
Trap/interrupt architectures: 
1. Hardware hints 

2. Relations with software and its layering 

3. Bindings to the Linux architecture 

Advanced Operating Systems  

MS degree in Computer Engineering 

University of Rome Tor Vergata 

Lecturer: Francesco Quaglia 



Single-core traditional concepts 

• Traditional single-core machines only relied on  

Traps (synchronous events wrt software execution) 

Interrupts from external devices (asynchronous events) 

• The classical way of handling the event has been based on 

running operating system code on the unique CPU-core 

in the system (single core systems) upon event acceptance 

• This has been enough (in terms of consistency) even for 

individual concurrent (multi-thread) applications given 

that the state of the hardware was time-shared across 

threads 



Some more insights 

CPU 
Single CPU-core 

chipset 

Time-shared threads 
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An example with traps (e.g. syscalls) 

Application 

code Processor state (e.g. TLB state) is A 

munmap()  

Syscall  

(actually a trap) 

Kernel 

code 

Processor state (e.g. TLB state) is  

moved to B 

from this point any time-shared thread sees the correct 

final state as determined by trap handling 



Moving to multi-core systems 

Application 

code 

Core-0 state  

(e.g. TLB state)  

is A 

munmap()  

syscall  

(actually a trap) 

Kernel 

code 

Core-0 state  

(e.g. TLB state)  

is moved to B 

This thread does not see state B – what if the TLB on Core-1  

caches the same page table (the same state portion) as the  

one of Core-0?? 

Thread X 

running on  

Core-1 



Core issues 

• If the system state is distributed/replicated within in the 

hardware architecture we need mechanisms for allowing 

state changes by traps/interrupts to be propagated 

• As an example, a trap on Core-0 needs to be propagated 

on Core-1 etc. 

• In some cases this is addressed by pure firmware 

protocols (such as when the event is bound to 

deterministic handling) 

• Otherwise we need mechanisms to propagate and handle 

the event at the operating system (software) level 



The IPI (Inter Processor Interrupt) support 

• IPI is a third type of event (beyond traps and classical 

interrupts) that may trigger the execution of specific 

operating system software on any CPU-core 

• An IPI is a synchronous event at the sender CPU-core 

and an asynchronous one at the recipient CPU-core 

• On the other hand, IPI is typically used to put in place 

cross CPU-core activities (e.g. request/reply protocols) 

allowing, e.g., a specific CPU-core to trigger a change in 

the state of another one  

• Or to trigger a change on the hardware portion only 

observable by the other CPU-core  



Priorities 
• IPIs are generated via firmware support, but are finally 

processed at software level (it becomes an OS matter) 

• Classically, at least two priority levels are admitted  

High 

Low 

• High priority leads to immediate processing of the IPI at 

the recipient (a single IPI is accepted and stands out at 

any point in time) 

• Low priority generally leads to queue the requests and 

process them via sequentialization 



Actual support in x86 machines  

• In x86 processors, the basic firmware support for 

interrupts is the so called APIC (Advanced Programmable 

Interrupt Controller) 

• This offers a local instance to any CPU-core (called 

LAPIC – Local APIC) 

• As an example, LAPIC offers a CPU-core local 

programmable timer (for time tracking and time-sharing 

purposes) 

• It also offers pseudo-registers to be used for posting IPI 

requests in the system 

• IPI requests travel along an ad-hoc APIC bus 



The architectural scheme 



The architectural scheme evolution 



Nomenclature 

• IRQ is the actual core associate with the interrupt request 

(depending in hardware configuration) 

• INT in the “interrupt line” as seen by the OS-kernel software 

• In the essence INT = F(IRQ) 

• The evaluation of the function F is typically hardware 

specific 

• As it will be clear in a few slides, on x86 processors INT = 

IRQ+32 

• This means that the first 32 INT lines are reserved for 

something, else – these are the predefined traps of the 

hardware architecture  



I/O APIC insights 

• I/O APIC tracks how many CPUs are in the current chipset 

• It can selectively direct interrupts to the different CPU-cores 

• It uses so called local APIC-ID as an identifier of the core. 

• Fixed/physical operations  

 it sends interrupts from certain device to single, predefined 

core  

• Logical/low priority operations 

 it can deliver interrupts from certain device to multiple 

cores in a round robin fashion 

 The destination group is of at most 8 elements (based on 

internal hardware constraints) 



The Linux interface for APIC 

• /proc/interrupt tells the actual accounting of the 

interrupt delivery to the different CPU-cores 

• /proc/irq/<IRQ#>/smp_affinity tells what it the 

affinity of interrupts to CPU-copres inder the logical/low 

priority operating mode 

• The actual setup of the I/O APIC working mode is 

hardcoded into kernel boot an is generally observable via the 
dmesg buffer 

 



Linux core data structures:  

the IDT 

• It is a table of entries that are used to describe the entry 

point (the GATE) for the handling of any interrupt 

• x86 machines have IDTs formed by 256 entries (the max 

amount of IRQ vectors we can generate with the I/O 

APIC architecture)   

• The actual size and structure of the entries depends on 

the type of machine we are working  on (say 32 vs 64 bit 

machines) 

• Here is a high level view of the actual usage of the 

entries ….. 

 



Vector range Use 

0-19 (0x0-0x13)  
Nonmaskable interrupts and 

exceptions 

20-31 (0x14-0x1f)  Intel-reserved 

32-127 (0x20-0x7f)  External interrupts (IRQs) 

128 (0x80)  

Programmed exception for 

system calls (segmented 

style)  

129-238 (0x81-0xee)  External interrupts (IRQs) 

239 (0xef)  Local APIC timer interrupt 

240-250 (0xf0-0xfa)  
Reserved by Linux for future 

use 

251-255 (0xfb-0xff)  Inter-processor interrupts 

Linux IDT bindings Back here in  

a while 



What we already saw: idtr 

•The  idtr register (interrupt descriptor table register) 

keeps on each CPU-core 

 the IDT virtual address (expressed as a up to 6 

bytes – 48bit – linear address) 

 The number of entries currently present in 

the IDT (expressed as 2 bytes – up to 256)  

•This is a packed structure that we can manipulate 

with the LIDT (Load IDT) and SIDT (Store IDT) x86 

machine instructions 



x86 protected mode 

•The elements of the IDT are made up by 32-bit data 

structures 

• In more detail, the data stucture is of type struct 

desc_struct  

•It is defined  in include/asm-i386/desc.h 

as 

struct desc_struct { 

 unsigned long a,b; 

} 



Structure of the x86 protected mode IDT entry 

difference 



Recap on relations with the GDT 

• The segment identifier/selector allows accessing the entry of the 

GDT where we can find the base value for the target segment 

• NOTE:  

 As we already know, there are 4 valid data/code segments, all 

mapped to base 0x0 

 This is done in order to make LINUX portable on 

architectures offering no segmentation support (i.e. only  

offering paging) 

 This is one reason why 

Protection meta-data are also kept within page table entries 

Setting up the offset for a GATE requires a displacement 

referring to 0x0, which can be denoted to the linker by the & 

operator 



The long mode x86-64 case 
/*  idt.c  */ 
#include "x86_64.h" 
#include <inttypes.h> 
 
struct idt_t { 
    uint16_t offset_0_15; 
    uint16_t selector; 
    unsigned ist : 3 ; 
    unsigned reserved0 : 5; 
    unsigned type : 4; 
    unsigned zero : 1; 
    unsigned dpl : 2; 
    unsigned p : 1; 
    uint16_t offset_16_31; 
    uint32_t offset_63_32; 
    uint32_t reserved1; 
} 

64-bits total 





Long mode IDT entry structure 

Fully new 



x86 long mode fully new concepts: IST 

• The Interrupt Stack Table (IST) is available as an 

alternative to handle stack switch upon traps/interrupts 

• This mechanism unconditionally switches stacks when it is 

enabled on each individual interrupt-vector basis using 

a field in the IDT entry 

• This means that some interrupt vectors can selectively use 

the IST mechanism 

• IST provides a method for specific interrupts (such as NMI, 

double-fault, and machine-check) to always execute on a 

known good stack 

• The IST mechanism provides up to seven IST pointers in 

the TSS  



A scheme 

TSS 

. 

. 

. 

 

Different  

per-CPU  

stack 

areas  
IST table 

IDT entry IST selector 

These are typically the primary stacks (possibly of different size) for 

processing a given trap/interrupts 

Software will then switch to the classical kernel level stack of the 

running task if nothing prevents it (e.g. a double fault)  



Macros for setting IDT entries (x86 

protected mode) 

Within the arch/i386/kernel/traps.c file we can 

find the declaration of the following macros that can be used 

for setting up one entry of the IDT 

 set_trap_gate(displacement,&symbol_name) 
 set_intr_gate(displacement,&symbol_name) 

 set_system_gate(displacement,&symbol_name) 

•displacement indicates the target entry of the IDT 

•&simbol_name identifies the segment displacement 

(starting from 0x0) which determines the address of the 

software module to be invoked  for handling the trap or the 

interrupt 



Main differences among the modules 

• The set_trap_gate() function initializes one IDT 

entry such in away to define the value 0 as the privilege 

level admitted for accessing the GATE via software 

• Therefore we cannot rely on the INT assembly instruction  

unless we are already executing in kernel mode 

• The set_intr_gate() function looks similar, 

however the handler activation relies on interrupt 

masking  

•set_system_gate() is similar to  

set_trap_gate() however it defines the value 3 as 

the level of privilege admitted for accessing the GATE 
 



Variants for x86 long mode 
CODE SNIPPET FROM desc.h 

409 /* 

410  * This routine sets up an interrupt gate at directory privilege level 3. 

411  */ 

412 static inline void set_system_intr_gate(unsigned int n, void *addr) 

413 { 

414         BUG_ON((unsigned)n > 0xFF); 

415         _set_gate(n, GATE_INTERRUPT, addr, 0x3, 0, __KERNEL_CS); 

416 } 

417  

418 static inline void set_system_trap_gate(unsigned int n, void *addr) 

419 { 

420         BUG_ON((unsigned)n > 0xFF); 

421         _set_gate(n, GATE_TRAP, addr, 0x3, 0, __KERNEL_CS); 

422 } 

423  

424 static inline void set_trap_gate(unsigned int n, void *addr) 

425 { 

426         BUG_ON((unsigned)n > 0xFF); 

427         _set_gate(n, GATE_TRAP, addr, 0, 0, __KERNEL_CS); 

428 } 



i386/kernel-2.4 examples 

Handler managing division errors  

 set_trap_gate(0,&divide_error) 

 

Handler for non-maskable interrupts 

 set_intr_gate(2,&nmi) 

 

Handler used for dispatching system calls 

 set_system_gate(SYSCALL_VECTOR,&system_call) 

 

 



Reserved vs available IDT entries 

• The entries from 0 to 31 are reserved for handlers that are 

used to manage specific (predefined) events/conditions (such 

as divide by 0 or page fault) or are already planned for future 

use … these are mostly traps 

• This is based on hardware design/requirements  

• All the other entries are available for system programming 

purposes 

• As an example, the entry at displacement 0x80 has been 

traditionally used for kernel level access via system calls 

• We note that for some of the reserved entries, microcode 

tasks generate a so called error-code to be passed to the 

handler …… 



Reserved vs available IDT entries 

• If needed, the handler needs to be structured such in a 

way to be aware of the production of the error-code 

• Particularly, beyond exploiting the error-code value, it 

needs to remove it from, e.g., the stack right before 

returning from trap/interrupt (IRET) 

• Non-reserved entries area managed by the microcode 

with no generation of any error-code value 



Management of trap handlers 

IDT 

Trap 

The registered  

handler 

What to do? 

CPU snapshot generation 

on the stack? YES 

 

Management of the 

presence/absence of error 

code? YES 

 

Additional stack change? 

YES/NO 

 

Control passage to a 

second level handler? 

Typically YES 

 

   



Modular handler management: i386 case 

• Trap/interrupt handlers are typically defined via ASM code 

within arch/i386/kernel/entry.S (this file also 

keeps the specification of the system call dispatcher, which is 

a trap handler) 

• All the handlers associated with predetermined trap/interrupts 

(namely those from 0 to 31) are managed via an additional 

dispatcher 

• Initially, each handler logs a null-value into the stack in case 

no error-code is generated in relation to the specific 

trap/interrupt 

• Then it logs into the stack the address of the actual handler-

function (typically written in C) 



Modular handler management: i386 case 

• After, an assembly module, operating the dispatching, is 

activated  

• This logs the CPU context and gives control to the handler 

via a conventional call 

• Given that the input parameters are passed via the stack, the 

handlers will need to be compiled with asmlinkage 

directives (or more modern dotraplinkage) 

• … in more modern Linux kernel flavors (e.g. x86 long 

mode), the layering is a bit more articulated, but the basic 

concepts are the same 

• One thing which is dealth with explicitly is IST and the stack 

frame redirection  



The actual scheme 

trap/interrupt 

handler 

dispatcher 

jump 

call 

ret 

rti 

Logs the CPU context onto 

the stack 

Logs the pointer to the handler  

(and sometimes also the value 0) onto the stack 

Actual  

handler 



Examples 

ENTRY(overflow) 

 pushl $0 

 pushl $ SYMBOL_NAME(do_overflow) 

 jmp error_code 

 

ENTRY(general_protection) 

 pushl $ SYMBOL_NAME(do_general_protection) 

 jmp error_code 

 

ENTRY(page_fault) 

 pushl $ SYMBOL_NAME(do_page_fault) 

 jmp error_code 

 

No error code by firmware 

Error code already posted  

firmware 



The error_code block (still i386 case) 

• The assembler code block called error_code is in charge of 

logging the CPU context into the stack 

• This is done by aligning the stack content with the following data 

structure defined in include/asm-i386/ptrace.h 

struct pt_regs { 

 long ebx;  long ecx; 

 long edx; long esi; 

 long edi; long ebp; 

 long eax; int  xds; int  xes; 

 long orig_eax; long eip; int  xcs;   

 long eflags; long esp; int  xss; 

} 

• The actual handler can take as input a pt_regs* pointer and, if 

needed, an unsigned long representing the error-code 



struct pt_regs for x86 long mode 

struct pt_regs {  

 unsigned long r15;  …  unsigned long r12;  

 unsigned long bp;  

 unsigned long bx; /* arguments: non interrupts/non 

tracing syscalls only save up to here*/  

 unsigned long r11;  … unsigned long r8;  

 unsigned long ax;  

 unsigned long cx;  

 unsigned long dx;  

 unsigned long si;  

 unsigned long di;  

 unsigned long orig_ax; /* end of arguments */ /* cpu 

exception frame or undefined */  

 unsigned long ip;  

 unsigned long cs;  

 unsigned long flags;  

 unsigned long sp;  

 unsigned long ss; /* top of stack page */  

} 

https://elixir.bootlin.com/linux/v3.0/ident/pt_regs
https://elixir.bootlin.com/linux/v3.0/ident/r15
https://elixir.bootlin.com/linux/v3.0/ident/r12
https://elixir.bootlin.com/linux/v3.0/ident/bx
https://elixir.bootlin.com/linux/v3.0/ident/r11
https://elixir.bootlin.com/linux/v3.0/ident/r8
https://elixir.bootlin.com/linux/v3.0/ident/ax
https://elixir.bootlin.com/linux/v3.0/ident/cx
https://elixir.bootlin.com/linux/v3.0/ident/dx
https://elixir.bootlin.com/linux/v3.0/ident/si
https://elixir.bootlin.com/linux/v3.0/ident/di
https://elixir.bootlin.com/linux/v3.0/ident/ip
https://elixir.bootlin.com/linux/v3.0/ident/cs
https://elixir.bootlin.com/linux/v3.0/ident/sp
https://elixir.bootlin.com/linux/v3.0/ident/ss


The page fault handler: main features 

• The page fault handler is  do_page_fault(struct 

pt_regs *regs, unsigned long 

error_code) and is defined in 

linux/arch/x86/mm/fault.c 

• It takes as input the error-code determining the type of the 

occurred fault, which needs to be handled 

• The fault type is specified via the three least significant 

bits of error_code according to the following rules  

bit 0 == 0 means no page found, 1 means protection 

fault 

bit 1 == 0 means read, 1 means write 

bit 2 == 0 means kernel, 1 means user-mode 

 



x86-64 early trap/interrupt stack layout details 

Coming from where? 



Back to IPI 

• Immediate handling is allowed for the case in 

which there are no data structures that are shared 

across CPU-cores that need to be accessed for the 

handling (kind of stateless scenarios) 

• An example is the system-halt (e.g. upon panic) 

• Other usages of IPI are 
 Execution on a same function across all the CPU-cores 

(exactly like the halt) 

 Change of the state of hardware components across 

multiple CPU-cores in the system (e.g. the TLB state) 

 Manage/initialize per-CPU variables 



Actual IPI usage in Linux: a few examples 

CALL_FUNCTION_VECTOR (vector 0xfb)  

 Sent to all CPUs but the sender, forcing those CPUs to run a 

 function passed by the sender. The corresponding interrupt 

 handler is named call_function_interrupt( ). Usually this 

 interrupt is sent to all CPUs except the CPU executing the 

 calling function by means of the smp_call_function( ) 

 facility function.  

RESCHEDULE_VECTOR (vector 0xfc) W 

 When a CPU receives this type of interrupt, the

 corresponding handler, named reschedule_interrupt( ),

 limits itself to acknowledge the interrupt.  

INVALIDATE_TLB_VECTOR (vector 0xfd)  

 Sent to all CPUs but the sender, forcing them to invalidate 

 their Translation Lookaside Buffers. The corresponding 

 handler, named invalidate_interrupt( ) 



Actual IPI API 

send_IPI_all( )  
 Sends an IPI to all CPUs (including the sender) 
 
send_IPI_allbutself( )  
 Sends an IPI to all CPUs except the sender 

 
send_IPI_self( )  
 Sends an IPI to the sender CPU 

 
send_IPI_mask( )  
 Sends an IPI to a group of CPUs specified by a bit mask 

 



Sequentialization of IPI management 

• The sequentializing approach is used in case the IPI 

requires managing a shared data structure across the 

threads 

• This is the typical case of IPI that require specific 

parameters for correct management 

• These parameters are in fact passed into predetermined 

memory locations accessible to all the CPU-cores, 

whose position in memory is predetermined 

• The classical case is the one of smp-call-function, 

whose function pointer and parameter are both passed 

into a global table 



The scheme 

CPU-core0 

Shared data structure 

Get  

spinlock 

Post data 

Trigger IPI 

handle IPI possibly accessing 

shared data 

CPU-core1 



207 int smp_call_function(void (*_func)(void *info), void *_info, int wait) 

208 { 

……… 

215         /* Can deadlock when called with interrupts disabled */ 

216         WARN_ON(irqs_disabled()); 

217  

218         spin_lock_bh(&call_lock); 

219         atomic_set(&scf_started, 0); 

220         atomic_set(&scf_finished, 0); 

221         func = _func; 

222         info = _info; 

223  

224         for_each_online_cpu(i) 

225                 os_write_file(cpu_data[i].ipi_pipe[1], "C", 1); 

226  

227         while (atomic_read(&scf_started) != cpus) 

228                 barrier(); 

229  

230         if (wait) 

231                 while (atomic_read(&scf_finished) != cpus) 

232                         barrier(); 

233  

234         spin_unlock_bh(&call_lock); 

235         return 0; 

Beware this!! 



IPI additional effects 

• As noted before, one IPI used by Linux is 

the reschedule one 

• This may lead to preemption of the task 

running on the CPU-core targeted by the IPI 

• This may have effects on both 

 Correctness/consistency 

 Performance 



Consistency aspects 

• What about running a piece of code which 

is CPU-specific and preemption occur?? 

• One example 

struct _the_struct v[NR_CPUS]; 

v[smp_processor_id()] = some_value; /* task 

is preempted here... */ something = 

v[smp_processor_id()]; 

We may be targeting different entries 



Performance aspects 

• smp_call_function() tipcally runs with 

interrupts allowed … just remember the 

deadlock issue!! 

• But we cannot risk to have some 
smp_call_function() runner getting 

context switched off the CPU 

• Otherwise the release of the 
smp_call_function() resources (e.g. the 

spinlock) might be delayed  

• …. and we might even deadlock anyhow!!  



How to run with interrupts but no 

actual preemption 

• We use per-CPU atomic counters 

• If the counter is not zero then no preemption 

will take place (although we can be targeted 

by interrupts) 

• The check in clearly done via software upon 

attempting to process the preemption interrupt 

• Beware managing the preemption counter 

explicitly if required!! 



Preemption enabling/disabling API 

preempt_enable() // decrement the preempt counter  

preempt_disable() // increment the preempt counter  

preempt_enable_no_resched() decrement, but do not 

immediately preempt  

preempt_check_resched() // if needed, reschedule  

preempt_count() return the preempt counter  

put_cpu() /get_cpu()  //decrase/increase the 

counter (enable/disable preemption) 

 

Variants of each other 



Preemption vs SMP function calls 

int smp_call_function(void (*func) (void *info), void *info, int 

nonatomic, int wait) {  

 cpumask_t map;   

 preempt_disable();  

 map = cpu_online_map;  

 cpu_clear(smp_processor_id(), map); 

  __smp_call_function_map(func, info, nonatomic, wait, 

     map);   

 preempt_enable();  

 return 0;  

} Internal structure with  

preemption awareness 



Be careful 

• IPI is an extremely powerful technology 

• However you need to consider scalability 

aspects 

• This leads to conclude that IPI schemes 

involving large counts of CPU-cores need 

to be used only when mandatorily needed 

• The classical example is when patching the 

kernel on line, e.g. upon mounting a module  


