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memcpy vs kernel internals 

 Data move between user and kernel level buffers 

cannot rely on base buffer-management 

implementations such as memcpy() 

 The reasons are: 

  ring based protection 

  segmentation based addressing 

 Particularly, segments that are mapped to the same 

base are fully accessible while running at ring 0  

Check and resolution of discrepancies needs 

to be carried out at run-time 



User/kernel level data move (i) 

unsigned long copy_from_user(void *to, const 
void *from, unsigned long n) 

 Copies n bytes from the user address(from) to the kernel address 
space(to). 

 

unsigned long copy_to_user(void *to, const void 
*from, unsigned long n) 

 Copies n bytes from the kernel address(from) to the user address 
space(to). 

 

void get_user(void *to, void *from) 

 Copies an integer value from userspace (from) to kernel space (to). 

 

void put_user(void *from, void *to) 

 Copies an integer value from kernel space (from) to userspace (to). 

 



User/kernel level data move (ii) 

long strncpy_from_user(char *dst, const char 
*src, long count) 

 Copies a null terminated string of at most count bytes long from 
userspace (src) to kernel space (dst) 

 

int access_ok(int type, unsigned long addr, 
unsigned long size) 

 Returns nonzero if the userspace block of memory is valid and zero 
otherwise 



A scheme 

These functions return the residuals  

(bytes not managed) 

Most of them ground on  
access_ok() 

The actual copy operation may lead the thread to sleep 

 (we will be back to this issue when talking of contexts) 



Main tasks 

Segment fixup (if segmentation takes a real role in 
the composition of the addresses) 

Check on address ranges related to user level 

The actual depth of check may depend on the specific 
implementation (namely on the kernel version) 

E.g., the process memory map might be checked or not 

Note:   associating physical to virtual memory is 
demanded to the page-fault handler  

Performance impact due to (possible) non-atomicity 
while finalizing the handling  



Service redundancy approaches 

• Check e fixup are required only in case we need to 

link activities across different privilege levels within 

the ring model (as when calling system calls) 

• Particularly, this occurs when the execution semantic 

crosses the boundaries of individual segments  

• Bypassing check e fixup when no crossing of segment 

boundaries occurs takes place via “service 

redundancy” (for performance reasons) 

• The kernel layer entails an internal API for executing 

activities that are typically triggered when running in 

user mode 



Classical examples 

• kernel_read()    is a redundancy for   read() 

• kernel_write()  is a redundancy for   write() 

read() – syscall 

sys_read() 

read() – file operation 

real data movement 

call from the kernel 

kernel_read() 

This requires 

a patch 


