
Cross ring data move
1. Segmentation based protection breaks in data move

2. Kernel level actual data move facilities

3. Kernel level service replication

Advanced Operating Systems

MS degree in Computer Engineering

University of Rome Tor Vergata

Lecturer: Francesco Quaglia

memcpy vs kernel internals

 Data move between user and kernel level buffers

cannot rely on base buffer-management

implementations such as memcpy()

 The reasons are:

 ring based protection

 segmentation based addressing

 Particularly, segments that are mapped to the same

base are fully accessible while running at ring 0

Check and resolution of discrepancies needs

to be carried out at run-time

User/kernel level data move (i)

unsigned long copy_from_user(void *to, const
void *from, unsigned long n)

 Copies n bytes from the user address(from) to the kernel address
space(to).

unsigned long copy_to_user(void *to, const void
*from, unsigned long n)

 Copies n bytes from the kernel address(from) to the user address
space(to).

void get_user(void *to, void *from)

 Copies an integer value from userspace (from) to kernel space (to).

void put_user(void *from, void *to)

 Copies an integer value from kernel space (from) to userspace (to).

User/kernel level data move (ii)

long strncpy_from_user(char *dst, const char
*src, long count)

 Copies a null terminated string of at most count bytes long from
userspace (src) to kernel space (dst)

int access_ok(int type, unsigned long addr,
unsigned long size)

 Returns nonzero if the userspace block of memory is valid and zero
otherwise

A scheme

These functions return the residuals

(bytes not managed)

Most of them ground on
access_ok()

The actual copy operation may lead the thread to sleep

 (we will be back to this issue when talking of contexts)

Main tasks

Segment fixup (if segmentation takes a real role in
the composition of the addresses)

Check on address ranges related to user level

The actual depth of check may depend on the specific
implementation (namely on the kernel version)

E.g., the process memory map might be checked or not

Note: associating physical to virtual memory is
demanded to the page-fault handler

Performance impact due to (possible) non-atomicity
while finalizing the handling

Service redundancy approaches

• Check e fixup are required only in case we need to

link activities across different privilege levels within

the ring model (as when calling system calls)

• Particularly, this occurs when the execution semantic

crosses the boundaries of individual segments

• Bypassing check e fixup when no crossing of segment

boundaries occurs takes place via “service

redundancy” (for performance reasons)

• The kernel layer entails an internal API for executing

activities that are typically triggered when running in

user mode

Classical examples

• kernel_read() is a redundancy for read()

• kernel_write() is a redundancy for write()

read() – syscall

sys_read()

read() – file operation

real data movement

call from the kernel

kernel_read()

This requires

a patch

