
Hardware insights

• Pipelining and superscalar processors

• Speculative hardware

• Multi-processors and multi-cores

• Physical memory organization

• Memory coherency and consistency

• Hardware synchronization support

• Linearizability and thread coordination schemes

• Vectorization

• Hardware related security hints

Advanced Operating Systems

MS degree in Computer Engineering

University of Rome Tor Vergata

Lecturer: Francesco Quaglia

The need for holistic programming

Passage of time

S
ta

te
 o

f
th

e
ar

t

so
ft

w
ar

e
ab

st
ra

ct
io

n
s

Assembly

B/C

C++/Java

……

Web API

Lost of knowledge on

actual hardware features

Incapacity to master

compiling and

configuration tools

Lost of opportunities for

new software

development methods

More powerful and

expressive coding tools

More maintainable/portable

and reusable software

More reusable

run-time systems

The missing piece of information

• The actual state of a program is not the “puzzle” of the states of its

individual software components

• Each component sees and updates a state portion that is not trivially

reflected into the view by other components

• A component even does not know whether hardware state beyond the

ISA-exposed one can be affected by its execution

• In real systems things may occur in different ways because of

 Compiler decisions

 Hardware run-time decisions

 Availability (vs absence) of hardware features

• More abstractly, there is a combination of software and hardware non-

determinism

• Ideally programmers should know of all this to produce correct, secure

and efficient software

The common fallback … and our path

• Simply exploit what someone already did (libraries, run-time

environments, algorithmic and coding approaches ….)

• But you should know that this still does not guarantee you are

writing (or running) a program the most efficient (or even correct)

way

• …. in the end knowing the hardware and the under-the-hood layers

we actually work with provides us with possibilities for better

achievements in software development

• Nowadays hardware is multi-core, which is characterize by some

major aspect that need to be reflected on software programming

• We could ideally study those aspects, and proper software design

approaches at different levels – we will take the OS kernel one as

our core reference

A very trivial example: Lamport’s Bakery

var choosing: array[1,n] of boolean;

 number: array[1,n] of int;

repeat {

 choosing[i] := TRUE;

 number [i] := <max in array number[] + 1>;

 choosing[i] := FALSE;

 for j = 1 to n do {

 while choosing[j] do no-op;

 while number[j] 0 and (number [j],j)< (number [i],i) do no-op;

 }

 <critical region>;

 number[i] := 0;

}until FALSE

Typically no machine (unless single-core)

guarantees globally consistent

view of this update sequence

Entering a few details

• The machine model we have been used to think of is the von Newman’s

one

 Single CPU abstraction

 Single memory abstraction

 Single control flow abstraction: fetch-execute-store

 Time separated state transitions in the hardware: no more than one

in-flight instruction at anytime

 Defined memory image at the startup of any instruction

• The modern way of thinking architectures is instead not based on the

flow of things as coded in a program, rather on the concept of scheduling

things (e.g. usage of hardware components) to do something equivalent

to that program flow

• Hopefully the schedule allows doing stuff in parallel

• …. what about programs naturally made up by multiple flows? – this is

exactly an OS kernel!!

Types of scheduling

• In the hardware

 Instruction executions within a single program flow

 Instruction executions in parallel (speculative) program flows

 Propagation of values within the overall memory (more

generally hardware) system

• At software level

 Definition of time frames for threads’ execution on the

hardware

 Definition of time frames for activities’ execution on the

hardware

 Software based synchronization supports (thread/task

synchronization)

Parallelism

• Baseline hardware form – ILP (Instruction Level Parallelism):

 The CPU is able to process 2 or more instructions of a

same flow during the same cycle (even vectorized or

dynamically scheduled – or both)

 It can therefore deliver instruction commits at each

individual cycle (even tough a single instruction can take

several cycles to complete)

• Software reflected form (Thread Level Parallelism):

 A program can be though as of the combination of multiple

concurrent flows

 Concurrency can boil down to actual wall-clock-time

parallelism in multi-processing (or ILP) hardware systems

Baseline notion of computing speed

• It is typically related to the Gigahertz (GHz) rating of a processor

• However, we clearly know that this way of thinking is only partially

correct

• There are instructions that can take long sequences of CPU-cycles

just because of unpredictable factors

 Hardware interactions

 Asymmetries and data access patterns

• In the end we can generally think of categories of programs (or

programs’ blocks) that are more ore less importantly affected by the

clock speed

 CPU-bound programs

 Memory-bound programs - that’ why we need to know about how to

deal with memory in modern systems!!

CPU vs memory performance

Overlapped processing: the pipeline

• The very baseline hardware form of overlapped processing is

pipelining

• It is a Scheduling+Parallelism hardware-based technique

• Here we no longer have a clear temporal separation of the

execution windows of different instructions (this is parallelism!!)

• What is sequenced within a program (I’m here referring to an

actual executable) is not necessarily executed in that same

sequence in the hardware (this is scheduling!!)

• However, causality needs to be preserved

• This is actually a data flow model (a source should be read based

on the actual latest update along the instruction sequence)

Instruction stages

• IF – Instruction Fetch

• ID – Instruction Decode

• LO – Load Operands

• EX – Execute

• WB – Write Back

The different phases hopefully

need to rely on different hardware

components

Overlapping stages: the pipeline

• Each instruction uses 1/5 of the resources per cycle

• We can overlap the different phases

• We can therefore get speedup in the execution of a program, as

compared to the non-pipeline version

Speedup analysis

• Suppose we want to provide N outcomes (one per instruction) and

we have L processing stages and clock cycle T

• With no pipelining we get (N x L x T) delay

• With pipelining we get the order of ([N+L] x T) delay

• The speedup is (NxL)/(N+L) so almost L (for large N)

• For N = 100 and L = 5 we get 4.76 speedup

• For L = 1 no speedup at all arises (obviously!!)

• So ideally the greater L the better the achievable performance

• But we do not live in an ideal world, in fact pipelined processors

typically entail no more than the order of tens of stages (Pentium

had 5 – i3/i5/i7 have 14 – ARM-11 has 8), although a few

implement parts of an original instruction step

From the ideal to the real world:

pipeline breaks

• Data dependencies

• Control dependencies

A conditional branch leads to identify the

subsequent instruction at its EX stage

A data conflict makes results available for the

subsequent instruction at WB

Handling the breaks

• Software stalls – compiler driven

• Software re-sequencing (or scheduling) – compiler driven

• Hardware propagation (up to what is possible)

• Hardware reschedule (out-of-order pipeline - OOO)

• Hardware supported hazards (for branches)

Ordering of the execution steps of the instructions

is not based on how they touch ISA exposed hardware

components (such as registers)

The Intel x86 pipeline

• In a broad analysis, Intel x86 processors did not change that much

over time in terms of software exposed capabilities

• The 14 registers (AX, BX, .. etc) of the 8086 are still there on e.g.

core-i7 processors (RAX, RBX .. etc)

• However, the 8086 was not pipelined, it processed instructions via

[FETCH, DECODE, EXECUTE, RETIRE] steps in pure sequence

(not in a pipeline)

• In 1999 the i486 moved to a 5 stage pipeline, with a classical

organization plus 2 DECODE steps (primary and secondary –

Decode/Translate)

This was for

calculations

like displacements

in a complex

addressing model

Pipelining vs software development

• Programmers cannot drive the internal behavior of a pipeline

processor (that’s microcode!!!!)

• However, the way software is written can hamper the actual

pipeline efficiency

• An example – XOR based swap of 2 values:

– XOR a,b – XOR b,a XOR a,b

• Each instruction has a source coinciding with a destination of the

previous instruction

Some examples

• Pointer based accesses plus pointer manipulation should be

carefully written

• Writing in a cycle the following two can make a non negligible

difference

– a = *++p

– a = *p++

• Also, there are machine instructions which lead to flush the

pipeline, because of the actual organization of the internal CPU

circuitry

• In x86 processors, one of them is CPUID which gets the numerical

id of the processor we are working on

• On the other hand using this instruction you are sure that no

previous instruction in the actual executable module is still in

flight along the pipeline

The Intel x86 superscalar pipeline

• Multiple pipelines operating simultaneously

• Intel Pentium Pro processors (1995) had 2 parallel pipelines

• EX stages could be actuated in real parallelism thanks to hardware

redundancy and differentiation (multiple ALUs, differentiated

int/float hardware processing support etc)

• Given that slow instructions (requiring more processor cycles)

were one major issue, this processor adopted the OOO model

(originally inspired by Robert Tomasulo’s Algorithm – IBM

360/91 1966)

• Baseline idea:

 Commit (retire) instructions in program order

 Process independent instructions (on data and resources) as soon as

possible

The instruction time span problem

Delay reflected in to a pipeline execution of

independent instructions

The instruction time span problem

Stall becomes

a reschedule

Commit order needs to be

preserved because of, e.g.

WAW (Write After Write)

conflicts

OOO pipeline - speculation

• Emission: the action of injecting instructions into the pipeline

• Retire: The action of committing instructions, and making their

side effects “visible” in terms of ISA exposed architectural

resources

• What’s there in the middle between the two?

• An execution phase in which the different instructions can

surpass each other

• Core issue (beyond data/control dependencies): exception

preserving!!!

• OOO processors may generate imprecise exceptions such that

the processor/architectural state may be different from the one

that should be observable when executing the instructions along

the original order

OOO example

Different

instructions
Program flow

…..

Pipeline stages

…..

Pipeline stages

…..

Pipeline stages
Program flow

maintained

Program flow

speculatively subverted

No ISA exposed resource

is modified

Imprecise exceptions

• The pipeline may have already executed an instruction A that,

along program flow, is located after an instruction B that

causes an exception

• Instruction A may have changed the micro-architectural state,

although finally not committing its actions onto ISA exposed

resources (registers and memory locations updates) – the

recent Meltdown security attack exactly exploits this feature

• The pipeline may have not yet completed the execution of

instructions preceding the offending one, so their ISA

exposed side effects are not yet visible upon the exception

• …. we will be back with more details later on

A scheme

Different

instructions Program flow

…..

Pipeline stages

…..

Pipeline stages Program flow

speculatively subverted -

no ISA exposed resource

is modified

If this instruction accesses to some invalid resource

(e.g. memory location, or currently un-accessible

in-CPU component) that program flow is no longer valid and the

other instruction cannot currently provide a valid execution, but

something in the hardware may have already happened along its

processing

Robert Tomasulo’s algorithm

• Let’s start from the tackled hazards – the scenario is of

two instructions A and B such that AB in program

order:

• RAW (Read After Write) – B reads a datum before A

writes it, which is clearly stale – this is a clear data

dependency

• WAW (Write After Write) – B writes a datum before A

writes the same datum – the datum exposes a stale value

• WAR (Write After Read) – B writes a datum before A

reads the same datum – the read datum is not consistent

with data flow (it is in the future of A’s execution)

Algorithmic ideas

• RAW – we keep track of “when” data requested in input by

instructions are ready

• Register renaming for coping with both WAR an WAW

hazards

• In the renaming scheme, a source operand for an instruction

can be either an actual register label, or another label (a

renamed register)

• In the latter case it means that the instruction needs to read

the value from the renamed register, rather than from the

original register

• A renamed register materializes the concept of speculative

(not yet committed) register value, made anyhow available as

input to the instructions

Reservation stations

• They are buffers (typically associated with different kinds of

computational resources – integer vs floating point operators)

• They contain:

• OP – the operations to be executed

• Qj, Qk – the reservation stations that will produce the

input for OP

• Alternatively, Vj, Vk, the actual values (e.g. register

values) to be used in input by OP

• By their side, registers are marked with the reservation

station name Q such that it will produce the new value to be

installed, if any

CDB and ROB

• A Common Data Bus (CDB) allows data to flow across

reservation stations (so that an operation is fired when all its

input data are available)

• A Reorder Buffer (ROB) acquires all the newly produced

instruction values (also those transiting on CDB), and keeps

them uncommitted up to the point where the instruction is

retired

• ROB is also used for input to instructions that need to read

from uncommitted values

An architectural scheme

beware this!!

An example execution scheme

Program flow

In
 C

P
U

 l
at

en
ci

es
 A B C

A: f(R1,R2) R1

B: f’(R1) R3

C: f’(R4) R1

RAW

WAW

RS-f RS-f’ RS-f’

A B C

Writes to

 R1 (via ROB)

Writes to

 R1 alias’

Reads from

 R1 alias’

’

Instruction C is completed

at delay (rather than at ’ or later)

RS = Reservation Station

WAR The 2 (speculative)

writes are ordered in ROB

Back to the memory wall

In
 C

P
U

 +
 c

ac
h
e

m
is

s
la

te
n
cy

A B C

’

x86 OOO main architectural

organization

Who depends on who?

Impact of OOO in x86

• OOO allowed so fast processing of instructions that room was still

there on core hardware components to actually carry out work

• … also because of delays within the memory hierarchy

• … why not using the same core hardware engine for multiple

program flows?

• This is called hyper-threading, and is actually exposed to the

programmer at any level (user, OS etc.)

• ISA exposed registers (for programming) are replicated, as if we

had 2 distinct processors

• Overall, OOO is not exposed (instructions are run as in a black

box) although the way of writing software can impact the

effectiveness of OOO and more generally of pipelining

Baseline architecture of OOO

Hyper-threading

Coming to interrupts

• Interrupts typically flush all the instructions in the pipeline,

as soon as one commits and the interrupt is accepted

• As an example, in a simple 5-stage pipeline IF, ID, EX, MEM

residing instructions are flushed because of the acceptance of

the interrupt on the WB phase of the currently finalized

instruction

• This avoids the need for handling priorities across interrupts

and exceptions possibly caused by instructions that we might

let survive into the pipeline (no standing exception)

• Interrupts may have a significant penalty in terms of wasted

work on modern OOO based pipelines

• Also, in flight instructions that are squashed may have

changed the micro-architectural state on the machine

Back to exceptions:

types vs pipeline stages

• Instruction Fetch, & Memory stages

– Page fault on instruction/data fetch

– Misaligned memory access

– Memory-protection violation

• Instruction Decode stage

– Undefined/illegal opcode

• Execution stage

– Arithmetic exception

• Write-Back stage

– No exceptions!

Back to exceptions: handling

• When an instruction in a pipeline gives rise to an exception, the

latter is not immediately handled

• As we shall see later, such instruction in fact might even require to

disappear from program flow (as an example because of miss-

prediction in branches)

• It is simply marked as offending (with one bit traveling with the

instruction across the pipeline)

• When the retire stage is reached, the exception takes place and the

pipeline is flushed, resuming fetch operations from the right place

in memory

• NOTE: micro architectural effects of in flight instructions that are

later squashed (may) still stand there – see the Meltdown attack

against Itel and ARM processors …

Coming to the example

Different

instructions Program flow

…..

Pipeline stages

…..

Pipeline stages Program flow

speculatively subverted -

no ISA exposed resource

is modified

Offends and goes forward, and also propagates

“alias” values to the other instruction, which goes

forward up to the squash of the first

Meltdown primer

Flush cache

Read a kernel level byte B

Use B for displacing and reading memory

A sequence with

imprecise exception under

OOO

Offending instruction

(memory protection violation)

“Phantom” instruction with real

micro-architectural side effects

A graphical representation of what happens

Flush cache

Read a kernel level byte B

Use B for displacing and

reading memory in some

known zone, say this

The cache

Loading lines in

cache is not an

ISA exposed

effect

If we can measure the access delay for

hits and misses when reading that zone,

we would know what was the value of B

Overall

• The cache content, namely the state of the cache can change

depending on processor design and internals, not necessarily

at the commitment of instructions

• Such content is in fact not directly readable in the ISA

• We can only read from logical/main memory, so a program

flow would ideally be never affected by the fact that a datum

is or is not in cache at a given point of the execution

• The only thing really affected is performance

• But this may say something to who exactly observes

performance to infer the actual state of the caching

system

• This is a so called side-channel (or covert-channel) attack

At this point we need

additional details on x86

RIP

The instruction set: data transfer examples

AT&T syntax
mov{b,w,l} source, dest

 General move instruction

push{w,l} source

 pushl %ebx # equivalent instructions

 subl $4, %esp

 movl %ebx , (%esp)

pop{w,l} dest

 popl %ebx # equivalent instructions

 movl (%esp), %ebx

 addl $4, %esp

Variale length operands

 movb $0x4a, %al #byte

 movw $5, %ax #16-bit

 movl $7, %eax #32-bit

No operand-size specification

means (the default) 64-bit

operand on x86-64

The instruction set: linear addressing

(Index * scale) + displacement movl (,%eax,4), %ebx

Base + (index * scale) + displacement movl foo(%ecx,%eax,4), %ebx

The instruction set: bitwise logical

instructions (base subset)

and{b,w,l} source, dest dest = source & dest

or{b,w,l} source, dest dest = source | dest

xor{b,w,l} source, dest dest = source ^ dest

not{b,w,l} dest dest = ^dest

sal{b,w,l} source, dest (arithmetic)

 dest = dest << source

sar{b,w,l} source, dest (arithmetic)

 dest = dest >> source

Arithmetic (base subset)

add{b,w,l} source, dest dest = source + dest

sub{b,w,l} source, dest dest = dest – source

inc(b,w,l} dest dest = dest + 1

dec{b,w,l} dest dest = dest – 1

neg(b,w,l} dest dest = ^dest

cmp{b,w,l} source1, source2

 source2 – source1

The Meltdown code example – Intel syntax

(mostly reverts operand order vs AT&T)

This is B

Use B as the index of a page

B becomes the displacement

of a given page in an array

The target cache zone is an array

of 256 pages – only the 0-th byte

of the B-th page will experience

a cache hit (under the assumption that

concurrent actions are not using that

cache zone)

Countermeasures

• KASLR (Kernel Address Space Randomization) –

limitation of being dependent on the maximum shift we

apply on the logical kernel image (40 bit in Linux Kernel

4.12, enabled by default) - clearly this is still weak vs

brute force attacks

• KAISER (Kernel Isolation in Linux) – still exposes the

interrupt surface but it is highly effective

• Explicitly cache-flush at each return from kernel mode –

detrimental for performance and still not fully resolving

as we will discuss

A scheme for KASLR
Classical virtual

address space usage

Randomization of the

kernel positioning

Data and instruction accesses in

memory based on displacement

from the instruction pointer

(rip – relative on x86 processors)

Kernel

stuff Kernel

stuff

Predetermined address for

storing kernel level

data/routines

Per startup

randomization

shift

Usage with randomization

A scheme for KAISER

Most kernel pages are

unmapped from the page table

when returning to user mode

(requires TLB flushes)

Kernel

stuff Kernel

stuff

Predetermined address for

storing kernel level

data/routines

Necessary kernel-

entry points (e.g.

for interrupt

handling) are left

accessible

Variation of the kernel mapping

Kernel

stuff

unmapped

zone

Classical kernel mapping

Pipeline vs branches

• The hardware support for improving performance under

(speculative) pipelines in face of branches is called Dynamic

Predictor

• Its actual implementation consists of a Branch-Prediction Buffer

(BPB) – or Branch History Table (BHT)

• The baseline implementation is based on a cache indexed by lower

significant bits of branch instructions and one status bit

• The status bit tells whether the jump related to the branch

instruction has been recently executed

• The (speculative) execution flow follows the direction related to

the prediction by the status bit, thus following the recent behavior

• Recent past is expected to be representative of near future

Multiple bits predictors

• One bit predictors “fail” in the scenario where the branch is often

taken (or not taken) and infrequently not taken (or taken)

• In these scenarios, they leads to 2 subsequent errors in the

prediction (thus 2 squashes of the pipeline)

• Is this really important? Nested loops tell yes

• The conclusion of the inner loop leads to change the prediction,

which is anyhow re-changed at the next iteration of the outer loop

• Two-bit predictors require 2 subsequent prediction errors for

inverting the prediction

• So each of the four states tells whether we are running with

 YES prediction (with one or zero mistakes since the last passage on

the branch)

 NO prediction (with one or zero mistakes since the last passage on

the branch)

An example – AT&T syntax (we will no

longer explicitly specify the actual syntax)

1 mov $0, %ecx

2 . outerLoop:

3 cmp $10, %ecx

4 je .done

5 mov $0, %ebx

6

7 .innerLoop:

8 ; actual code

9 inc %ebx

10 cmp $10, %ebx

11 jnz .innerLoop

12

13 inc %ecx

14 jmp .outerLoop

15 .done:

This branch prediction is inverted

at each ending inner-loop cycle

The actual two-bit predictor state

machine

Do we need to go beyond two-bit

predictors?
• Conditional branches are around 20% of the instructions in

the code

• Pipelines are deeper

 A greater misprediction penalty

• Superscalar architectures execute more instructions at once

 The probability of finding a branch in the pipeline is

higher

• The answer is clearly yes

• One more sophisticate approach offered by Pentium (and

later) processors is Correlated Two-Level Prediction

• Another one offered by Alpha is Hybrid Local/Global

predictor (also known as Tournament Predictor)

A motivating example

if (aa == VAL)

 aa = 0 ;

if (bb == VAL)

 bb = 0;

if (aa != bb){

 //do the work

}

Not branching on these implies

branching on the subsequent

Idea of correlated prediction: lets’ try to

predict what will happen at the third branch

by looking at the history of what happened in

previous branches

The (m,n) two-level correlated predictor

• The history of the last m branches is used to predict what will

happen to the current branch

• The current branch is predicted with an n-bit predictor

• There are 2^m n-bit predictors

• The actual predictor for the current prediction is selected on

the basis of the results of the last m branches, as coded into

the 2^m bitmask

• A two-level correlated predictor of the form (0,2) boils own

to a classical 2-bit predictor

(m,n) predictor architectural schematization

m = 5

n = 2

Tournament predictor

• The prediction of a branch is carried out by either using a

local (per branch) predictor or a correlate (per history)

predictor

• In the essence we have a combination of the two different

prediction schemes

• Which of the two needs to be exploited at each individual

prediction is encoded into a 4-states (2-bit based) history of

success/failures

• This way, we can detect whether treating a branch as an

individual in the prediction leads to improved effectiveness

compared to treating it as an element in a sequence of

individuals

The very last concept on branch

prediction: indirect branches

• These are branches for which the target is not know at

instruction fetch time

• Essentially these are kind of families of branches (multi-

target branches)

• An x86 example: jmp eax

Coming back to security

• A speculative processor can lead to micro-architectural

effects by phantom instructions also in cases where the

branch predictor fails, and the pipeline is eventually squashed

• If we can lead executing instructions in the phantom portion

of the program flow to leave these micro-architectural effects

then we can observe them via a side (covert) channel

• This is the baseline idea of Spectre attacks

• This have ben shown to kill Intel, AMD and ARM processors

Spectre primer

If (condition involving a target value X)

 access array A at position

 B[X]<<12 //page size displacement

Suppose we run with

miss-prediction

The target line of A is cached

(as a side effect) and we can inspect this

via a side channel
Clearly B can be

whatever address,

so B[X] is whatever

value

A scheme

If (condition in a target value X)

 access array A at position

 B[X]<<12 //page size displacement

A is cache

evicted

B is a kernel

zone
X

B[X]<<12 is used to read from A

This brings one over 4096

bytes (so the corresponding

cache line) into the cache and

we can observe this via a side

channel

Actual code taken form

the original Spectre paper

Still Spectre: cross-context attacks

• Based on miss-predictions on indirect branches

 train the predictor on an arbitrary address space and call-target

 let the processor use a ‘gadget’ piece of code in, e.g. a shared

library

 somehow related to ROP (Return-Oriented –Programming),

which we shall discuss

Picture taken from the original Spectre paper

This piece of code

can use, e.g. R1 and

R2 to do:

R2 = function(R1)

 Read memory at

(R2)

… using R1 alone in the attack

• The victim might have loaded a highly critical value into R1 (e.g. the

results of a cryptographic operation)

• Then it might slide into the call [function] indirect branch

• The gadget might simply be a piece of code that accesses memory

based on a function of R1

• IMPORTANT NOTE:

 miss-training the indirect branch predictor needs to occur in the

same CPU-core where the victim runs

 while accessing the cache for latency evaluation and data leak

actuation can take place on other CPU-cores, as we shall detailed

see later while discussing the implementation of side/covert

channels based on the caching system

Loop unrolling

• This is a software technique that allows reducing the

frequency of branches when running loops, and the relative

cost of branch control instructions

• Essentially it is based on having the code-writer or the

compiler to enlarge the cycle body by inserting multiple

statements that would otherwise be executed in different loop

iterations

gcc unroll directives

#pragma GCC push_options

#pragma GCC optimize ("unroll-loops")

 Region to unroll

#pragma GCC pop_options

• One may also specify the unroll factor via

 #pragma unroll(N)

• In more recent gcc versions (e.g. 4 or later ones) it works
with the –O directive

Beware unroll side effects

• In may put increased pressure on register usage

leading to more frequent memory interactions

• When relying on huge unroll values code size can

grow enormously, consequently locality and

cache efficiency may degrade significantly

• Depending on the operations to be unrolled, it

might be better to reduce the number of actual

iterative steps via “vectorization”, a technique

that we will look at later on

Clock frequency and power wall

• How can we make a processors run faster?

• Better exploitation of hardware components and growth of

transistors’ packaging – e.g. the More’s low

• Increase of the clock frequency

• But nowadays we have been face with the power wall, which

actually prevents the building of processors with higher

frequency

• In fact the power consumption grows exponentially with

voltage according to the VxVxF rule (and 130 W is considered

the upper bound for dissipation)

• The way we have for continuously increasing the computing

power of individual machines is to rely on parallel processing

units

Symmetric multiprocessors

Chip Multi Processor (CMP) -

Multicore

Symmetric Multi-threading (SMT) -

Hyperthreading

Making memory circuitry scalable –

NUMA (Non Uniform memory Access)

This may have different shapes

depending on chipsets

NUMA latency asymmetries

NUMA node

CPU CPU

Shared Cache

R
A

M

NUMA node

CPU CPU

Shared Cache

R
A

M

NUMA node

CPU CPU

Shared Cache

R
A

M

Interconnection

Local accesses are served by

- Inner private/shared caches

- Inner memory controllers

50 ÷ 200

cycles

200 ÷ 300 cycles

(1x ÷ 6x)

Remote accesses are served by

- Outer shared caches

- Outer memory controllers

Cache coherency

• CPU-cores see memory contents through their caching hierarchy

• This is essentially a replication system

• The problem of defining what value (within the replication

scheme) should be returned upon reading from memory is also

referred to as “cache coherency”

• This is definitely different from the problem of defining when

written values by programs can be actually read from memory

• The latter is in fact know to as the “consistency” problem, which

we will discuss later on

• Overall, cache coherency is not memory consistency, but it is

anyhow a big challenge to cope with, with clear implications on

performance

Defining coherency

• A read from location X, previously written by a processor, returns

the last written value if no other processor carried out writes on X

in the meanwhile – Causal consistency along program order

• A read from location X by a processor, which follows a write on X

by some other processor, returns the written value if the two

operations are sufficiently separated along time (and no other

processor writes X in the meanwhile) – Avoidance of staleness

• All writes on X from all processors are serialized, so that the

writes are seen from all processors in a same order – We cannot

(ephemerally or permanently) invert memory updates

• …. however we will come back to defining when a processor

actually writes to memory!!

• Please take care that coherency deals with individual memory

location operations!!!

Cache coherency (CC) protocols: basics

• A CC protocol is the result of choosing

 a set of transactions supported by the distributed cache system

 a set of states for cache blocks

 a set of events handled by controllers

 a set of transitions between states

• Their design is affected by several factors, such as

 interconnection topology (e.g., single bus, hierarchical, ring-based)

 communication primitives (i.e., unicast, multicast, broadcast)

 memory hierarchy features (e.g., depth, inclusiveness)

 cache policies (e.g., write-back vs write-through)

• Different CC implementations have different performance

 Latency: time to complete a single transaction

 Throughput: number of completed transactions per unit of time

 Space overhead: number of bits required to maintain a block state

Families of CC protocols

• When to update copies in other caches?

• Invalidate protocols:

 When a core writes to a block, all other copies are invalidated

 Only the writer has an up-to-date copy of the block

 Trades latency for bandwidth

• Update protocols:

 When a core writes to a block, it updates all other copies

 All cores have an up-to-date copy of the block

 Trades bandwidth for latency

“Snooping cache” coherency protocols

• At the architectural level, these are based on some broadcast medium

(also called network) across all cache/memory components

• Each cache/memory component is connected to the broadcast medium

by relying on a controller, which snoops (observes) the in-flight data

• The broadcast medium is used to issue “transactions” on the state cache

blocks

• Agreement on state changes comes out by serializing the transactions

traveling along the broadcast medium

• A state transition cannot occur unless the broadcast medium is acquired

by the source controller

• Sate transitions are distributed (across the components), but are carried

out atomically thanks to serialization over the broadcast medium

An architectural scheme

 Write/read transactions with invalidation

• A write transaction invalidates all the other copies of the cache block

• Read transactions

 Get the latest updated copy from memory in write-through caches

 Get the latest updated copy from memory or from another caching

component in write-back caches (e.g. Intel processors)

• We typically keep track of whether

 A block is in the modified state (just written, hence invalidating all the

other copies)

 A block is in shared state (someone got the copy from the writer or from

another reader)

 A block is in the invalid state

• This is the MSI (Modified-Shared-Invalid) protocol

Reducing invalidation traffic upon

writes: MESI
• Similar to MSI, but we include an “exclusive” state indicating that a

unique valid copy is owned, independently of whether the block has

been written or not

RFO = Request

 For

 Ownership

Software exposed cache performance aspects

• “Common fields” access issues

 Most used fields inside a data structure should be

placed at the head of the structure in order to maximize

cache hits

 This should happen provided that the memory

allocator gives cache-line aligned addresses for

dynamically allocated memory chunks

• “Loosely related fields” should be placed

sufficiently distant inside the data structure so to

avoid performance penalties due to false cache

sharing

The false cache sharing problem

top X

bytes accessed

CPU/Core-0 cache

top X

bytes accessed
bottom Y

bytes accessed

CPU/Core-1 cache

Struct …{}

X+Y < 2 x CACHE_LINE

Line i Line i

Mutual invalidation

upon write access

Example code leading to false cache sharing

Fits into a same cache line

(typically 64/256 bytes)

These reads from the cache

line find cache-invalid data, even though

the actual memory location we are reading from

does not change over time

Posix memory-aligned allocation

Inspecting cache line accesses

• A technique (called Flush+Reload) presented at [USENIX Security

Symposium – 2013] is based on observing access latencies on

shared data

• Algorithmic steps:

 The cache content related to some shared data is flushed

 Successively it is re-accessed in read mode

 Depending on the timing of the latter accesses we gather

whether the datum has been also accessed by some other

thread

• Implementation on x86 is based on 2 building blocks:

 A high resolution timer

 A non-privileged cache line flush instruction

• These algorithmic steps have been finally exploited for the

Meltdown/Spectre attacks

• … let’s see the details ….

x86 high resolution timers

x86 (non privileged) cache line flush

ASM inline

• Exploited to define ASM instruction to be posted into a C

function

• The programmer does not leave freedom to the compiler on

that instruction sequence

• Easy way of linking ASM and C notations

• Structure of an ASM inline block of code for gcc

__asm__ [volatile][goto] (AssemblerTemplate

 [: OutputOperands]

 [: InputOperands]

 [: Clobbers]

 [: GotoLabels]);

Meaning of ASM inline fields

• AssemblerTemplate - the actual ASM code

• volatile – forces the compiler not to take any

optimization (e.g. instruction placement effect)

• goto – assembly can lead to jump to any label in

GoToLabels

• OutputOperands – data move post conditions

• InputOperands – data move preconditions

• Clobbers – registers involved in update by the ASM

code, which require save/restore of their values (e.g. calee

save registers)

C compilation directives for Operands

• The = symbol means that the corresponding perand is

used as an output

• Hence after the execution of the ASM code block, the

operand value becomes the source for a given target

location (e.g. for a variable)

• In case the operand needs to keep a value to be used as

an input (hence the operand is the destination for the

value of some source location) then the = symbol does

not need to be used

Main gcc supported operand specifications

• r – generic register operands

• m – generic memory operand (e.g. into the stack)

• 0-9 – reused operand index

• i/I – immediate 64/32 bit operand

• q - byte-addressable register (e.g. eax, ebx, ecx,

edx)

• A - eax or edx

• a, b, c, d, S, D - eax, ebx, ecx, edx, esi, edi

respectively (or al, rax etc variants depending on

the size of the actual-instruction operands)

Flush+Reload: measuring cache access latency

at user space

A barrier on all memory

accesses

Barriers on loads

Typical Flush+Reload timelines

Can we prevent rtdsc to be user-space accessed?

• Yes, the processor state can be configure to run this

instruction in privileged mode

• This will require passing through a system-call to get

the value, which might introduce “variance” in the

samples, leading to less precise measurement, a topic

we will re-discuss

• In any case we can emulate a timer with a user space

thread regularly incrementing a shared counter

 Timer variable

++

read

Compute elapsed time

as a simple difference

The two threads should work on close (although different) cores

Flush+Reload vs cache inclusiveness

• An inclusive caching system (e.g. Intel) is such that a

lower level caching component Lx always keeps a copy

of the content cached by some upper level component Ly

• So Ly content is always included in Lx one

• A non-inclusive cache (e.g. some AMD chipsets) does

not have this vincula

• So we might cache some data at L1 and then, e.g. after

evicting from L1, we may load the data in, e.g. LLC

• For these caching systems, cross process Flush+Reload

attacks may fail

• They can instead still be fruitfully when used, e.g., across

processes running on a same CPU-core

The actual meaning of reading/writing

from/to memory

• What is the memory behavior under concurrent data accesses?

 Reading a memory location should return last value written

 The last value written not clearly (or univocally) defined

under concurrent access and with multi-locations as the target

• The memory consistency model

 Defines in which order processing units perceive concurrent

accesses

 Based on ordering rules, not necessarily timing of accesses

• Memory consistency is not memory coherency!!!

Terminology for memory models

• Program Order (of a processor‘s operations)
 per-processor order of memory accesses determined by

program (software)

• Visibility Order (of all operations)
 order of memory accesses observed by one or more

processors (e.g. like it if they were gathered by an external

observer)

 every read from a location returns the value of the most

recent write

Sequential consistency

``A multiprocessor system is sequentially consistent if the result of

any execution is the same as if the operations of all the processors

were executed in some sequential order, and the operations of each

individual processor appear in this sequence in the order specified by

its program.’’ (Lamport 1979)

Program order based memory accesses cannot be subverted in

the overall sequence, so they cannot be observed to occur in a

different order by a “remote” observer

An example

CPU1

[A] = 1;(a1)

[B] = 1;(b1)

CPU2

u = [B];(a2)

v = [A];(b2)

[A],[B] ... Memory

u,v ... Registers

b1,a2,b2,a1

Not sequentially consistent

Visibility order violates program order

a1,b1,a2,b2

Sequentially consistent

Visibility order does not violate

program order

Total Store Order (TSO)

• Sequential consistency is “inconvenient” in terms of memory

performance

• Example: cache misses need to be served ``sequentially’’ even if

they are write-operations with no currently depending instruction

• TSO is based on the idea that storing data into memory is not

equivalent to writing to memory (as it occurs along program order)

• Something is positioned in the middle between a write operation

(by software) and the actual memory update (in the hardware)

• A write materializes as a store when it is ``more convenient” along

time

• Several off-the-shelf machines rely on TSO (e.g. SPARC V8, x86)

TSO architectural concepts
• Store buffers allow writes to memory and/or caches to be saved to optimize

interconnect accesses (e.g. when the interconnection medium is locked)

• CPU can continue execution before the write to cache/memory is complete

(i.e. before data is stored)

• Some writes can be combined, e.g. video memory

• Store forwarding allows reads from local CPU to see pending writes in the

store buffer

• Store buffer invisible to remote CPUs
Store buffers

not directly visible

in the ISA

Forwarding of pending

writes in the store buffer

to successive read operations

of the same location

Writes become visible to

writing processor first

A TSO timeline

On x86 load operations may be reordered with older store

operations to different locations

This breaks, e.g., Dekker’s mutual exclusion algorithm

x86 memory synchronization

• x86 ISA provides means for managing synchronization (hence visibility) of

memory operations

• SFENCE (Store Fence) instruction:
 Performs a serializing operation on all store-to-memory instructions that were

issued prior the SFENCE instruction. This serializing operation guarantees that

every store instruction that precedes the SFENCE instruction in program order

becomes globally visible before any store instruction that follows the SFENCE

instruction.

• LFENCE (Load Fence) instruction:
 Performs a serializing operation on all load-from-memory instructions that

were issued prior the LFENCE instruction. Specifically, LFENCE does not

execute until all prior instructions have completed locally, and no later

instruction begins execution until LFENCE completes. In particular, an

instruction that loads from memory and that precedes an LFENCE receives

data from memory prior to completion of the LFENCE

x86 memory synchronization
• MFENCE (Memory Fence) instruction:

 Performs a serializing operation on all load-from-memory and store-to-memory

instructions that were issued prior the MFENCE instruction. This serializing

operation guarantees that every load and store instruction that precedes the

MFENCE instruction in program order becomes globally visible before any

load or store instruction that follows the MFENCE instruction

• Fences are guaranteed to be ordered with respect to any other

serializing instructions (e.g. CPUID, LGDT, LIDT etc.)

• Instructions that can be prefixed by LOCK become serializing

instructions

• These are ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, DEC,

INC, NEG, NOT, OR, SBB, SUB, XOR, XAND

• CMPXCHG is used by spinlocks implementations such as

 int pthread_mutex_lock(pthread_mutex_t *mutex);

 int pthread_mutex_trylock(pthread_mutex_t *mutex);

Read-Modify-Write (RMW) instructions

• More generally, CMPXCHG (historically known as Compare-and-

Swap – CAS) stands in the wider class of Read-Modify-Write

instructions like also Fetch-and-Add, Fetch-and-Or etc…

• These instructions perform a pattern where a value is both read and

updated (if criteria are met)

• This can also be done atomically, with the guarantee of not being

interfered by memory accesses in remote program flows

• In the essence, the interconnection medium (e.g. the memory bus) is

locked in favor of the processing unit that is executing the Read-

Modify-Write instruction

gcc built-in

void _mm_sfence(void)

void _mm_lfence(void)

void _mm_mfence(void)

bool __sync_bool_compare_and_swap (type *ptr,

type oldval, type newval)

…………

• The definition given in the Intel documentation allows only for the

use of the types int, long, long long as well as their unsigned

counterparts

• gcc will allow any integral scalar or pointer type that is 1, 2, 4 or 8

bytes in length

Implementing an active-wait barrier

long control_counter = THREADS;

long era_counter = THREADS;

void barrier(void){

 int ret;

 while(era_counter != THREADS && control_counter == THREADS);

 ret = __sync_bool_compare_and_swap(&control_counter,THREADS,0);

 if(ret) era_counter = 0;

 __sync_fetch_and_add(&control_counter,1);

 while(control_counter != THREADS);

 __sync_fetch_and_add(&era_counter,1);

}

era_counter update already committed when performing this

ASM-based trylock via CMPXCHG

int try_lock(void * uadr){

 unsigned long r =0 ;

 asm volatile(

 "xor %%rax,%%rax\n"

 "mov $1,%%rbx\n"

 "lock cmpxchg %%rbx,(%1)\n"

 "sete (%0)\n"

 : : "r"(&r),"r" (uadr)

 : "%rax","%rbx"

);

 return (r) ? 1 : 0;

}

Target memory word

Set equal

If they were equal return 1

rax – eax – ax – al

are implicit registers

for cmpxchg

Locks vs (more) scalable coordination

• The common way of coordinating the access to shared data is based

on locks

• Up to know we understood what is the actual implementation of spin-

locks

• In the end most of us never cared about hardware level memory

consistency since spin-locks (and their Read-Modify-Write based

implementation) never leave pending memory updates upon exiting

a lock protected critical section

• Can we exploit memory consistency and the RMW support for

achieving more scalable coordination schemes??

• The answer is yes

 Non-blocking coordination (lock/wait-free synchronization)

 Read Copy Update (originally born within the Linux kernel)

A recall on linearizability

• A share data structure is “linearizable” if its operations

always look to be sequentializable – we can make them

equivalent to some sequential history

• This is true if

all its access methods/functions, although lasting a

wall-clock-time period, can be seen as taking effect

(materialize) at a specific point in time

all the time-overlapping operations can be ordered

based on their “selected” materialization instant

• Linearizability is a restriction of serializability since it

involves operations on a single datum/object

A scheme

Operations (e.g. functions)

accessing a shared datum

A

B

C

threads

wall-clock-time

Admissible

histories

A B C

B C A

B A C

B C is a constraint

A B && C A
would violate

linearizability

Linearization points

RMW vs linearizability

• Even though they implement non-trivial memory accesses,

RMW instructions appear as atomic across the overall hardware

architecture

• So they can be exploited to define linearization points of

operations, thus leading to order the operations in a linearizable

history

• The linearization points can be subject to differentiated

execution paths (e.g. conditional branches)

• RMW instruction can fail, thus leading to drive subsequent

RMW or other instructions, which can anticipate or delay the

linearization point of the operations

RMW vs locks vs linearizability

• RMW-based locks can be used to create explicit wall clock time

separation across operations

• We get therefore a sequential object with trivial linearization

q.deq

q.enq

time

lock() unlock()

lock() unlock()

11

7

Making RMW part of the operations

q.enq(x)

q.enq(y)

q.deq(y)

time

q.deq(x)

Lock-free vs wait-free synchronization

• They are both approaches belonging to non-blocking

synchronization

• They differ in terms of the progress condition they ensure for the

involved functions/methods

• Lock-freedom

 Some instance of the function call successfully terminates in a

finite amount of time (eventually)

 All instances terminate successfully or not) in a finite amount of

time (eventually)

• Wait-freedom:

 All instances of the function call successfully terminate in a finite

amount of time eventually)

Advantages from non-blocking synchronization

• Any thread can conclude its operations in a finite amount of

time (or execution steps) independently of the other threads

behavior – what if a thread crashes?!?

• This is highly attractive in modern contexts based on, e.g.

CPU-stealing approaches – see Virtual Machine operations

• In classical blocking synchronization (e.g. based on spin-

locks) what determines the actual number of computing

steps (and time) for finalizing a give function are

 The behavior of the lock holding thread

 The actual sequence of lock acquisitions

• This is no longer true in non-blocking synchronization

Look-freedom aspects

• If two ordered operations are incompatible (they conflict –

possibly leading some RMW to fail), then one of them can

be accepted, and the other one is refused (and maybe

retried)

• Look-free algorithms are based on abort/retry

• The assumption for the effectiveness is that the aborts will

occur infrequently, thus not wasting work too much

• The tradeoffs in the design are based here on devising data

structures whose actual operations are somehow brought to

balance operate on different parts of the data structure

• But this is not always possible!!

On the lock-free linked list example

• Insert via CAS on pointers (based on failure retries)

• Remove via CAS on node-state prior to node linkage

These CAS can fail but likely will not depending on the access pattern

On the wait-free atomic (1,N) register example

• It allows a writer to post atomically to N readers a new

content

• A CAS on a pointer (with no other algorithmic step or

register management logic) is not sufficient to guarantee

that we can use a finite amount of memory to solve this

problem

• The literature says that the lower bound on the number of

buffers to use is N+2, an we should aim at this

• N can be currently all read by the concurrent N readers

• 1 can keep a new value, not yet accessed by any reader

• 1 can be used to fill some new content

Actual register operations

[ARC - TPDS journal 2018]

Unique synchronization

variable with 2 fields

Last

written

slot

How many

readers went

reading that slot

Actual register operations

Last

written

slot How many

readers went

reading that slot

current old current

slot << 32

Performance

Can linearize read operations

with no RMW instruction
Always needs RMW instructions to

linearize read operations

Makes 2 data copies to

assess consistency upon reading

48 CPU-core

machine deploy

The big problem with generic data structures:

buffer re-usage

• RMW based approaches allow us to understand what is the

state of some (linked) data structure (still in or already out

of a linkage)

• But we cannot understand if traversals on that data structure

are still pending

• If we reuse the data structure (e.g. modifying its fields), we

might give rise to data structure breaks

• This my even lead to security problems:

 We traverse via a thread un-allowed pieces of

information

Read Copy Update (RCU)

• Baseline idea

 A writer at any time

 Concurrency between readers and writers

• Actuation

 Out-links of logically removed data structures are not

destroyed prior being sure that no reader is still

traversing the modified copy of the data structure

 Buffer re-reuse (hence release) takes place at the end of

a so called “grace period”, allowing the standing

readers not linearized after the update to still proceed

• Very useful for read intensive shared data structures

General RCU timeline

Readers linearized after the writer

RCU reads and writes

• The reader

 Signals it is there

 It reads

 Then it signals it is no longer there

• The writer

 Takes a write lock

 Updates the data structure

 Waits for standing readers to finish

 NOTE: readers operating on the modified data structure

instance are don’t care readers

 Release the buffers for re-usage

Kernel level RCU

• With non-preemptable (e.g. non-RT) kernel level

configurations the reader only needs to turn off preemption

upon a read and re-enable it upon finishing

• The writer understands that no standing reader is still there

thanks to its own migration to all the remote CPUs, in Linux

as easily as

for_each_online_cpu(cpu) run_on(cpu);

• The migrations create a context switch leading the writer to

understand that no standing reader, not linearized after the

writer, is still there.

Preemptable (e.g. user level) RCU

• Discovering standing readers in the grace periods is a bit

more tricky

• An atomic presence-counter indicates an ongoing read

• The writer updates the data structure and redirects readers to

a new presence counter (a new epoch)

• It the waits up to the release of presence counts on the last

epoch counter

• Data-structure updates and epoch move are not atomic

• However, the only risk incurred is the one of waiting for

some reader that already saw the new shape of the data

structure, but got registered as present in the last epoch

Preemptable CRU reader/writer timeline

Get the

write lock

Update data

structure

Move to a

new-epoch

readers’ counter

Release the

write lock

Release the

buffers

Busy wait on

last-epoch

counter

Increase the

current epoch

readers’ counter

Decrease the

previously increased

epoch counter

Read the data structure

Additional parallelization aspects

• This is the so called “vectorization”

• It was born way before speculative computing and multi-

processor/multi-core

• Essentially it is a form of SIMD (Single Instruction

Multiple Data) processing

• As opposed to classical MIMD (Multiple Instruction

Multiple Data) processing of multi-processors/multi-cores

• SIMD is based on vectorial registers and/or vectorial

computation hardware (e.g. GPUs)

• Less common is MISD (although somebody says that a

speculative processor is MISD)

• … SISD is a trivial single-core non speculative machine

The vector processor scheme

• Vector registers

• Vectorized and pipelined functional units

• Vector instructions

• Hardware data scatter/gather

x86 vectorization

• Called SSE (Streaming SIM Extension)

• Introduced in Pentium III processors (from 1999)

• Previously called MMX (MultiMedia eXtension or Matrix Math

eXtension) on Pentium processors (based on 64-bit registers)

• In the SSE programming mode there are 8 128-bit XMM

registers (16 in x86-64 SSE2) keeping vectors of

 2 64-bit double precision floats

 4 32-bit single precision floats

 1 128-bit integer (unsigned)

 2 64-bit integers (signed or unsigned)

 4 32-bit integers (signed or unsigned)

 8 16-bit integers (signed or unsigned)

 16 8-bit integers (signed or unsigned)

SSE data types

Sandy Bridge AVX

(Advanced Vector Extensions)

• Registers are this time YMM[0-15]

Memory alignment

• Memory/XMM*/YMM* data move instructions in x86 operate

with either 8/16-byte aligned memory or not

• Those with aligned memory are faster

• gcc offers the support for aligning static (arrays of) values via
the __attribute__ ((aligned (16)))

• It enables compile level automatic vectorization with –O flags

(originally -O2), whenever possible

• Clearly, one may also resort to dynamic memory allocation with

explicit alignment

• 4KB page boundaries are intrinsically 16-bit aligned, which
helps with mmap()

• Usage of instructions requiring alignment on non-aligned data

will cause a general protection error

C intrinsics for SSE programing

• Vectorized addition - 8/16/32-bit integers

• Vectorized addition - 32-bit floats

• Vectorized addition - 64-bit doubles

Additional C intrinsics

• Additional features are available for, e.g.:

 Saturated addition

 Subtraction

 Saturate subtraction

 Addition/subtraction with carry

 Odd/even addition/subtraction

 In vector sum reduction

• Similar functionalities are offered for the AVX case

