
Trap/interrupt architectures:
1. Hardware hints

2. Relations with software and its layering

3. Bindings to the Linux architecture

Advanced Operating Systems

MS degree in Computer Engineering

University of Rome Tor Vergata

Lecturer: Francesco Quaglia

Single-core traditional concepts

• Traditional single-core machines only relied on

Traps (synchronous events wrt software execution)

Interrupts from external devices (asynchronous events)

• The classical way of handling the event has been based on

running operating system code on the unique CPU-core

in the system (single core systems) upon event acceptance

• This has been enough (in terms of consistency) even for

individual concurrent (multi-thread) applications given

that the state of the hardware was time-shared across

threads

Some more insights

CPU
Single CPU-core

chipset

Time-shared threads

They share the same identical

view on the state of the hardware,

they use exactly the same hardware

for carrying out their job

interrupt

Interrupt handling

Change in the

state of the

hardware

The change is visible to

any other thread upon is

reschedule on CPU

An example with traps (e.g. syscalls)

Application

code Processor state (e.g. TLB state) is A

munmap()

Syscall

(actually a trap)

Kernel

code

Processor state (e.g. TLB state) is

moved to B

from this point any time-shared thread sees the correct

final state as determined by trap handling

Moving to multi-core systems

Application

code

Core-0 state

(e.g. TLB state)

is A

munmap()

syscall

(actually a trap)

Kernel

code

Core-0 state

(e.g. TLB state)

is moved to B

This thread does not see state B – what if the TLB on Core-1

caches the same page table (the same state portion) as the

one of Core-0??

Thread X

running on

Core-1

Core issues

• If the system state is distributed/replicated within in the

hardware architecture we need mechanisms for allowing

state changes by traps/interrupts to be propagated

• As an example, a trap on Core-0 needs to be propagated

on Core-1 etc.

• In some cases this is addressed by pure firmware

protocols (such as when the event is bound to

deterministic handling)

• Otherwise we need mechanisms to propagate and handle

the event at the operating system (software) level

The IPI (Inter Processor Interrupt) support

• IPI is a third type of event (beyond traps and classical

interrupts) that may trigger the execution of specific

operating system software on any CPU-core

• An IPI is a synchronous event at the sender CPU-core

and an asynchronous one at the recipient CPU-core

• On the other hand, IPI is typically used to put in place

cross CPU-core activities (e.g. request/reply protocols)

allowing, e.g., a specific CPU-core to trigger a change in

the state of another one

• Or to trigger a change on the hardware portion only

observable by the other CPU-core

Priorities
• IPIs are generated via firmware support, but are finally

processed at software level (it becomes an OS matter)

• Classically, at least two priority levels are admitted

High

Low

• High priority leads to immediate processing of the IPI at

the recipient (a single IPI is accepted and stands out at

any point in time)

• Low priority generally leads to queue the requests and

process them via sequentialization

Actual support in x86 machines

• In x86 processors, the basic firmware support for

interrupts is the so called APIC (Advanced Programmable

Interrupt Controller)

• This offers a local instance to any CPU-core (called

LAPIC – Local APIC)

• As an example, LAPIC offers a CPU-core local

programmable timer (for time tracking and time-sharing

purposes)

• It also offers pseudo-registers to be used for posting IPI

requests in the system

• IPI requests travel along an ad-hoc APIC bus

The architectural scheme

The architectural scheme evolution

Nomenclature

• IRQ is the actual core associate with the interrupt request

(depending in hardware configuration)

• INT in the “interrupt line” as seen by the OS-kernel software

• In the essence INT = F(IRQ)

• The evaluation of the function F is typically hardware

specific

• As it will be clear in a few slides, on x86 processors INT =

IRQ+32

• This means that the first 32 INT lines are reserved for

something, else – these are the predefined traps of the

hardware architecture

I/O APIC insights

• I/O APIC tracks how many CPUs are in the current chipset

• It can selectively direct interrupts to the different CPU-cores

• It uses so called local APIC-ID as an identifier of the core.

• Fixed/physical operations

 it sends interrupts from certain device to single, predefined

core

• Logical/low priority operations

 it can deliver interrupts from certain device to multiple

cores in a round robin fashion

 The destination group is of at most 8 elements (based on

internal hardware constraints)

The Linux interface for APIC

• /proc/interrupt tells the actual accounting of the

interrupt delivery to the different CPU-cores

• /proc/irq/<IRQ#>/smp_affinity tells what it the

affinity of interrupts to CPU-copres inder the logical/low

priority operating mode

• The actual setup of the I/O APIC working mode is

hardcoded into kernel boot an is generally observable via the
dmesg buffer

Linux core data structures:

the IDT

• It is a table of entries that are used to describe the entry

point (the GATE) for the handling of any interrupt

• x86 machines have IDTs formed by 256 entries (the max

amount of IRQ vectors we can generate with the I/O

APIC architecture)

• The actual size and structure of the entries depends on

the type of machine we are working on (say 32 vs 64 bit

machines)

• Here is a high level view of the actual usage of the

entries …..

Vector range Use

0-19 (0x0-0x13)
Nonmaskable interrupts and

exceptions

20-31 (0x14-0x1f) Intel-reserved

32-127 (0x20-0x7f) External interrupts (IRQs)

128 (0x80)

Programmed exception for

system calls (segmented

style)

129-238 (0x81-0xee) External interrupts (IRQs)

239 (0xef) Local APIC timer interrupt

240-250 (0xf0-0xfa)
Reserved by Linux for future

use

251-255 (0xfb-0xff) Inter-processor interrupts

Linux IDT bindings Back here in

a while

What we already saw: idtr

•The idtr register (interrupt descriptor table register)

keeps on each CPU-core

 the IDT virtual address (expressed as a up to 6

bytes – 48bit – linear address)

 The number of entries currently present in

the IDT (expressed as 2 bytes – up to 256)

•This is a packed structure that we can manipulate

with the LIDT (Load IDT) and SIDT (Store IDT) x86

machine instructions

x86 protected mode

•The elements of the IDT are made up by 32-bit data

structures

• In more detail, the data stucture is of type struct

desc_struct

•It is defined in include/asm-i386/desc.h

as

struct desc_struct {

 unsigned long a,b;

}

Structure of the x86 protected mode IDT entry

difference

Recap on relations with the GDT

• The segment identifier/selector allows accessing the entry of the

GDT where we can find the base value for the target segment

• NOTE:

 As we already know, there are 4 valid data/code segments, all

mapped to base 0x0

 This is done in order to make LINUX portable on

architectures offering no segmentation support (i.e. only

offering paging)

 This is one reason why

Protection meta-data are also kept within page table entries

Setting up the offset for a GATE requires a displacement

referring to 0x0, which can be denoted to the linker by the &

operator

The long mode x86-64 case
/* idt.c */
#include "x86_64.h"
#include <inttypes.h>

struct idt_t {
 uint16_t offset_0_15;
 uint16_t selector;
 unsigned ist : 3 ;
 unsigned reserved0 : 5;
 unsigned type : 4;
 unsigned zero : 1;
 unsigned dpl : 2;
 unsigned p : 1;
 uint16_t offset_16_31;
 uint32_t offset_63_32;
 uint32_t reserved1;
}

64-bits total

Long mode IDT entry structure

Fully new

x86 long mode fully new concepts: IST

• The Interrupt Stack Table (IST) is available as an

alternative to handle stack switch upon traps/interrupts

• This mechanism unconditionally switches stacks when it is

enabled on each individual interrupt-vector basis using

a field in the IDT entry

• This means that some interrupt vectors can selectively use

the IST mechanism

• IST provides a method for specific interrupts (such as NMI,

double-fault, and machine-check) to always execute on a

known good stack

• The IST mechanism provides up to seven IST pointers in

the TSS

A scheme

TSS

.

.

.

Different

per-CPU

stack

areas
IST table

IDT entry IST selector

These are typically the primary stacks (possibly of different size) for

processing a given trap/interrupts

Software will then switch to the classical kernel level stack of the

running task if nothing prevents it (e.g. a double fault)

Macros for setting IDT entries (x86

protected mode)

Within the arch/i386/kernel/traps.c file we can

find the declaration of the following macros that can be used

for setting up one entry of the IDT

 set_trap_gate(displacement,&symbol_name)
 set_intr_gate(displacement,&symbol_name)

 set_system_gate(displacement,&symbol_name)

•displacement indicates the target entry of the IDT

•&simbol_name identifies the segment displacement

(starting from 0x0) which determines the address of the

software module to be invoked for handling the trap or the

interrupt

Main differences among the modules

• The set_trap_gate() function initializes one IDT

entry such in away to define the value 0 as the privilege

level admitted for accessing the GATE via software

• Therefore we cannot rely on the INT assembly instruction

unless we are already executing in kernel mode

• The set_intr_gate() function looks similar,

however the handler activation relies on interrupt

masking

•set_system_gate() is similar to

set_trap_gate() however it defines the value 3 as

the level of privilege admitted for accessing the GATE

Variants for x86 long mode
CODE SNIPPET FROM desc.h

409 /*

410 * This routine sets up an interrupt gate at directory privilege level 3.

411 */

412 static inline void set_system_intr_gate(unsigned int n, void *addr)

413 {

414 BUG_ON((unsigned)n > 0xFF);

415 _set_gate(n, GATE_INTERRUPT, addr, 0x3, 0, __KERNEL_CS);

416 }

417

418 static inline void set_system_trap_gate(unsigned int n, void *addr)

419 {

420 BUG_ON((unsigned)n > 0xFF);

421 _set_gate(n, GATE_TRAP, addr, 0x3, 0, __KERNEL_CS);

422 }

423

424 static inline void set_trap_gate(unsigned int n, void *addr)

425 {

426 BUG_ON((unsigned)n > 0xFF);

427 _set_gate(n, GATE_TRAP, addr, 0, 0, __KERNEL_CS);

428 }

i386/kernel-2.4 examples

Handler managing division errors

 set_trap_gate(0,÷_error)

Handler for non-maskable interrupts

 set_intr_gate(2,&nmi)

Handler used for dispatching system calls

 set_system_gate(SYSCALL_VECTOR,&system_call)

Reserved vs available IDT entries

• The entries from 0 to 31 are reserved for handlers that are

used to manage specific (predefined) events/conditions (such

as divide by 0 or page fault) or are already planned for future

use … these are mostly traps

• This is based on hardware design/requirements

• All the other entries are available for system programming

purposes

• As an example, the entry at displacement 0x80 has been

traditionally used for kernel level access via system calls

• We note that for some of the reserved entries, microcode

tasks generate a so called error-code to be passed to the

handler ……

Reserved vs available IDT entries

• If needed, the handler needs to be structured such in a

way to be aware of the production of the error-code

• Particularly, beyond exploiting the error-code value, it

needs to remove it from, e.g., the stack right before

returning from trap/interrupt (IRET)

• Non-reserved entries area managed by the microcode

with no generation of any error-code value

Management of trap handlers

IDT

Trap

The registered

handler

What to do?

CPU snapshot generation

on the stack? YES

Management of the

presence/absence of error

code? YES

Additional stack change?

YES/NO

Control passage to a

second level handler?

Typically YES

Modular handler management: i386 case

• Trap/interrupt handlers are typically defined via ASM code

within arch/i386/kernel/entry.S (this file also

keeps the specification of the system call dispatcher, which is

a trap handler)

• All the handlers associated with predetermined trap/interrupts

(namely those from 0 to 31) are managed via an additional

dispatcher

• Initially, each handler logs a null-value into the stack in case

no error-code is generated in relation to the specific

trap/interrupt

• Then it logs into the stack the address of the actual handler-

function (typically written in C)

Modular handler management: i386 case

• After, an assembly module, operating the dispatching, is

activated

• This logs the CPU context and gives control to the handler

via a conventional call

• Given that the input parameters are passed via the stack, the

handlers will need to be compiled with asmlinkage

directives (or more modern dotraplinkage)

• … in more modern Linux kernel flavors (e.g. x86 long

mode), the layering is a bit more articulated, but the basic

concepts are the same

• One thing which is dealth with explicitly is IST and the stack

frame redirection

The actual scheme

trap/interrupt

handler

dispatcher

jump

call

ret

rti

Logs the CPU context onto

the stack

Logs the pointer to the handler

(and sometimes also the value 0) onto the stack

Actual

handler

Examples

ENTRY(overflow)

 pushl $0

 pushl $ SYMBOL_NAME(do_overflow)

 jmp error_code

ENTRY(general_protection)

 pushl $ SYMBOL_NAME(do_general_protection)

 jmp error_code

ENTRY(page_fault)

 pushl $ SYMBOL_NAME(do_page_fault)

 jmp error_code

No error code by firmware

Error code already posted

firmware

The error_code block (still i386 case)

• The assembler code block called error_code is in charge of

logging the CPU context into the stack

• This is done by aligning the stack content with the following data

structure defined in include/asm-i386/ptrace.h

struct pt_regs {

 long ebx; long ecx;

 long edx; long esi;

 long edi; long ebp;

 long eax; int xds; int xes;

 long orig_eax; long eip; int xcs;

 long eflags; long esp; int xss;

}

• The actual handler can take as input a pt_regs* pointer and, if

needed, an unsigned long representing the error-code

struct pt_regs for x86 long mode

struct pt_regs {

 unsigned long r15; … unsigned long r12;

 unsigned long bp;

 unsigned long bx; /* arguments: non interrupts/non

tracing syscalls only save up to here*/

 unsigned long r11; … unsigned long r8;

 unsigned long ax;

 unsigned long cx;

 unsigned long dx;

 unsigned long si;

 unsigned long di;

 unsigned long orig_ax; /* end of arguments */ /* cpu

exception frame or undefined */

 unsigned long ip;

 unsigned long cs;

 unsigned long flags;

 unsigned long sp;

 unsigned long ss; /* top of stack page */

}

https://elixir.bootlin.com/linux/v3.0/ident/pt_regs
https://elixir.bootlin.com/linux/v3.0/ident/r15
https://elixir.bootlin.com/linux/v3.0/ident/r12
https://elixir.bootlin.com/linux/v3.0/ident/bx
https://elixir.bootlin.com/linux/v3.0/ident/r11
https://elixir.bootlin.com/linux/v3.0/ident/r8
https://elixir.bootlin.com/linux/v3.0/ident/ax
https://elixir.bootlin.com/linux/v3.0/ident/cx
https://elixir.bootlin.com/linux/v3.0/ident/dx
https://elixir.bootlin.com/linux/v3.0/ident/si
https://elixir.bootlin.com/linux/v3.0/ident/di
https://elixir.bootlin.com/linux/v3.0/ident/ip
https://elixir.bootlin.com/linux/v3.0/ident/cs
https://elixir.bootlin.com/linux/v3.0/ident/sp
https://elixir.bootlin.com/linux/v3.0/ident/ss

The page fault handler: main features

• The page fault handler is do_page_fault(struct

pt_regs *regs, unsigned long

error_code) and is defined in

linux/arch/x86/mm/fault.c

• It takes as input the error-code determining the type of the

occurred fault, which needs to be handled

• The fault type is specified via the three least significant

bits of error_code according to the following rules

bit 0 == 0 means no page found, 1 means protection

fault

bit 1 == 0 means read, 1 means write

bit 2 == 0 means kernel, 1 means user-mode

x86-64 early trap/interrupt stack layout details

Coming from where?

Back to IPI

• Immediate handling is allowed for the case in

which there are no data structures that are shared

across CPU-cores that need to be accessed for the

handling (kind of stateless scenarios)

• An example is the system-halt (e.g. upon panic)

• Other usages of IPI are
 Execution on a same function across all the CPU-cores

(exactly like the halt)

 Change of the state of hardware components across

multiple CPU-cores in the system (e.g. the TLB state)

 Manage/initialize per-CPU variables

Actual IPI usage in Linux: a few examples

CALL_FUNCTION_VECTOR (vector 0xfb)

 Sent to all CPUs but the sender, forcing those CPUs to run a

 function passed by the sender. The corresponding interrupt

 handler is named call_function_interrupt(). Usually this

 interrupt is sent to all CPUs except the CPU executing the

 calling function by means of the smp_call_function()

 facility function.

RESCHEDULE_VECTOR (vector 0xfc) W

 When a CPU receives this type of interrupt, the

 corresponding handler, named reschedule_interrupt(),

 limits itself to acknowledge the interrupt.

INVALIDATE_TLB_VECTOR (vector 0xfd)

 Sent to all CPUs but the sender, forcing them to invalidate

 their Translation Lookaside Buffers. The corresponding

 handler, named invalidate_interrupt()

Actual IPI API

send_IPI_all()
 Sends an IPI to all CPUs (including the sender)

send_IPI_allbutself()
 Sends an IPI to all CPUs except the sender

send_IPI_self()
 Sends an IPI to the sender CPU

send_IPI_mask()
 Sends an IPI to a group of CPUs specified by a bit mask

Sequentialization of IPI management

• The sequentializing approach is used in case the IPI

requires managing a shared data structure across the

threads

• This is the typical case of IPI that require specific

parameters for correct management

• These parameters are in fact passed into predetermined

memory locations accessible to all the CPU-cores,

whose position in memory is predetermined

• The classical case is the one of smp-call-function,

whose function pointer and parameter are both passed

into a global table

The scheme

CPU-core0

Shared data structure

Get

spinlock

Post data

Trigger IPI

handle IPI possibly accessing

shared data

CPU-core1

207 int smp_call_function(void (*_func)(void *info), void *_info, int wait)

208 {

………

215 /* Can deadlock when called with interrupts disabled */

216 WARN_ON(irqs_disabled());

217

218 spin_lock_bh(&call_lock);

219 atomic_set(&scf_started, 0);

220 atomic_set(&scf_finished, 0);

221 func = _func;

222 info = _info;

223

224 for_each_online_cpu(i)

225 os_write_file(cpu_data[i].ipi_pipe[1], "C", 1);

226

227 while (atomic_read(&scf_started) != cpus)

228 barrier();

229

230 if (wait)

231 while (atomic_read(&scf_finished) != cpus)

232 barrier();

233

234 spin_unlock_bh(&call_lock);

235 return 0;

Beware this!!

IPI additional effects

• As noted before, one IPI used by Linux is

the reschedule one

• This may lead to preemption of the task

running on the CPU-core targeted by the IPI

• This may have effects on both

 Correctness/consistency

 Performance

Consistency aspects

• What about running a piece of code which

is CPU-specific and preemption occur??

• One example

struct _the_struct v[NR_CPUS];

v[smp_processor_id()] = some_value; /* task

is preempted here... */ something =

v[smp_processor_id()];

We may be targeting different entries

Performance aspects

• smp_call_function() tipcally runs with

interrupts allowed … just remember the

deadlock issue!!

• But we cannot risk to have some
smp_call_function() runner getting

context switched off the CPU

• Otherwise the release of the
smp_call_function() resources (e.g. the

spinlock) might be delayed

• …. and we might even deadlock anyhow!!

How to run with interrupts but no

actual preemption

• We use per-CPU atomic counters

• If the counter is not zero then no preemption

will take place (although we can be targeted

by interrupts)

• The check in clearly done via software upon

attempting to process the preemption interrupt

• Beware managing the preemption counter

explicitly if required!!

Preemption enabling/disabling API

preempt_enable() // decrement the preempt counter

preempt_disable() // increment the preempt counter

preempt_enable_no_resched() decrement, but do not

immediately preempt

preempt_check_resched() // if needed, reschedule

preempt_count() return the preempt counter

put_cpu() /get_cpu() //decrase/increase the

counter (enable/disable preemption)

Variants of each other

Preemption vs SMP function calls

int smp_call_function(void (*func) (void *info), void *info, int

nonatomic, int wait) {

 cpumask_t map;

 preempt_disable();

 map = cpu_online_map;

 cpu_clear(smp_processor_id(), map);

 __smp_call_function_map(func, info, nonatomic, wait,

 map);

 preempt_enable();

 return 0;

} Internal structure with

preemption awareness

Be careful

• IPI is an extremely powerful technology

• However you need to consider scalability

aspects

• This leads to conclude that IPI schemes

involving large counts of CPU-cores need

to be used only when mandatorily needed

• The classical example is when patching the

kernel on line, e.g. upon mounting a module

