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The need for holistic programming 
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Assembly 

B/C 

C++/Java 

…… 

Web API 

Lost of knowledge on  

actual hardware features 

 

Incapacity to master 

compiling and 

configuration tools 

 

Lost of opportunities for 

new software 

development methods 

More powerful and 

expressive coding tools 

More maintainable/portable 

and reusable software 

More reusable  

run-time systems 



The missing piece of information 

• The actual state of a program is not the “puzzle” of the states of its 

individual software components 

• Each component sees and updates a state portion that is not trivially 

reflected into the view by other components 

• A component even does not know whether hardware state beyond the 

ISA-exposed one can be affected by its execution 

• In real systems things may occur in different ways because of 

 Compiler decisions 

 Hardware run-time decisions 

 Availability (vs absence) of hardware features 

• More abstractly, there is a combination of software and hardware non-

determinism 

• Ideally programmers should know of all this to produce correct, secure 

and efficient software 



The common fallback … and our path 

• Simply exploit what someone already did (libraries, run-time 

environments, algorithmic and coding approaches ….) 

• But you should know that this still does not guarantee you are 

writing (or running) a program the most efficient (or even correct) 

way  

• …. in the end knowing the hardware and the under-the-hood layers 

we actually work with provides us with possibilities for better 

achievements in software development 

• Nowadays hardware is multi-core, which is characterize by some 

major aspect that need to be reflected on software programming 

• We could ideally study those aspects, and proper software design 

approaches at different  levels – we will take the OS kernel one as 

our core reference  



A very trivial example: Lamport’s Bakery 

var choosing: array[1,n] of boolean; 

       number: array[1,n] of int; 

repeat { 

 choosing[i] := TRUE; 

 number [i] := <max in array number[] + 1>; 

 choosing[i] := FALSE; 

 for j = 1 to n do { 

   while choosing[j] do no-op; 

   while number[j] 0 and (number [j],j)< (number [i],i) do no-op; 

  } 

 <critical region>; 

 number[i] := 0; 

 

}until FALSE 

 

Typically no machine (unless single-core) 

guarantees globally consistent  

view of this update sequence 



Entering a few details 

• The machine model we have been used to think of is the von Newman’s 

one 

 Single CPU abstraction 

 Single memory abstraction 

 Single control flow abstraction: fetch-execute-store 

 Time separated state transitions in the hardware: no more than one 

in-flight instruction at anytime 

 Defined memory image at the startup of any instruction 

• The modern way of thinking architectures is instead not based on the 

flow of things as coded in a program, rather on the concept of scheduling 

things (e.g. usage of hardware components) to do something equivalent 

to that program flow 

• Hopefully the schedule allows doing stuff in parallel 

• …. what about programs naturally made up by multiple flows? – this is 

exactly an OS kernel!!  



Types of scheduling 

• In the hardware 

 Instruction executions within a single program flow 

 Instruction executions in parallel (speculative) program flows  

 Propagation of values within the overall memory (more 

generally hardware) system 

• At software level 

 Definition of time frames for threads’ execution on the 

hardware 

 Definition of time frames for activities’ execution on the 

hardware 

 Software based synchronization supports (thread/task 

synchronization)  



Parallelism 

• Baseline hardware form – ILP (Instruction Level Parallelism): 

 The CPU is able to process 2 or more instructions of a 

same flow during the same cycle (even vectorized or 

dynamically scheduled – or both) 

 It can therefore deliver instruction commits at each 

individual cycle (even tough a single instruction can take 

several cycles to complete) 

• Software reflected form (Thread Level Parallelism): 

 A program can be though as of the combination of multiple 

concurrent flows 

 Concurrency can boil down to actual wall-clock-time 

parallelism in multi-processing (or ILP) hardware systems  



Baseline notion of computing speed 

• It is typically related to the Gigahertz (GHz) rating of a processor 

• However, we clearly know that this way of thinking is only partially 

correct 

• There are instructions that can take long sequences of CPU-cycles 

just because of unpredictable factors 

 Hardware interactions 

 Asymmetries and data access patterns  

• In the end we can generally think of categories of programs (or 

programs’ blocks) that are more ore less importantly affected by the 

clock speed 

 CPU-bound programs 

 Memory-bound programs - that’ why we need to know about how to 

deal with memory in modern systems!! 

 



CPU vs memory performance 



Overlapped processing: the pipeline 

• The very baseline hardware form of overlapped processing is 

pipelining 

• It is a Scheduling+Parallelism hardware-based technique 

• Here we no longer have a clear temporal separation of the 

execution windows of different instructions (this is parallelism!!) 

• What is sequenced within a program (I’m here referring to an 

actual executable) is not necessarily executed in that same 

sequence in the hardware (this is scheduling!!) 

• However, causality needs to be preserved 

• This is actually a data flow model (a source should be read based 

on the actual latest update along the instruction sequence)  



Instruction stages 

• IF – Instruction Fetch 

• ID – Instruction Decode 

• LO – Load Operands 

• EX – Execute 

• WB – Write Back 

 

The different phases hopefully 

need to rely on different hardware  

components 



Overlapping stages: the pipeline 

• Each instruction uses 1/5 of the resources per cycle 

• We can overlap the different phases 

• We can therefore get speedup in the execution of a program, as 

compared to the non-pipeline version 

 

 



Speedup analysis 

• Suppose we want to provide N outcomes (one per instruction) and 

we have L processing stages and clock cycle T 

• With no pipelining we get (N x L x T) delay 

• With pipelining we get the order of ([N+L] x T) delay  

• The speedup is (NxL)/(N+L) so almost L (for large N) 

• For N = 100 and L = 5 we get 4.76 speedup  

• For L = 1 no speedup at all arises (obviously!!) 

• So ideally the greater L the better the achievable performance 

• But we do not live in an ideal world, in fact pipelined processors 

typically entail no more than the order of tens of stages (Pentium 

had 5 – i3/i5/i7 have 14 – ARM-11 has 8), although a few 

implement parts of an original instruction step 



From the ideal to the real world: 

pipeline breaks 

• Data dependencies 

• Control dependencies 

A conditional branch leads to identify the  

subsequent instruction at its EX stage 

A data conflict makes results available for the  

subsequent instruction at WB 



Handling the breaks 

• Software stalls – compiler driven 

• Software re-sequencing (or scheduling) – compiler driven 

• Hardware propagation (up to what is possible) 

• Hardware reschedule (out-of-order pipeline - OOO) 

• Hardware supported hazards (for branches) 

Ordering of the execution steps of the instructions 

is not based on how they touch ISA exposed hardware 

components (such as registers) 



The Intel x86 pipeline 

• In a broad analysis, Intel x86 processors did not change that much 

over time in terms of software exposed capabilities  

• The 14 registers (AX, BX, .. etc) of the 8086 are still there on e.g. 

core-i7 processors (RAX, RBX .. etc) 

• However, the 8086 was not pipelined, it processed instructions via 

[FETCH, DECODE, EXECUTE, RETIRE] steps in pure sequence 

(not in a pipeline) 

• In 1999 the i486 moved to a 5 stage pipeline, with a classical 

organization plus 2 DECODE steps (primary and secondary – 

Decode/Translate) 

This was for  

calculations  

like displacements 

in a complex  

addressing model 



Pipelining vs software development 

• Programmers cannot drive the internal behavior of a pipeline 

processor (that’s microcode!!!!) 

• However, the way software is written can hamper the actual 

pipeline efficiency 

• An example – XOR based swap of 2 values:   

– XOR a,b – XOR b,a XOR a,b 

• Each instruction has a source coinciding with a destination of the 

previous instruction 



Some examples 

• Pointer based accesses plus pointer manipulation should be 

carefully written 

• Writing in a cycle the following two can make a non negligible 

difference 

–   a = *++p 

–   a = *p++ 

• Also, there are machine instructions which lead to flush the 

pipeline, because of the actual organization of the internal CPU 

circuitry 

• In x86 processors, one of them is CPUID which gets the numerical 

id of the processor we are working on  

• On the other hand using this instruction you are sure that no 

previous instruction in the actual executable module is still in 

flight along the pipeline  



The Intel x86 superscalar pipeline 

• Multiple pipelines operating simultaneously 

• Intel Pentium Pro processors (1995) had 2 parallel pipelines 

• EX stages could be actuated in real parallelism thanks to hardware 

redundancy and differentiation (multiple ALUs, differentiated 

int/float hardware processing support etc)   

• Given that slow instructions (requiring more processor cycles) 

were one major issue, this processor adopted the OOO model 

(originally inspired by Robert Tomasulo’s Algorithm – IBM 

360/91 1966) 

• Baseline idea:   

 Commit (retire) instructions in program order 

 Process independent instructions (on data and resources) as soon as 

possible 



The instruction time span problem 

Delay reflected in to a pipeline execution of  

independent instructions  



The instruction time span problem 

Stall becomes  

a reschedule 

Commit order needs to be  

preserved  because of, e.g.  

WAW (Write After Write)  

conflicts 



OOO pipeline - speculation 

• Emission: the action of injecting instructions into the pipeline 

• Retire: The action of committing instructions, and making their 

side effects “visible” in terms of ISA exposed architectural 

resources 

• What’s there in the middle between the two? 

• An execution phase in which the different instructions can 

surpass each other 

• Core issue (beyond data/control dependencies): exception 

preserving!!! 

• OOO processors may generate imprecise exceptions such that 

the processor/architectural state may be different from the one 

that should be observable when executing the instructions along 

the original order 



OOO example 

Different  

instructions 
Program flow 

….. 

Pipeline stages 

….. 

Pipeline stages 

….. 

Pipeline stages 
Program flow 

maintained 

Program flow 

speculatively subverted 

No ISA exposed resource  

is modified 



Imprecise exceptions 

• The pipeline may have already executed an instruction A that, 

along program flow, is located after an instruction B that 

causes an exception 

• Instruction A may have changed the micro-architectural state, 

although finally not committing its actions onto ISA exposed 

resources (registers and memory locations updates) – the 

recent Meltdown security attack exactly exploits this feature 

• The pipeline may have not yet completed the execution of 

instructions preceding the offending one, so their ISA 

exposed side effects are not yet visible upon the exception 

• …. we will be back with more details later on 



A scheme 

Different  

instructions Program flow 

….. 

Pipeline stages 

….. 

Pipeline stages Program flow 

speculatively subverted -  

no ISA exposed resource  

is modified 

If this instruction accesses to some invalid resource 

(e.g. memory location, or currently un-accessible  

in-CPU component) that program flow is no longer valid and the  

other instruction cannot currently provide a valid execution, but 

something in the hardware may have already happened along its 

processing 



Robert Tomasulo’s algorithm 

• Let’s start from the tackled hazards – the scenario is of 

two instructions A and B such that AB in program 

order: 

• RAW (Read After Write) – B reads a datum before A 

writes it, which is clearly stale – this is a clear data 

dependency 

• WAW (Write  After Write) – B writes a datum before A 

writes the same datum – the datum exposes a stale value  

• WAR (Write After Read) – B writes a datum before A 

reads the same datum – the read datum is not consistent 

with data flow (it is in the future of A’s execution) 



Algorithmic ideas 

• RAW – we keep track of “when” data requested in input by 

instructions are ready 

• Register renaming for coping with both WAR an WAW 

hazards 

• In the renaming scheme, a source operand for an instruction 

can be either an actual register label, or another label (a 

renamed register) 

• In the latter case it means that the instruction needs to read 

the value from the renamed register, rather than from the 

original register 

• A renamed register materializes the concept of speculative 

(not yet committed) register value, made anyhow available as 

input to the instructions 

 



Reservation stations 

• They are buffers (typically associated with different kinds of 

computational resources – integer vs floating point operators) 

• They contain: 

• OP – the operations to be executed 

• Qj, Qk – the reservation stations that will produce the 

input for OP 

• Alternatively, Vj, Vk, the actual values (e.g. register 

values) to be used in input by OP 

• By their side, registers are marked with the reservation 

station name Q such that it will produce the new value to be 

installed, if any 



CDB and ROB 

• A Common Data Bus (CDB) allows data to flow across 

reservation stations (so that an operation is fired when all its 

input data are available) 

• A Reorder Buffer (ROB) acquires all the newly produced 

instruction values (also those transiting on CDB), and keeps 

them uncommitted up to the point where the instruction is 

retired  

• ROB is also used for input to instructions that need to read 

from uncommitted values 

 

 

 



An architectural scheme 

beware this!! 



An example execution scheme 
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RAW 

WAW 

RS-f RS-f’ RS-f’ 

A B C 

Writes to 

 R1 (via ROB) 

Writes to 

 R1 alias’ 

Reads from 

 R1 alias’ 

  

’ 

Instruction C is completed 

at delay  (rather than at ’ or later)  

RS = Reservation Station 

WAR The 2 (speculative)  

writes are ordered  in ROB 



Back to the memory wall 
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x86 OOO main architectural 

organization 

Who depends on who? 



Impact of OOO in x86 

• OOO allowed so fast processing of instructions that room was still 

there on core hardware components to actually carry out work 

• … also because of delays within the memory hierarchy 

• … why not using the same core hardware engine for multiple 

program flows? 

• This is called hyper-threading, and is actually exposed to the 

programmer at any level (user, OS etc.) 

• ISA exposed registers (for programming) are replicated, as if we 

had 2 distinct processors 

• Overall, OOO is not exposed (instructions are run as in a black 

box) although the way of writing software can impact the 

effectiveness of OOO and more generally of pipelining 

  



Baseline architecture of OOO  

Hyper-threading 



Coming to interrupts 

• Interrupts typically flush all the instructions in the pipeline, 

as soon as one commits and the interrupt is accepted 

• As an example, in a simple 5-stage pipeline IF, ID, EX, MEM 

residing instructions are flushed because of the acceptance of 

the interrupt on the WB phase of the currently finalized 

instruction 

• This avoids the need for handling priorities across interrupts 

and exceptions possibly caused by instructions that we might 

let survive into the pipeline (no standing exception) 

• Interrupts may have a significant penalty in terms of wasted 

work on modern OOO based pipelines 

• Also, in flight instructions that are squashed may have 

changed the micro-architectural state on the machine 

 



Back to exceptions:  

types vs pipeline stages 

• Instruction Fetch, & Memory stages 

– Page fault on instruction/data fetch 

– Misaligned memory access 

– Memory-protection violation 

• Instruction Decode stage 

– Undefined/illegal opcode 

• Execution stage 

– Arithmetic exception 

• Write-Back stage 

– No exceptions! 

 



Back to exceptions: handling 

• When an instruction in a pipeline gives rise to an exception, the 

latter is not immediately handled 

• As we shall see later, such instruction in fact might even require to 

disappear from program flow (as an example because of miss-

prediction in branches) 

• It is simply marked as offending (with one bit traveling with the 

instruction across the pipeline) 

• When the retire stage is reached, the exception takes place and the 

pipeline is flushed, resuming fetch operations from the right place 

in memory  

• NOTE: micro architectural effects of in flight instructions that are 

later squashed (may) still stand there – see the Meltdown attack 

against Itel and ARM processors …  



Coming to the example 

Different  

instructions Program flow 

….. 

Pipeline stages 

….. 

Pipeline stages Program flow 

speculatively subverted -  

no ISA exposed resource  

is modified 

Offends and goes forward, and also propagates 

“alias” values to the other instruction, which goes 

forward up to the squash of the first 



Meltdown primer 

Flush cache 

Read a kernel level byte B 

Use B for displacing and reading memory 

A sequence with  

imprecise exception under 

OOO 

Offending instruction 

(memory protection violation)  

“Phantom” instruction with real  

micro-architectural side effects 



A graphical representation of what happens 

Flush cache 

 

 

 

Read a kernel level byte B 

 

 

Use B for displacing and  

reading memory in some  

known zone, say this 

The cache 

Loading lines in 

cache is not an 

ISA exposed 

effect 

If we can measure the access delay for 

hits and misses when reading that zone, 

we would know what was the value of B 



Overall 

• The cache content, namely the state of the cache can change 

depending on processor design and internals, not necessarily 

at the commitment of instructions 

• Such content is in fact not directly readable in the ISA 

• We can only read from logical/main memory, so a program 

flow would ideally be never affected by the fact that a datum 

is or is not in cache at a given point of the execution 

• The only thing really affected is performance 

• But this may say something to who exactly observes 

performance to infer the actual state of the caching 

system 

• This is a so called side-channel (or covert-channel) attack 



At this point we need 

additional details on x86 

RIP 



The instruction set: data transfer examples 

AT&T syntax 
mov{b,w,l} source, dest 

 General move instruction 

 

push{w,l} source 

 pushl %ebx  # equivalent instructions 

   subl $4, %esp 

   movl %ebx , (%esp) 

 

pop{w,l} dest 

 popl %ebx  # equivalent instructions 

   movl (%esp), %ebx 

   addl $4, %esp 

 

Variale length operands 

 movb $0x4a, %al     #byte 

 movw $5, %ax   #16-bit 

 movl $7, %eax   #32-bit 

No operand-size specification  

means (the default) 64-bit  

operand on x86-64 



The instruction set: linear addressing 

(Index * scale) + displacement   movl (,%eax,4), %ebx 

Base + (index * scale) + displacement  movl foo(%ecx,%eax,4), %ebx 



The instruction set: bitwise logical 

instructions (base subset) 

and{b,w,l} source, dest  dest = source & dest 

or{b,w,l} source, dest  dest = source | dest 

xor{b,w,l} source, dest  dest = source ^ dest 

not{b,w,l} dest    dest = ^dest 

 

sal{b,w,l} source, dest (arithmetic) 

       dest = dest << source 

sar{b,w,l} source, dest (arithmetic)  

      dest = dest >> source 



Arithmetic (base subset) 

add{b,w,l} source, dest  dest = source + dest 

sub{b,w,l} source, dest  dest = dest – source 

inc(b,w,l} dest   dest = dest + 1 

dec{b,w,l} dest   dest = dest – 1 

neg(b,w,l} dest   dest = ^dest 

 

cmp{b,w,l} source1, source2  

     source2 – source1 



The Meltdown code example – Intel syntax 

(mostly reverts operand order vs AT&T) 

This is B 

Use B as the index of a page 

B becomes the displacement  

of a given page in an array 

The target cache zone is an array  

of 256 pages – only the 0-th byte  

of the B-th page will experience  

a cache hit (under the assumption that 

concurrent actions are not using that  

cache zone)  



Countermeasures  

• KASLR (Kernel Address Space Randomization) – 

limitation of being dependent on the maximum shift we 

apply on the logical kernel image (40 bit in Linux Kernel 

4.12, enabled by default) - clearly this is still weak vs 

brute force attacks 

 

• KAISER (Kernel Isolation in Linux) – still exposes the 

interrupt surface but it is highly effective 

 

• Explicitly cache-flush at each return from kernel mode –

detrimental for performance and still not fully resolving 

as we will discuss 



A scheme for KASLR 
Classical virtual  

address space usage 

Randomization of the  

kernel positioning 

Data and instruction accesses in 

memory based on displacement  

from the instruction pointer  

(rip – relative on x86 processors) 

Kernel 

stuff Kernel 

stuff 

Predetermined address for 

storing kernel level 

data/routines 

Per startup  

randomization  

shift 

Usage with randomization 



A scheme for KAISER 

Most kernel pages are  

unmapped from the page table 

when returning to user mode  

(requires TLB flushes)  

Kernel 

stuff Kernel 

stuff 

Predetermined address for 

storing kernel level 

data/routines 

Necessary kernel-

entry points (e.g. 

for interrupt 

handling) are left 

accessible 

Variation of the kernel mapping 

Kernel 

stuff 

unmapped  

zone 

Classical kernel mapping 



Pipeline vs branches 

• The hardware support for improving performance under 

(speculative) pipelines in face of branches is called Dynamic 

Predictor 

• Its actual implementation consists of a Branch-Prediction Buffer 

(BPB) – or  Branch History Table (BHT) 

• The baseline implementation is based on a cache indexed by lower 

significant bits of branch instructions and one status bit 

• The status bit tells whether the jump related to the branch 

instruction has been recently executed 

• The (speculative) execution flow follows the direction related to 

the prediction by the status bit, thus following the recent behavior 

• Recent past is expected to be representative of near future  



Multiple bits predictors 

• One bit predictors “fail” in the scenario where the branch is often 

taken (or not taken) and infrequently not taken (or taken) 

• In these scenarios, they leads to 2 subsequent errors in the 

prediction (thus 2 squashes of the pipeline) 

• Is this really important? Nested loops tell yes 

• The conclusion of the inner loop leads to change the prediction, 

which is anyhow re-changed at the next iteration of the outer loop 

• Two-bit predictors require 2 subsequent prediction errors for 

inverting the prediction 

• So each of the four states tells whether we are running with  

 YES prediction (with one or zero mistakes since the last passage on 

the branch) 

 NO prediction (with one or zero mistakes since the last passage on 

the branch) 

 

 



An example – AT&T syntax (we will no 

longer explicitly specify the actual syntax) 

1 mov $0, %ecx 

2 . outerLoop: 

3  cmp $10, %ecx 

4 je .done 

5  mov $0, %ebx 

6 

7 .innerLoop: 

8  ; actual code 

9  inc %ebx 

10  cmp $10, %ebx 

11  jnz .innerLoop 

12 

13  inc %ecx 

14  jmp .outerLoop 

15 .done: 

This branch prediction is inverted  

at each ending inner-loop cycle  



The actual two-bit predictor state 

machine 



Do we need to go beyond two-bit 

predictors? 
• Conditional branches are around 20% of the instructions in 

the code 

•  Pipelines are deeper 

 A greater misprediction penalty 

•  Superscalar architectures execute more instructions at once 

 The probability of finding a branch in the pipeline is 

higher 

• The answer is clearly yes 

• One more sophisticate approach offered by Pentium (and 

later) processors is Correlated Two-Level Prediction 

• Another one offered by Alpha is Hybrid Local/Global 

predictor (also known as Tournament Predictor) 



A motivating example 

if (aa == VAL)  

 aa = 0 ; 

if (bb == VAL ) 

 bb = 0; 

if (aa != bb){ 

 //do the work 

} 

 

Not branching on these implies 

branching on the subsequent 

Idea of correlated prediction: lets’ try to 

predict what will happen at the third branch 

by looking at the history of what happened in 

previous branches 



The (m,n) two-level correlated predictor 

• The history of the last m branches is used to predict what will 

happen to the current branch 

• The current branch is predicted with an n-bit predictor  

• There are 2^m n-bit predictors  

• The actual predictor for the current prediction is selected on 

the basis of the results of the last m branches, as coded into 

the 2^m bitmask 

• A two-level correlated predictor of the form (0,2) boils own 

to a classical 2-bit predictor      



(m,n) predictor architectural schematization 

m = 5 

n = 2 



Tournament predictor 

• The prediction of a branch is carried out by either using a 

local (per branch) predictor or a correlate (per history) 

predictor 

• In the essence we have a combination of the two different 

prediction schemes 

• Which of the two needs to be exploited at each individual 

prediction is encoded into a 4-states (2-bit based) history of 

success/failures 

• This way, we can detect whether treating a branch as an 

individual in the prediction leads to improved effectiveness 

compared to treating it as an element in a sequence of 

individuals 



The very last concept on branch 

prediction: indirect branches 

• These are branches for which the target is not know at 

instruction fetch time 

• Essentially these are kind of families of branches (multi-

target branches) 

• An x86 example: jmp eax  



Coming back to security 

• A speculative processor can lead to micro-architectural 

effects by phantom instructions also in cases where the 

branch predictor fails, and the pipeline is eventually squashed 

• If we can lead executing instructions in the phantom portion 

of the program flow to leave these micro-architectural effects 

then we can observe them via a side (covert) channel 

• This is the baseline idea of Spectre attacks 

• This have ben shown to kill Intel, AMD and ARM processors 



Spectre primer 

If (condition involving a target value X) 

 access array A at position 

 B[X]<<12 //page size displacement 

Suppose we run with  

miss-prediction 

The target line of A is cached  

(as a side effect) and we can inspect this 

via a side channel 
Clearly B can be  

whatever address,  

so B[X] is whatever  

value  



A scheme 

If (condition in a target value X) 

 access array A at position 

 B[X]<<12 //page size displacement 

A is cache  

evicted 

B is a kernel  

zone 
X 

B[X]<<12 is used to read from A 

This brings one over 4096 

bytes (so the corresponding 

cache line) into the cache and 

we can observe this via a side 

channel 

Actual code taken form  

the original Spectre paper 



Still Spectre: cross-context attacks 

• Based on miss-predictions on indirect branches 

 train the predictor on an arbitrary address space and call-target 

 let the processor use a ‘gadget’ piece of code in, e.g. a shared 

library 

 somehow related to ROP (Return-Oriented –Programming), 

which we shall discuss 

Picture taken from the original Spectre paper 

This piece of code 

can use, e.g. R1 and 

R2 to do: 

R2 = function(R1)   

 Read memory at 

(R2) 



… using R1 alone in the attack 

• The victim might have loaded a highly critical value into R1 (e.g. the 

results of a cryptographic operation) 

• Then it might slide into the call [function] indirect branch 

• The gadget might simply be a piece of code that accesses memory 

based on a function of R1 

•  IMPORTANT NOTE:  

 miss-training the indirect branch predictor needs to occur in the 

same CPU-core where the victim runs 

 while accessing the cache for latency evaluation and data leak 

actuation can take place on other CPU-cores, as we shall detailed 

see later while discussing the implementation of side/covert 

channels based on the caching system 



Loop unrolling 

• This is a software technique that allows reducing the 

frequency of branches when running loops, and the relative 

cost of branch control instructions 

• Essentially it is based on having the code-writer or the 

compiler to enlarge the cycle body by inserting multiple 

statements that would otherwise be executed in different loop 

iterations 



gcc unroll directives 

#pragma GCC push_options 

#pragma GCC optimize ("unroll-loops") 

   Region to unroll 

#pragma GCC pop_options 

 

• One may also specify the unroll factor via  

 #pragma unroll(N) 

• In more recent gcc versions (e.g. 4 or later ones) it works 
with the –O directive 



Beware unroll side effects 

• In may put increased pressure on register usage 

leading to more frequent memory interactions 

• When relying on huge unroll values code size can 

grow enormously, consequently locality and 

cache efficiency may degrade significantly 

• Depending on the operations to be unrolled, it 

might be better to reduce the number of actual 

iterative steps via “vectorization”, a technique 

that we will look at later on    



Clock frequency and power wall 

• How can we make a processors run faster? 

• Better exploitation of hardware components and growth of 

transistors’ packaging – e.g. the More’s low 

• Increase of the clock frequency   

• But nowadays we have been face with the power wall, which 

actually prevents the building of processors with higher 

frequency 

• In fact the power consumption grows exponentially with 

voltage according to the VxVxF rule (and 130 W is considered 

the upper bound for dissipation) 

• The way we have for continuously increasing the computing 

power of individual machines is to rely on parallel processing 

units  



Symmetric multiprocessors 



Chip Multi Processor (CMP) - 

Multicore 



Symmetric Multi-threading (SMT) - 

Hyperthreading 



Making memory circuitry scalable –  

NUMA (Non Uniform memory Access) 

This may have different shapes  

depending on chipsets 



NUMA latency asymmetries 

NUMA node 

CPU CPU 

Shared Cache 

R
A

M
 

NUMA node 

CPU CPU 

Shared Cache 

R
A

M
 

NUMA node 

CPU CPU 

Shared Cache 

R
A

M
 

Interconnection 

Local accesses are served by 

- Inner private/shared caches 

- Inner memory controllers 

50 ÷ 200  

cycles 

200 ÷ 300 cycles  

(1x ÷ 6x) 

Remote accesses are served by 

- Outer shared caches 

- Outer memory controllers 



Cache coherency 

• CPU-cores see memory contents through their caching hierarchy 

• This is essentially a replication system 

• The problem of defining what value (within the replication 

scheme) should be returned upon reading from memory is also 

referred to as “cache coherency”  

• This is definitely different from the problem of defining when 

written values by programs can be actually read from memory 

• The latter is in fact know to as the “consistency” problem, which 

we will discuss later on 

• Overall, cache coherency is not memory consistency, but it is 

anyhow a big challenge to cope with, with clear implications on 

performance  



Defining coherency 

• A read from location X, previously written by a processor, returns 

the last written value if no other processor carried out writes on X 

in the meanwhile – Causal consistency along program order 

• A read from location X by a processor, which follows a write on X 

by some other processor, returns the written value if the two 

operations are sufficiently separated along time (and no other 

processor writes X in the meanwhile) – Avoidance of staleness 

• All writes on X from all processors are serialized, so that the 

writes are seen from all processors in a same order – We cannot 

(ephemerally or permanently) invert memory updates  

• …. however we will come back to defining when a processor 

actually writes to memory!! 

• Please take care that coherency deals with individual memory 

location operations!!! 



Cache coherency (CC) protocols: basics 

• A CC protocol is the result of choosing 

  a set of transactions supported by the distributed cache system 

  a set of states for cache blocks 

  a set of events handled by controllers 

  a set of transitions between states 

•  Their design is affected by several factors, such as 

  interconnection topology (e.g., single bus, hierarchical, ring-based) 

  communication primitives (i.e., unicast, multicast, broadcast) 

  memory hierarchy features (e.g., depth, inclusiveness) 

  cache policies (e.g., write-back vs write-through) 

•  Different CC implementations have different performance 

 Latency: time to complete a single transaction 

 Throughput: number of completed transactions per unit of time 

 Space overhead: number of bits required to maintain a block state 



Families of CC protocols 

• When to update copies in other caches? 

•  Invalidate protocols: 

  When a core writes to a block, all other copies are invalidated 

  Only the writer has an up-to-date copy of the block 

  Trades latency for bandwidth 

•  Update protocols: 

  When a core writes to a block, it updates all other copies 

  All cores have an up-to-date copy of the block 

  Trades bandwidth for latency 



“Snooping cache” coherency protocols 

• At the architectural level, these are based on some broadcast medium 

(also called network) across all cache/memory components 

• Each cache/memory component is connected to the broadcast medium 

by relying on a controller, which snoops (observes) the in-flight data  

• The broadcast medium is used to issue “transactions” on the state cache 

blocks 

• Agreement on state changes comes out by serializing the transactions 

traveling along the broadcast medium 

• A state transition cannot occur unless the broadcast medium is acquired 

by the source controller 

• Sate transitions are distributed (across the components), but are carried 

out atomically thanks to serialization over the broadcast medium   



An architectural scheme 



 Write/read transactions with invalidation 

• A write transaction invalidates all the other copies of the cache block 

• Read transactions 

 Get the latest updated copy from memory in write-through caches 

 Get the latest updated copy from memory or from another caching 

component in write-back caches (e.g. Intel processors) 

• We typically keep track of whether  

 A block is in the modified state (just written, hence invalidating all the 

other copies) 

 A block is in shared state (someone got the copy from the writer or from 

another reader) 

 A block is in the invalid state 

• This is the MSI (Modified-Shared-Invalid) protocol 



Reducing invalidation traffic upon 

writes: MESI 
• Similar to MSI, but we include an “exclusive” state indicating that a 

unique valid copy is owned, independently of whether the block has 

been written or not  

RFO = Request  

 For  

 Ownership 



Software exposed cache performance aspects 

• “Common fields” access issues 

 Most used fields inside a data structure should be 

placed at the head of the structure in order to maximize 

cache hits 

 This should happen provided that the memory 

allocator gives cache-line aligned addresses for 

dynamically allocated memory chunks 

• “Loosely related fields” should be placed 

sufficiently distant inside the data structure so to 

avoid performance penalties due to false cache 

sharing 



The false cache sharing problem 

top X  

bytes accessed 

CPU/Core-0 cache 

top X  

bytes accessed 
bottom Y 

bytes accessed 

CPU/Core-1 cache 

Struct …{} 

X+Y < 2 x CACHE_LINE 

Line i Line i 

Mutual invalidation  

upon write access 



Example code leading to false cache sharing 

Fits into a same cache line  

(typically 64/256 bytes) 

These reads from the cache  

line find cache-invalid data, even though  

the actual memory location we are reading from  

does not change over time 



Posix memory-aligned allocation 



Inspecting cache line accesses 

• A technique (called Flush+Reload) presented at [USENIX Security 

Symposium – 2013] is based on observing access latencies on 

shared data 

• Algorithmic steps: 

 The cache content related to some shared data is flushed 

 Successively it is re-accessed in read mode 

 Depending on the timing of the latter accesses we gather 

whether the datum has been also accessed by some other 

thread 

• Implementation on x86 is based on 2 building blocks: 

 A high resolution timer 

 A non-privileged cache line flush instruction 

• These algorithmic steps have been finally exploited for the 

Meltdown/Spectre attacks 

• … let’s see the details ….  



x86 high resolution timers 



x86 (non privileged) cache line flush  



ASM inline 

• Exploited to define ASM instruction to be posted into a C 

function 

• The programmer does not leave freedom to the compiler on 

that instruction sequence  

• Easy way of linking ASM and C notations 

• Structure of an ASM inline block of code for gcc 

 
__asm__ [volatile][goto] (AssemblerTemplate  

     [ : OutputOperands ] 

     [ : InputOperands ] 

     [ : Clobbers ]  

     [ : GotoLabels ]); 



Meaning of ASM inline fields 

• AssemblerTemplate  - the actual ASM code 

• volatile – forces the compiler not to take any 

optimization (e.g. instruction placement effect) 

• goto – assembly can lead to jump to any label in 

GoToLabels  

• OutputOperands – data move post conditions 

• InputOperands – data move preconditions 

• Clobbers – registers involved in update by the ASM 

code, which require save/restore of their values (e.g. calee 

save registers) 



C compilation directives for Operands 

• The = symbol means that the corresponding perand is 

used as an output  

• Hence after the execution of the ASM code block, the 

operand value becomes the source for a given target 

location (e.g. for a variable)  

• In case the operand needs to keep a value to be used as 

an input (hence the operand is the destination for the 

value of some source location) then the = symbol does 

not need to be used 



Main gcc supported operand specifications 

• r – generic register operands 

• m – generic memory operand (e.g. into the stack) 

• 0-9 – reused operand index 

• i/I – immediate 64/32 bit operand 

• q - byte-addressable register (e.g. eax, ebx, ecx, 

edx) 

• A - eax or edx 

• a, b, c, d, S, D - eax, ebx, ecx, edx, esi, edi 

respectively (or al, rax etc variants depending on 

the size of the actual-instruction operands) 

 



Flush+Reload: measuring cache access latency 

at user space 

A barrier on all memory  

accesses 

Barriers on loads 



Typical Flush+Reload timelines 



Can we prevent rtdsc to be user-space accessed? 

• Yes, the processor state  can be configure to run this 

instruction in privileged mode 

• This will require passing through a system-call to get 

the value, which might introduce “variance” in the 

samples, leading to less precise measurement, a topic 

we will re-discuss 

• In any case we can emulate a timer with a user space 

thread regularly incrementing a shared counter   

 Timer variable 

++ 

read 

Compute elapsed time 

as a simple difference 

The two threads should work on close (although different) cores 



Flush+Reload vs cache inclusiveness 

• An inclusive caching system (e.g. Intel) is such that a 

lower level caching component Lx always keeps a copy 

of the content cached by some upper level component Ly 

•  So Ly content is always included in Lx one 

• A non-inclusive cache (e.g. some AMD chipsets) does 

not have this vincula 

• So we might cache some data at L1 and then, e.g. after 

evicting from L1, we may load the data in, e.g. LLC  

• For these caching systems, cross process Flush+Reload 

attacks may fail  

• They can instead still be fruitfully when used, e.g., across 

processes running on a same CPU-core 



The actual meaning of reading/writing 

from/to memory 

• What is the memory behavior under concurrent data accesses? 

 Reading a memory location should return last value written 

 The last value written not clearly (or univocally) defined 

under concurrent access and with multi-locations as the target 

 

• The memory consistency model 

 Defines in which order processing units perceive concurrent 

accesses 

 Based on ordering rules, not necessarily timing of accesses  

 

• Memory consistency is not memory coherency!!! 



Terminology for memory models 

• Program Order (of a processor‘s operations) 
 per-processor order of memory accesses determined by 

program (software) 

 

• Visibility Order (of all operations) 
 order of memory accesses observed by one or more 

processors (e.g. like it if they were gathered by an external 

observer) 

 every read from a location returns the value of the most 

recent write  

 

 
 



Sequential consistency 

``A multiprocessor system is sequentially consistent if the result of 

any execution is the same as if the operations of all the processors 

were executed in some sequential order, and the operations of each 

individual processor appear in this sequence in the order specified by 

its program.’’ (Lamport 1979) 

 

Program order based memory accesses cannot be subverted in 

the overall sequence, so they cannot be observed to occur in a 

different order by a “remote” observer 



An example 

CPU1 

[A] = 1;(a1) 

[B] = 1;(b1)  

 

CPU2 

u = [B];(a2) 

v = [A];(b2) 

 

[A],[B] ... Memory 

u,v ... Registers 

b1,a2,b2,a1  

Not sequentially consistent 

Visibility order violates program order 

a1,b1,a2,b2 

Sequentially consistent 

Visibility order does not violate  

program order   



Total Store Order (TSO)  

• Sequential consistency is “inconvenient” in terms of memory 

performance 

• Example: cache misses need to be served ``sequentially’’ even if 

they are write-operations with no currently depending instruction 

• TSO is based on the idea that storing data into memory is not 

equivalent to writing to memory (as it occurs along program order) 

• Something is positioned in the middle between a write operation 

(by software) and the actual memory update (in the hardware) 

• A write materializes as a store when it is ``more convenient” along 

time  

• Several off-the-shelf machines rely on TSO (e.g. SPARC V8, x86)  



TSO architectural concepts   
• Store buffers allow writes to memory and/or caches to be saved to optimize 

interconnect accesses (e.g. when the interconnection medium is locked) 

• CPU can continue execution before the write to cache/memory is complete 

(i.e. before data is stored) 

• Some writes can be combined, e.g. video memory 

• Store forwarding allows reads from local CPU to see pending writes in the 

store buffer 

• Store buffer invisible to remote CPUs  
Store buffers  

not directly visible  

in the ISA 

 

Forwarding of pending  

writes in the store buffer  

to successive read operations  

of the same location 

 

Writes become visible to  

writing processor first 



A TSO timeline 

On x86 load operations may be reordered with older store 

operations to different locations 

 

This breaks, e.g., Dekker’s mutual exclusion algorithm 



x86 memory synchronization 
 

• x86 ISA provides means for managing synchronization (hence visibility) of 

memory operations 

• SFENCE (Store Fence) instruction:  
 Performs a serializing operation on all store-to-memory instructions that were 

issued prior the SFENCE instruction. This serializing operation guarantees that 

every store instruction that precedes the SFENCE instruction in program order 

becomes globally visible before any store instruction that follows the SFENCE 

instruction.  

• LFENCE (Load Fence) instruction: 
 Performs a serializing operation on all load-from-memory instructions that 

were issued prior the LFENCE instruction. Specifically, LFENCE does not 

execute until all prior instructions have completed locally, and no later 

instruction begins execution until LFENCE completes. In particular, an 

instruction that loads from memory and that precedes an LFENCE receives 

data from memory prior to completion of the LFENCE 



x86 memory synchronization 
• MFENCE (Memory Fence) instruction: 

 Performs a serializing operation on all load-from-memory and store-to-memory 

instructions that were issued prior the MFENCE instruction. This serializing 

operation guarantees that every load and store instruction that precedes the 

MFENCE instruction in program order becomes globally visible before any 

load or store instruction that follows the MFENCE instruction 

• Fences are guaranteed to be ordered with respect to any other 

serializing instructions (e.g. CPUID, LGDT, LIDT etc.) 

• Instructions that can be prefixed by LOCK become serializing 

instructions  

• These are ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, DEC, 

INC, NEG, NOT, OR, SBB, SUB, XOR, XAND 

• CMPXCHG is used by spinlocks implementations such as   

 int pthread_mutex_lock(pthread_mutex_t *mutex); 

 int pthread_mutex_trylock(pthread_mutex_t *mutex); 



Read-Modify-Write (RMW) instructions 

• More generally, CMPXCHG (historically known as Compare-and-

Swap – CAS) stands in the wider class of Read-Modify-Write 

instructions like also Fetch-and-Add, Fetch-and-Or etc… 

• These instructions perform a pattern where a value is both read and 

updated (if criteria are met) 

• This can also be done atomically, with the guarantee of not being 

interfered by memory accesses in remote program flows 

• In the essence, the interconnection medium (e.g. the memory bus) is 

locked in favor of the processing unit that is executing the Read-

Modify-Write instruction 



gcc built-in  

void _mm_sfence(void) 

void _mm_lfence(void) 

void _mm_mfence(void) 

bool __sync_bool_compare_and_swap (type *ptr, 

type oldval, type newval) 

………… 

 

• The definition given in the Intel documentation allows only for the 

use of the types int, long, long long as well as their unsigned 

counterparts 

 

• gcc will allow any integral scalar or pointer type that is 1, 2, 4 or 8 

bytes in length 



Implementing an active-wait barrier 

long control_counter = THREADS; 

long era_counter = THREADS; 

 

void barrier(void){ 

     int ret; 

 

     while(era_counter != THREADS && control_counter == THREADS); 

 

     ret = __sync_bool_compare_and_swap(&control_counter,THREADS,0); 

     if(ret) era_counter = 0; 

         

     __sync_fetch_and_add(&control_counter,1); 

     while(control_counter != THREADS); 

     __sync_fetch_and_add(&era_counter,1); 

 

} 

era_counter update already committed when performing this 



ASM-based trylock via CMPXCHG 

int try_lock(void * uadr){ 

    unsigned long r =0 ; 

    asm volatile( 

        "xor %%rax,%%rax\n" 

        "mov $1,%%rbx\n" 

        "lock cmpxchg %%rbx,(%1)\n" 

        "sete (%0)\n" 

        : : "r"(&r),"r" (uadr) 

        : "%rax","%rbx" 

    ); 

    return (r) ? 1 : 0; 

} 

 

Target memory word 

Set equal 

If they were equal return 1 

rax – eax – ax – al  

are implicit registers 

for cmpxchg 



Locks vs (more) scalable coordination 

• The common way of coordinating the access to shared data is based 

on locks 

• Up to know we understood what is the actual implementation of spin-

locks 

• In the end most of us never cared about hardware level memory 

consistency since spin-locks (and their Read-Modify-Write based 

implementation) never leave pending memory updates upon exiting 

a lock protected critical section  

• Can we exploit memory consistency and the RMW support for 

achieving more scalable coordination schemes?? 

• The answer is yes 

 Non-blocking coordination (lock/wait-free synchronization) 

 Read Copy Update (originally born within the Linux kernel)  



A recall on linearizability 

• A share data structure is “linearizable” if its operations 

always look to be sequentializable – we can make them 

equivalent to some sequential history 

• This is true if  

all its access methods/functions, although lasting a 

wall-clock-time period, can be seen as taking effect 

(materialize) at a specific point in time 

all the time-overlapping operations can be ordered 

based on their “selected” materialization instant   

• Linearizability is a restriction of serializability since it 

involves operations on a single datum/object 



A scheme 

Operations (e.g. functions) 

accessing a shared datum 

A 

B 

C 

threads 

wall-clock-time 

Admissible  

histories 

A  B  C 

B  C  A 

B  A  C 

B  C  is a constraint 

A  B && C  A 
would violate 

linearizability  

Linearization points 



RMW vs linearizability 

• Even though they implement non-trivial memory accesses, 

RMW instructions appear as atomic across the overall hardware 

architecture 

• So they can be exploited to define linearization points of 

operations, thus leading to order the operations in a linearizable 

history 

• The linearization points can be subject to differentiated 

execution paths (e.g. conditional branches) 

• RMW instruction can fail, thus leading to drive subsequent 

RMW or other instructions, which can anticipate or delay the 

linearization point of the operations   



RMW vs locks vs linearizability 

• RMW-based locks can be used to create explicit wall clock time 

separation across operations 

• We get therefore a sequential object with trivial linearization 

q.deq 

q.enq 

time 

lock() unlock() 

lock() unlock() 

11

7 



Making RMW part of the operations 

q.enq(x) 

q.enq(y) 

q.deq(y) 

time 

q.deq(x) 



Lock-free vs wait-free synchronization 

• They are both approaches belonging to non-blocking 

synchronization 

• They differ in terms of the progress condition they ensure for the 

involved functions/methods 

• Lock-freedom 

 Some instance of the function call successfully terminates in a 

finite amount of time (eventually)  

 All instances terminate successfully or not) in a finite amount of 

time (eventually) 

• Wait-freedom: 

 All instances of the function call successfully terminate in a finite 

amount of time eventually) 



Advantages from non-blocking synchronization 

• Any thread can conclude its operations in a finite amount of 

time (or execution steps) independently of the other threads 

behavior – what if a thread crashes?!? 

• This is highly attractive in modern contexts based on, e.g. 

CPU-stealing approaches – see Virtual Machine operations 

• In classical blocking synchronization (e.g. based on spin-

locks) what determines the actual number of computing 

steps (and time) for finalizing a give function are 

 The behavior of the lock holding thread 

 The actual sequence of lock acquisitions 

• This is no longer true in non-blocking synchronization 



Look-freedom aspects 

• If two ordered operations are incompatible (they conflict – 

possibly leading some RMW to fail), then one of them can 

be accepted, and the other one is refused (and maybe 

retried) 

• Look-free algorithms are based on abort/retry  

• The assumption for the effectiveness is that the aborts will 

occur infrequently, thus not wasting work too much 

• The tradeoffs in the design are based here on devising data 

structures whose actual operations are somehow brought to 

balance operate on different parts of the data structure 

• But this is not always possible!! 



On the lock-free linked list example 

• Insert via CAS on pointers (based on failure retries)  

• Remove via CAS on node-state prior to node linkage  

These CAS can fail but likely will not depending on the access pattern 



On the wait-free atomic (1,N) register example 

• It allows a writer to post atomically to N readers a new 

content 

• A CAS on a pointer (with no other algorithmic step or 

register management logic) is not sufficient to guarantee 

that we can use a finite amount of memory to solve this 

problem  

• The literature says that the lower bound on the number of 

buffers to use is N+2, an we should aim at this 

• N can be currently all read by the concurrent N readers 

• 1 can keep a new value, not yet accessed by any reader 

• 1 can be used to fill some new content 



Actual register operations  

[ARC - TPDS journal 2018] 

Unique synchronization  

variable with 2 fields  

Last  

written  

slot 

How many  

readers went 

reading that slot 



Actual register operations 

Last  

written  

slot How many  

readers went 

reading that slot 

current old current 

slot << 32 



Performance 

Can linearize read operations  

with no RMW instruction 
Always needs RMW instructions to  

linearize read operations 

Makes 2 data copies to  

assess consistency upon reading  

48 CPU-core 

machine deploy 



The big problem with generic data structures: 

buffer re-usage 

• RMW based approaches allow us to understand what is the 

state of some (linked) data structure (still in or already out 

of a linkage) 

• But we cannot understand if traversals on that data structure 

are still pending 

• If we reuse the data structure (e.g. modifying its fields), we 

might give rise to data structure breaks 

• This my even lead to security problems: 

 We traverse via a thread un-allowed pieces of 

information  

 



Read Copy Update (RCU) 

• Baseline idea 

 A writer at any time 

 Concurrency between readers and writers 

• Actuation 

 Out-links of logically removed data structures are not 

destroyed prior being sure that no reader is still 

traversing the modified copy of the data structure 

 Buffer re-reuse (hence release) takes place at the end of 

a so called “grace period”, allowing the standing 

readers not linearized after the update to still proceed 

• Very useful for read intensive shared data structures  

 



General RCU timeline 

Readers linearized after the writer 



RCU reads and writes 

• The reader 

 Signals it is there 

 It reads 

 Then it signals it is no longer there 

• The writer  

 Takes a write lock 

 Updates the data structure 

 Waits for standing readers to finish  

 NOTE: readers operating on the modified data structure 

instance are don’t care readers 

 Release the buffers for re-usage 



Kernel level RCU 

• With non-preemptable (e.g. non-RT) kernel level 

configurations the reader only needs to turn off preemption 

upon a read and re-enable it upon finishing 

• The writer understands that no standing reader is still there 

thanks to its own migration to all the remote CPUs, in Linux 

as easily as  

for_each_online_cpu(cpu)  run_on(cpu); 

• The migrations create a context switch leading the writer to 

understand that no standing reader, not linearized after the 

writer, is still there. 



Preemptable (e.g. user level) RCU 

• Discovering standing readers in the grace periods is a bit 

more tricky 

• An atomic presence-counter indicates an ongoing read 

• The writer updates the data structure and redirects readers to 

a new presence counter (a new epoch) 

• It the waits up to the release of presence counts on the last 

epoch counter 

• Data-structure updates and epoch move are not atomic  

• However, the only risk incurred is the one of waiting for 

some reader that already saw the new shape of the data 

structure,  but got registered as present in the last epoch 



Preemptable CRU reader/writer timeline 

Get the  

write lock 

Update data  

structure 

Move to a  

new-epoch  

readers’ counter 

Release the 

write lock 

Release the  

buffers 

Busy wait on  

last-epoch  

counter 

Increase the 

current epoch 

readers’ counter 

Decrease the 

previously increased  

epoch counter  

Read the data structure 



Additional parallelization aspects 

• This is the so called “vectorization” 

• It was born way before speculative computing and multi-

processor/multi-core 

• Essentially it is a form of SIMD (Single Instruction 

Multiple Data) processing  

• As opposed to classical MIMD (Multiple Instruction 

Multiple Data) processing of multi-processors/multi-cores 

• SIMD is based on vectorial registers and/or vectorial 

computation hardware (e.g. GPUs) 

• Less common is MISD (although somebody says that a 

speculative processor is MISD) 

• … SISD is a trivial single-core non speculative machine  



The vector processor scheme 

• Vector registers 

• Vectorized and pipelined functional units 

• Vector instructions 

• Hardware data scatter/gather  



x86 vectorization 

• Called SSE (Streaming SIM Extension) 

• Introduced in Pentium III processors (from 1999) 

• Previously called MMX (MultiMedia eXtension or Matrix Math 

eXtension) on Pentium processors (based on 64-bit registers) 

• In the SSE programming mode there are 8 128-bit XMM 

registers (16 in x86-64 SSE2) keeping vectors of 

 2 64-bit double precision floats 

 4 32-bit single precision floats 

 1 128-bit integer (unsigned) 

 2 64-bit integers (signed or unsigned) 

 4 32-bit integers (signed or unsigned) 

 8 16-bit integers (signed or unsigned) 

 16 8-bit integers (signed or unsigned) 



SSE data types 



Sandy Bridge AVX  

(Advanced Vector Extensions) 

• Registers are this time YMM[0-15] 



Memory alignment 

• Memory/XMM*/YMM* data move instructions in x86 operate 

with either 8/16-byte aligned memory or not 

• Those with aligned memory are faster 

• gcc offers the support for  aligning static (arrays of) values via 
the  __attribute__ ((aligned (16)))  

• It enables compile level automatic vectorization with –O flags 

(originally -O2), whenever possible 

• Clearly, one may also resort to dynamic memory allocation with 

explicit alignment  

• 4KB page boundaries are intrinsically 16-bit aligned, which 
helps with mmap() 

• Usage of instructions requiring alignment on non-aligned data 

will cause a general protection error 

 



C intrinsics for SSE programing 

• Vectorized addition - 8/16/32-bit integers 

• Vectorized addition - 32-bit floats 

• Vectorized addition - 64-bit doubles 



Additional C intrinsics 

• Additional features are available for, e.g.:  

 Saturated addition  

 Subtraction  

 Saturate subtraction 

 Addition/subtraction with carry 

 Odd/even addition/subtraction 

 In vector sum reduction 

• Similar functionalities are offered for the AVX case 


