollback Dependency Trackabil-
ity: Visible Characterizations, Proc. ACM Symposium on the Principles
on Distributed Computing, 1999.

[4] R. Baldoni, J.M. Hélary, A. Mostefaoui and M. Raynal, A
Communication-Induced Checkpointing Protocol that Ensures Rollback-
Dependency Trackability, Proc. IEEE Int. Symposium on Fault Tolerant
Computing, 1997, pp. 68-77.

[5] R. Baldoni, J.M. Hélary, A. Mostefaoui and M. Raynal, Adaptive Check-
pointing in Message Passing Distributed Systems, International Journal
of Systems Science, 28(11):1145-1161, 1997.

[6] R. Baldoni, F. Quaglia and P. Fornara, An Index-Based Checkpointing
Algorithm for Autonomous Distributed Systems, Proc. IEEE Int. Sym-
posium on Reliable Distributed Systems, 1997, pp. 27-34 (an expanded
version appeared on IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 10, no.2, February 1999).

[7] R. Baldoni, F. Quaglia and B. Ciciani, A VP-Accordant Checkpointing
Protocol Preventing Useless Checkpoints, Proc. IEEE Int. Symposium on
Reliable Distributed Systems, 1998, pp. 61-67.

[8] G. Barigazzi and L. Strigini, Application-Transparent Setting of Recovery
Points, Proc. IEEE Fault Tolerant Computing Symposium, 1983, pp. 48-
55.

117

118 BIBLIOGRAPHY

[9] B. Bhargava and S.R. Lian, Independent Checkpointing and Concur-
rent Rollback for Recovery, Proc. IEEE Int. Symposium on Reliable Dis-
tributed Systems, 1988, pp. 3-12.

[10] P.A. Bernstein, V. Hadzilacos and Goodman, Concurrency Control and
Recovery in Database systems, Addison Wesley Publishing Co., Reading,
MA, 1987.

[11] Y. Breitbart, D. Georgakopoulos, M. Rusinkiewicz and A. Silberschatz,
On Rigorous Transaction Scheduling, IEEE Transactions on Software En-
gineering, 17(9):954-960, 1991.

[12] D. Briatico, A. Ciuffoletti and L. Simoncini, A Distributed Domino-Effect
Free Recovery Algorithm, in Proc. IEEE Int. Symposium on Reliability
Distributed Software and Database, pp. 207-215, 1984.

[13] J. Cao and K.C. Wang, An Abstract Model for Rollback Recovery Control
in Distributed Systems, ACM Operating Systems Review, 1992, pp. 62-76.

[14] K.M. Chandy and L. Lamport, Distributed Snapshots: Determining
Global States of Distributed Systems, ACM Transactions on Computer
Systems, 3(1):63-75, 1985.

[15] B. Ciciani and G. Cantone, An Approach to an Optimal Strategy of Re-
covery Point Insertion in Distributed Fault Tolerant Computing Systems,
Proc. 24th Allerton Conference on Communication, Control and Com-
puting, 1986, pp. 964-972.

[16] R. Cooper and K. Marzullo, Consistent Detection of Global Predicates,
Proc. ACM/ONR Workshop on Parallel and Distributed Debugging, 1991,
pp. 163-173.

[17] F. Cristian and F. Jahanian, A Timestamp-Based Checkpointing Protocol
for Long-Lived Distributed Computations, Proc. IEEE Int. Symposium
on Reliable Distributed Systems, 1991, pp. 12-20.

[18] C. Critchlow and K. Taylor, The Inhibition Spectrum and the Achieve-
ment of Causal Consistency, Tech. Rep. TR 90-1101, Cornell University,
1990.

[19] E.N. Elnozahy, D.B. Johnson and Y.M. Wang, A Survey of Rollback-
Recovery Protocols in Message-Passing Systems, Technical Report
No.CMU-CS-96-181, School of Computer Science, Carnegie Mellon Uni-
versity, 1996.

BIBLIOGRAPHY 119

[20] E.N. Enolzahy and W. Zwaenepoel, Manetho: Transparent Rollback-
Recovery with Low Overhead, IEEE Transactions on Computers,
41(5):526-531, 1992.

[21] C. Fidge, Logical Time in Distributed Computing Systems, IEEE Com-
puter, pp. 28-33, August 1991.

[22] J. Fowler and W. Zwaenepoel, Causal Distributed Breakpoints, Proc.
IEEE Int. Conference on Distributed Computing Systems, 1990, pp. 134-
141.

[23] E. Fromentin, N. Plouzeau and M. Raynal, An Introduction to the Anal-
ysis and Debug of Distributed Computations, Proc. IEEE International
Conference on Algorithms and Architectures for Parallel Processing, 1995,
pp. 545-554.

[24] E. Fromentin and M. Raynal, Shared Global States in Distributed Com-
putations, Journal of Computer and System Sciences, vol. 55, no. 3, 1997.

[25] K. Geihs and M. Seifert, Automated Validation of a Co-operation Proto-
col for Distributed Systems, Proc. IEEE Int. Conference on Distributed
Computing Systems, 1986, pp. 436-443.

[26] J.N. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques, Morgan Kaufmann, 1070 pages, 1993.

[27] J.M. Hélary, A. Mostéfaoui and M. Raynal, Virtual Precedence in Asyn-
chronous Distributed Systems: Concept and Applications. Proc. 11th Int.
Workshop on Distributed Algorithms, Springer-Verlag LNCS 13220, 1997,
pp. 170-184.

[28] J.M. Hélary, A. Mostéfaoui, R.H.B. Netzer and M. Raynal, Preventing
Useless Checkpoints in Distributed Computations. Proc. 16th IEEE Sym-
posium on Reliable Distributed Systems, 1997, pp. 183-190.

[29] D.B. Johnson andW. Zwaenepoel, Recovery in Distributed Systems Using
Optimistic Message Logging and Checkpointing, Journal of Algorithms,
11(3):462-491, 1990.

[30] J.L. Kim and T. Park, An Efficient Recovery Scheme for Locking-Based
Distributed Database Systems, Proc. 13th IEEE Symposium on Reliable
Distributed Systems, 1997, pp. 183-190.

[31] R. Koo and S. Toueg, Checkpointing and Rollback-Recovery for Dis-
tributed Systems, IEEE Transactions on Software Engineering, 13(1):23-
31, 1987.

120 BIBLIOGRAPHY

[32] T.H. Lay and T.H. Yang, On Distributed Snapshots, Information Pro-
cessing Letters, 25:153-158, 1987.

[33] L. Lamport, Time, Clocks and The Ordering of Events in a Distributed
System, Communications of the ACM, 21(7):558-565, 1978.

[34] K. Marzullo and G. Neiger, Detection of Global State Predicates, Proc.
Int. Workshop on Distributed Algorithms, 1991.

[35] D. Manivannan, R.H.B. Netzer and M. Singhal, Finding Consistent
Global Checkpoints in a Distributed Computation, IEEE Transactions
on Parallel and Distributed Systems, 8(6):623-627, 1997.

[36] D. Manivannan and M. Singhal, A Low-Overhead Recovery Technique
Using Quasi Synchronous Checkpointing, Proc. IEEE Int. Conference on
Distributed Computing Systems, 1996, pp. 100-107.

[37] D. Manivannan and M. Singhal, Quasi-Synchronous Checkpointing: Mod-
els, Characterization, and Classification, TR No. OSU-CISRC-5/96-
TR33, Dept. of Computer and Information Science, The Ohio State Uni-
versity, 1996.

[38] F. Mattern, Virtual Time and Global States of Distributed Systems, In
Proc. of the International Workshop on Parallel and Distributed Algo-
rithms, 1989, pp. 215-226.

[39] B. Miller and J. Choi, Breakpoints and Halting in Distributed Programs,
Proc. IEEE International Conference on Distributed Computing Systems,
1988, pp. 316-323.

[40] R.H.B. Netzer and J. Xu, Necessary and Sufficient Conditions for Con-
sistent Global Snapshots, IEEE Transactions on Parallel and Distributed
Systems, 6(2):165-169, 1995.

[41] S. Pilarski and T. Kameda, Checkpointing for Distributed Databases:
Starting from the Basics, IEEE Transactions on Parallel and Distributed
Systems, 3(5):602-610, 1992.

[42] C. Pu, On-the-fly, Incremental, Consistent Reading of Entire Databases,
Algorithmica, 1(3):271-287, 1986.

[43] C. Pu, H. Hong and J.M. Wha, Performance Evaluation of Global Read-
ing of Entire Databases, Proc. International Symposium on Databases in
Parallel and Distributed Systems, 1988, pp. 167-176.

BIBLIOGRAPHY 121

[44] F. Quaglia, R. Baldoni and B. Ciciani, A Low-Overhead Z-Cycle-Free
Checkpointing Algorithm for Distributed Systems, Proc. European Re-
search Seminar on Advances in Distributed Systems, 1997, pp. 198-203.

[45] F. Quaglia, B. Ciciani and R. Baldoni, A Checkpointing-Recovery Scheme
for Distributed Systems, in Dimiter R. Avresky, David R. Kaeli, editors,
”Fault Tolerant Parallel and Distributed Systems” (Chapter 5), Kluwer
Academic Publishers, 1998.

[46] F. Quaglia, R. Baldoni and B. Ciciani, On the No-Z-Cycle Porperty in
Distributed Executions, Tech. Rep. 01-99, Dipartimento di Informatica e
Sistemistica, Universita’ di Roma “La Sapienza”, January 1999.

[47] F. Quaglia, B. Ciciani and R. Baldoni, Checkpointing Protocols in Dis-
tributed Systems with Mobile Hosts: a Performance Analysis, Proc. 3rd
Workshop on Fault Tolerant Parallel and Distributed Systems, LNCS
1388, 1998, pp.742-755.

[48] P. Ramanathan and K.G. Shin, Use of Common Time Base for Check-
pointing and Rollback Recovery in Distributed Systems, IEEE Transac-
tions on Software Engineering, 19(6):571-583, 1993.

[49] B. Randell, System Structure for Software Fault Tolerance, IEEE Trans-
actions on Software Engineering, SE1(2):220-232, 1975.

[50] D.L. Russell, State Restoration in Systems of Communicating Processes,
IEEE Transactions on Software Engineering, SE6(2): 183-194, 1980.

[51] K. Salem and H. Garcia-Molina, Checkpointing Memory Resident
Databases, Tech. Rep. CS-TR-126-87, Department of Computer Science,
Princeton University, December 1987.

[52] S.H. Son and A.K. Agrawala, Distributed Checkpointing for Globally
Consistent States of Databases, IEEE Transactions on Software Engi-
neering, 15(10):1157-1166, 1989.

[53] R.E. Strom, S.A. Yemini and D.F. Bacon, A Recoverable Object Store,
Proc. Hawaii Int. Conference on Sistem Science, 1998, pp. II-215-II-221.

[54] R.E. Strom, D.F. Bacon and S.A. Yemini, Volatile Logging in n-Fault-
Tolerant Distributed Systems, Proc. IEEE Int. Symposium on Fault Tol-
erant Computing, 1988, pp. 44-49.

[55] Y. Tamir and C.H Sequin, Error Recovery in Multicomputers Using
Global Checkpoints, Proc. Int. Conference on Parallel Processing, 1984,
pp. 32-41.

122 BIBLIOGRAPHY

[56] Z. Tong, R.Y. Kain and T. Tsai, Rollback Recovery in Distributed Sys-
tems Using Loosely Synchronized Clocks, IEEE Transactions on Parallel
and Distributed Systems, 3(2):246-251, 1992.

[57] K.Tusuoka, A. Kaneko and Y. Nishihara, Dynamic Recovery Schemes
for Distributed Processes, Proc. IEEE Int. Symposium on Reliability in
Distributed Software and Databases, 1981, pp.124-130.

[58] K. Vankatesh, T. Radakrishanan, and H.L. Li. Optimal Checkpointing
and Local Recording for Domino-Free Rollback-Recovery, Information
Processing Letters, 25:295-303, 1987.

[59] Y.M. Wang, A. Lowry and W.K. Fuchs, Consistent Global Checkpoints
Based on Direct Dependency Traking, Information Processing Letters,
50(4): 223-230, 1994.

[60] Y.M. Wang and W.K. Fuchs, Optimistic Message Logging for Indepen-
dent Checkpointing in Message Passing Systems, in Proc. IEEE Int. Sym-
posium on Reliable Distributed Systems, pp. 147-154, 1992.

[61] Y.M. Wang and W.K. Fuchs, Lazy Checkpoint Coordination for Bound-
ing Rollback Propagation, in Proc. IEEE Int. Symposium on Reliable
Distributed Systems, pp. 78-85, 1993.

[62] Y.M. Wang, Space Reclamation for Uncordinated Checkpointing in
Message-Passing Systems, PhD Thesis, Department of Electrical and
Computer Engineering, University of Illinois at Urbana Champaign, 1993.

[63] Y.M. Wang, Maximum and Minimum Consistent Global Checkpoints and
Their Applications, Proc. IEEE Int. Symposium on Reliable Distributed
Systems, 1995, pp. 86-95.

[64] Y.M. Wang, Consistent Global Checkpoints That Contain a Given Set
of Local Checkpoints. IEEE Transactions on Computers, 46(4):456-468,
1997.

[65] Y.M. Wang, Y. Huang, W.K. Fuchs, C. Kintala and G. Suri, Progres-
sive Retry for Software Failure Recovery in Message-Passing Applications.
IEEE Transactions on Computers, 46(10):1137-1141, 1997.

[66] Y.M. Wang, Y. Huang, K.P. Vo, P.Y. Chung and C. Kintala, Check-
pointing and its Applications. IEEE Int. Symposium on Fault Tolerant
Computing, 1995, pp. 22-31.

[67] J. Xu and R. Netzer, Adaptive Independent Checkpointing for Reduc-
ing Rollback Propagation, Proc. IEEE Symposium on Parallel and Dis-
tributed Processing, 1993, pp. 154-161.

Glossary

List of abbreviations

CAS : Checkpoint-After-Send
CASBR : Checkpoint-After-Send-Before-Receive
CBR : Checkpoint-Before-Receive
CZC : Core Z-Cycle
DP : Dependence Path
PESCM : Prime-Elementary-Simple-Causal-Message
EZC : Elementary Z-Cycle
FDAS : First Dependency-After-Send
FDI : Fixed Dependency Interval
MRS : Mark Receive Send
PWD : Piecewise-Deterministic
NZC : No-Z-Cycle property
PZC : Prime Z-Cycle
RDT : Rollback-Dependency-Trackability property
SCZC : Suspect Core Z-Cycle
SZpF : Strictly Z-path Free
VP : Virtual Precedence property
ZpF : Z-path Free

Notations

m : message
[m1, . . . ,mq] : sequence of q messages constituting a Z-path
send(m) : send event of message m
receive(m) : receive event of message m
ζ : message chain
µ : causal message chain
|ζ| : number of messages of the chain ζ

123

124 BIBLIOGRAPHY

S(ζ) : sequence of checkpoint intervals associated to ζ
P : set of all processes
Pi : process of identity i
ei,x : x-th event of Pi

Ci,x : x-th checkpoint of Pi

Ii,x : x-th checkpoint interval of Pi

≺P : precedence on events in a process
≺m : precedence on events due to message exchange
e→ : Happened-Before relation on events
I→ : precedence relation on checkpoint intervals
◦ : causal concatenation
• : non-causal concatenation
≺ckpt : precedence relation on checkpoints
M(Ci,x, Pk) : set of causal message chains from Ci,x to Pk

min(M(Ci,x, Pk)) : set of minimum elements in M(Ci,x, Pk)
sni : sequence number of Pi

eni : equivalence number of process Pi

H : set of all events

Ĥ : partially ordered set (H, e→)
CĤ : set of all local checkpoints

T : set of all transactions
Ti : transaction of identity i
<T : precedence relation on transactions
σi
x : i-th version of data object x

<LS : precedence on local states of data objects
Ci
x : i-th checkpoint of data object x

DP→ : precedence relation due to a Dependence Path

Università La Sapienza
Dottorato di Ricerca in Ingegneria Informatica

Collana delle tesi
Collection of Theses

V-93-1 Marco Cadoli. Two Methods for Tractable Reasoning in Artificial
Intelligence: Language Restriction and Theory Approximation. June
1993.

V-93-2 Fabrizio d’Amore. Algorithms and Data Structures for Partitioning
and Management of Sets of Hyperrectangles. June 1993.

V-93-3 Miriam Di Ianni. On the complexity of flow control problems in Store-
and-Forward networks. June 1993.

V-93-4 Carla Limongelli. The Integration of Symbolic and Numeric Compu-
tation by p-adic Construction Methods. June 1993.

V-93-5 Annalisa Massini. High efficiency self-routing interconnection net-
works. June 1993.

V-93-6 Paola Vocca. Space-time trade-offs in directed graphs reachability
problem. June 1993.

VI-94-1 Roberto Baldoni. Mutual Exclusion in Distributed Systems. June
1994.

VI-94-2 Andrea Clementi. On the Complexity of Cellular Automata. June
1994.

VI-94-3 Paolo Giulio Franciosa. Adaptive Spatial Data Handling. June 1994.

VI-94-4 Andrea Schaerf. Query Answering in Concept-Based Knowledge
Representation Systems: Algorithms, Complexity, and Semantic Issues.
June 1994.

VI-94-5 Andrea Sterbini. 2-Thresholdness and its Implications: from the
Synchronization with PVchunk to the Ibaraki-Peled Conjecture. June
1994.

VII-95-1 Piera Barcaccia. On the Complexity of Some Time Slot Assignment
Problems in Switching Systems. June 1995.

VII-95-2 Michele Boreale. Process Algebraic Theories for Mobile Systems.
June 1995.

VII-95-3 Antonella Cresti. Unconditionally Secure Key Distribution Proto-
cols.

June 1995.

VII-95-4 Vincenzo Ferrucci. Dimension-Independent Solid Modeling. June
1995.

VII-95-5 Esteban Feuerstein. On-line Paging of Structured Data and Multi-
threaded Paging. June 1995.

VII-95-6 Michele Flammini. Compact Routing Models: Some Complexity
Results and Extensions. June 1995.

VII-95-7 Giuseppe Liotta. Computing Proximity Drawings of Graphs. June
1995.

VIII-96-1 Luca Cabibbo. Querying and Updating Complex-Object Databases.
May 1996.

VIII-96-2 Diego Calvanese. Unrestricted and Finite Model Reasoning in
Class-Based Representation Formalisms. May 1996.

VIII-96-3 Marco Cesati. Structural Aspects of Parameterized Complexity.
May 1996.

VIII-96-4 Flavio Corradini. Space, Time and Nondeterminism in Process
Algebras. May 1996.

VIII-96-5 Stefano Leonardi. On-line Resource Management with Application
to Routing and Scheduling. May 1996.

VIII-96-6 Rosario Pugliese. Semantic Theories for Asynchronous Languages.
May 1996.

IX-97-1 Paola Alimonti. Local search and approximability of MAX SNP
problems. May 1997.

IX-97-2 Tiziana Calamoneri. Does Cubicity Help to Solve Problems?. May
1997.

IX-97-3 Paolo Di Blasio. A Calculus for Concurrent Objects: Design and
Control Flow Analysis. May 1997.

IX-97-4 Bruno Errico. Intelligent Agents and User Modelling. May 1997.

IX-97-5 Roberta Mancini. Modelling Interactive Computing by exploiting the
Undo. May 1997.

IX-97-6 Riccardo Rosati. Autoepistemic Description Logics. May 1997.

IX-97-7 Luca Trevisan. Reductions and (Non-)Approximability. May 1997.

X-98-1 Gianluca Battaglini. Analysis of Manufacturing Yield Evaluation of
VLSI/WSI Systems: Methods and Methodologies. April 1998.

X-98-2 Piergiorgio Bertoli. Using OMRS in practice: a case study with Acl-2.
April 1998.

X-98-3 Chiara Ghidini. A semantics for contextual reasoning: theory and
two relevant applications. April 1998.

X-98-4 Roberto Giaccio. Visiting complex structures. April 1998.

X-98-5 Giampaolo Greco. Dimension and structure in Combinatorics. April
1998.

X-98-6 Paolo Liberatore. Compilation of intractable problems and its appli-
cation to artificial intelligence. April 1998.

X-98-7 Fabio Massacci. Efficient approximate tableaux and an application to
computer security. April 1998.

X-98-8 Chiara Petrioli. Energy-Conserving Protocols for Wireless Communi-
cations. April 1998.

X-98-9 Giulio Balestreri. Algebraic Semantics of Shared Spaces Coordination
Languages. April 1999.

XI-99-1 Luca Becchetti. Efficient Resource Management in High Bandwidth
Networks. April 1999.

XI-99-2 Nicola Cancedda. Text Generation from Message Understanding
Conference Templates. April 1999.

XI-99-3 Luca Iocchi. Design and Development of Cognitive Robots. April
1999.

XI-99-4 Francesco Quaglia. Consistent checkpointing in distributed computa-
tions: theoretical results and protocols. April 1999.

XI-99-5 Milton Romero. Disparity/Motion Estimation For Stereoscopic Video
Processing. April 1999.

