
Virtual file system
1. VFS basic concepts

2. VFS design approach and architecture

3. Device drivers

4. The Linux case study

Advanced Operating Systems

MS degree in Computer Engineering

University of Rome Tor Vergata

Lecturer: Francesco Quaglia

File system: representations

• In RAM

– Partial/full representation of the current structure and

content of the File System

• On device

– (non-updated) representation of the structure and of

the content of the File System

• Data access and manipulation

– FS independent part: interfacing-layer towards other

subsystems within the kernel

– FS dependent part: data access/manipulation modules

targeted at a specific file system type

Connections

• Any FS object (dir/file) is represented in RAM via

specific data structures

• The object keeps a reference to the module instances

for its own operations

• The reference is accessed in a File System

independent manner by any overlying kernel layer

• This is achieved thanks to multiple different instances

of a same function-pointers’ (drivers’) table

VFS hints

• Devices can be seen as files

• What we drive, in terms of state update, is the

structure used to represent the device in memory

• Then we can also reflect such state somewhere out of

memory (on a hardware component)

• Classical devices we already know of

✓Pipes and FIFO

✓sockets

An overall scheme

File Pipe Socket what else?I/O objects

File access

driver
Pipe access

driver Socket access

driver

Software

implemented

within the

OS kernel

Hard Drives
Network

Interfaces

In memory only

data structures

Unique syscall

interface for

accessing

the objects

Your own

driver

Lets’ focus on the true files example

• Files are backed by data on a hard drive

• What software modules do we need for managing files on

that hard drive in a well shaped OS-kernel??

1. A function to read the device superblock for

determining what files exist and where their data are

2. A function to read device blocks for bringing them into

a buffer cache

3. A function to flush updated blocks back to the device

4. A set of functions to actually work on the in-memory

cached data and to trigger the activation of the above

functions

Block vs char device drivers

• The first three points in the previous slide are linked to the

notion of block device and block-device drivers

• The last point (number 4) is linked to the notion of char

device and char-device driver

• These drivers are essentially tables of function pointers,

pointing to the actual implementation of the operations that

can be executed on the target object

• The core point is therefore how to allow a VFS supported

system call to determine what is the actual driver to run

when a given system call is called

File system types in Linux

• To be able to manage a file system type we need a superblock

read function

• This function relies on the block-device driver of a device to

instantiate the corresponding file system superblock in memory

• Each file system type has a superblock that needs to match its

read function

Super-block read function

Block device

driver operations
materialize the

superblock in memory

(if read rule is matched)

What about RAM file systems?

• These are file systems whose data disappear at system shutdown

• On the basis of what described before, these file systems do not

have an on-device representation

• Their superblock read function does not really need to read

blocks from a device

• It typically relies on in-memory instantiation of a fresh

superblock representing the new incarnation of the file system

Super-block read function

Block device

driver operations

Directly coded

super-block

in-memory

setup

The VFS startup

• This is the minimal startup path:

➢vfs_caches_init()

➢mnt_init()

✓init_rootfs()

✓init_mount_tree()

• Typically, at least two different FS types are supported

➢Rootfs (file system in RAM)

➢Ext (in the various flavors)

• However, in principles, the Linux kernel could be configured such in a

way to support no FS

• In this case, any task to be executed needs to be coded within the

kernel (hence being loaded at boot time)

This tells we are

instantiating at least one FS

type – the Rootfs

File system types data structures

• The description of a specific FS type is done via the structure

file_system_type defined in include/linux/fs.h

• This structure keeps information related to

➢ The actual file system type

➢ A pointer to a function to be executed upon mounting the

file system (superblock-read)

struct file_system_type {

const char *name;

int fs_flags;

……

struct super_block *(*read_super) (struct

super_block *, void *, int);

struct module *owner;

struct file_system_type * next;

struct list_head fs_supers;

……

};

Moved to the mount field

in newer kernel versions

… newer kernel version alignment

struct file_system_type {

const char *name;

int fs_flags;

…

…

struct dentry *(*mount) (struct file_system_type *,

int, const char *, void *);

void (*kill_sb) (struct super_block *);

struct module *owner;

struct file_system_type * next;

…

…

}

Beware this!!

https://elixir.bootlin.com/linux/v4.20-rc5/ident/file_system_type
https://elixir.bootlin.com/linux/v4.20-rc5/ident/mount
https://elixir.bootlin.com/linux/v4.20-rc5/ident/file_system_type
https://elixir.bootlin.com/linux/v4.20-rc5/ident/super_block
https://elixir.bootlin.com/linux/v4.20-rc5/ident/module
https://elixir.bootlin.com/linux/v4.20-rc5/ident/owner
https://elixir.bootlin.com/linux/v4.20-rc5/ident/file_system_type

Rootfs and basic fs-type API

• Upon booting, a compile time defined instance of the structure

file_system_type keeps meta-data for the Rootfs

• This file system only lives in main memory (hence it is re-

initialized each time the kernel boots)

• The associated data act as initial “inspection” point for reaching

additional file systems (starting from the root one)

• We can exploit kernel macros/functions in order to

allocate/initialize a file_system_type variable for a specific

file system, and to link it to a proper list

• The linkage one is

int register_filesystem(struct file_system_type *)

• Allocation of the structure keeping track of Rootfs is done

statically (compile time) within fs/ramfs/inode.c

• The linkage to the list is done by the function

init_rootfs() defined in the same source file

• The name of the structured variable is rootfs_fs_type

int __init init_rootfs(void){

return register_filesystem(&rootfs_fs_type);

}

Kernel 4.xx instance

Creating and mounting the Rootfs instance

• Creation and mounting of the Rootfs instance takes place via

the function init_mount_tree()

• The whole task relies on manipulating 4 data structures
➢struct vfsmount

➢struct super_block

➢struct inode

➢struct dentry

• The instances of struct vfsmount and struct

super_block keep file system proper information (e.g. in

terms of relation with other file systems)

• The instances of struct inode and struct dentry

are such that one copy exits for any file/directory of the

specific file system

The structure vfsmount (still in place in

kernel 3.xx)
struct vfsmount

{

struct list_head mnt_hash;

struct vfsmount *mnt_parent; /*fs we are mounted on */

struct dentry *mnt_mountpoint; /*dentry of mountpoint */

struct dentry *mnt_root; /*root of the mounted tree*/

struct super_block *mnt_sb; /*pointer to superblock */

struct list_head mnt_mounts; /*list of children, anchored

here */

struct list_head mnt_child; /*and going through their

mnt_child */

atomic_t mnt_count;

int mnt_flags;

char *mnt_devname; /* Name of device e.g.

/dev/dsk/hda1 */

struct list_head mnt_list;

};

struct vfsmount {

struct dentry *mnt_root; /* root of the mounted tree */

struct super_block *mnt_sb; /* pointer to superblock */

int mnt_flags;

} __randomize_layout;

…. now structured this way in kernel 4.xx or later

This feature is supported by the randstruct plugin

Let’s look at the details …….

https://elixir.bootlin.com/linux/latest/ident/vfsmount
https://elixir.bootlin.com/linux/latest/ident/super_block
https://elixir.bootlin.com/linux/latest/ident/__randomize_layout

randstruct

• Access to any field of a structure is based on compiler rules when

relying on classical ‘.’ or ‘->’ operators

• Machine code is therefore generated in such a way to correctly

displace into the proper field of a structure

• __randomize_layout introduces a reshuffle of the fields, with

the inclusion of padding

• This is done based on pseudo random values selected at compile time

• Hence an attacker that discovers the address of a structure but does not

know what’s the randomization, will not be able to easily trap into the

target field

• Linux usage (stable since kernel 4.8):

✓ on demand (via __randomize_layout)

✓ by default on any struct only made by function pointers (a driver!!!)

✓ the latter can be disabled with __no_randomize_layout

The structure super_block (a few

variants in very recent kernels)

struct super_block {

struct list_head s_list; /* Keep this first */

……

unsigned long s_blocksize;

……

unsigned long long s_maxbytes; /* Max file size */

struct file_system_type *s_type;

struct super_operations *s_op;

……

struct dentry *s_root;

……

struct list_head s_dirty; /* dirty inodes */

……

union {

struct minix_sb_info minix_sb;

struct ext2_sb_info ext2_sb;

struct ext3_sb_info ext3_sb;

struct ntfs_sb_info ntfs_sb;

struct msdos_sb_info msdos_sb;

……

void *generic_sbp;

} u;

……

};

The structure dentry (a few minor

variants in very recent kernels)
struct dentry {

atomic_t d_count;

……

struct inode * d_inode; /* Where the name belongs to */

struct dentry * d_parent; /* parent directory */

struct list_head d_hash; /* lookup hash list */

……

struct list_head d_child; /* child of parent list */

struct list_head d_subdirs; /* our children */

……

struct qstr d_name;

……

struct dentry_operations *d_op;

struct super_block * d_sb; /* The root of the dentry tree */

unsigned long d_vfs_flags;

……

unsigned char d_iname[DNAME_INLINE_LEN]; /* small names */

};

This is for “short” names

The structure inode (a bit more fields are in

kernel 4.xx or later ones)
struct inode {

……

struct list_head i_dentry;

……

uid_t i_uid;

gid_t i_gid;

……

unsigned long i_blksize;

unsigned long i_blocks;

……

struct inode_operations *i_op;

struct file_operations *i_fop;

struct super_block *i_sb;

wait_queue_head_t i_wait;

……

union {

……

struct ext2_inode_info ext2_i;

struct ext3_inode_info ext3_i;

……

struct socket socket_i;

……

void *generic_ip;

} u;

};

Beware this!!

Overall scheme

dentry

dentry dentry dentry

inode

child
child of parent list

father

superblock

vfsmount
file_system_type

Possibly belonging to other

file systems

Initializing the Rootfs instance

• The main tasks, carried out by init_mount_tree(), are

1. Allocation of the 4 data structures for Rootfs

2. Linkage of the data structures

3. Setup of the name “/” for the root of the file system

4. Linkage between the IDLE PROCESS and Rootfs

• The first three tasks are carried out via the function

do_kern_mount() which is in charge of invoking the

execution of the super-block read-function for Rootfs

• Linkage with the IDLE PROCESS occurs via the functions

set_fs_pwd() and set_fs_root()

static void __init init_mount_tree(void)

{

struct vfsmount *mnt;

struct namespace *namespace;

struct task_struct *p;

mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);

if (IS_ERR(mnt))

panic("Can't create rootfs");

………

set_fs_pwd(current->fs, namespace->root,

namespace->root->mnt_root);

set_fs_root(current->fs, namespace->root,

namespace->root->mnt_root);

}

…. very minor changes of this

function are in kernel 4.xx/5.xx

FS mounting and namespaces

FS1

FS2

FS3

The list of mount points along the three is a

so called “mount namespace”

By default the “initial namespace” is seen

by active threads

We can make a thread start

working with a new mount

namespace which is initially

a copy of another one

Moving to another mount namespace makes mount/unmount

operations only acting on the current namespace (except if the

mount operation is tagged with SHARED)

Actual system calls for mount

namespaces

clone(… int flags …)

unshare(int flags)

CLONE_NEWNS

An overall view

Super operations

Dentry operations

i-node operations

file operations

Update superblock (and flush on device)

Get superblock info (e.g. statfs/fstatfs)
Manage i-nodes (read/write them from/ to

superlock)

Allocate/deallocate dentries

Link them to other data structures

creat/link/unlink/lookup

Actual operations

on dataThe char-device

driver

VFS vs TCBs (2.4 style)

• The TCB keeps the field struct fs_struct *fs

pointing to information related to the current directory and the

root directory for the associated process

•fs_struct is defined as follows in

include/fs_struct.h

struct fs_struct {

atomic_t count;

rwlock_t lock;

int umask;

struct dentry * root, * pwd, * altroot;

struct vfsmount * rootmnt, * pwdmnt,

* altrootmnt;

};

3.xx/4.7 kernel style

8 struct fs_struct {
9 int users;
10 spinlock_t lock;
11 seqcount_t seq;
12 int umask;
13 int in_exec;
14 struct path root, pwd;
15 };

See include/linux/fs_struct.h

http://lxr.free-electrons.com/source/include/?v=3.16
http://lxr.free-electrons.com/source/include/linux/?v=3.16
http://lxr.free-electrons.com/source/include/linux/fs_struct.h?v=3.16

… and then 4.8 or later style

struct fs_struct {

int users;

spinlock_t lock;

seqcount_t seq;

int umask;

int in_exec;

struct path root, pwd;

} __randomize_layout;

Towards more security

https://elixir.bootlin.com/linux/latest/ident/fs_struct
https://elixir.bootlin.com/linux/latest/ident/users
https://elixir.bootlin.com/linux/latest/ident/spinlock_t
https://elixir.bootlin.com/linux/latest/ident/seqcount_t
https://elixir.bootlin.com/linux/latest/ident/seq
https://elixir.bootlin.com/linux/latest/ident/path
https://elixir.bootlin.com/linux/latest/ident/__randomize_layout

File descriptor table

• It builds a relation between an I/O channel (a numerical ID code) and

an I/O object we are currently working with along an I/O session

• Hence it enables fast search of the data structures used to represent I/O

objects and I/O sessions

• The search is based on the channel ID as the key

• The actual implementation of the layout for the file descriptor table is

clearly system specific

• In Linux we have the below scheme

TCB

dentry/i-node

dentry/i-node

dentry/i-node

File descriptor

table

session data

File descriptor table (a few variations in

very recent kernel versions)
• TCB keeps the field struct files_struct *files which

points to the descriptor table

• This table is defined in as

struct files_struct {

atomic_t count;

rwlock_t file_lock; /* Protects all the below

members. Nests

inside tsk->alloc_lock */

int max_fds;

int max_fdset;

int next_fd;

struct file ** fd; /* current fd array */

fd_set *close_on_exec;

fd_set *open_fds;

fd_set close_on_exec_init;

fd_set open_fds_init;

struct file * fd_array[NR_OPEN_DEFAULT];

};

bitmap identifying open fds

bitmap for close on exec flags

The session data: struct file (the

very classical shape)

struct file {

struct list_head f_list;

struct dentry *f_dentry;

struct vfsmount *f_vfsmnt;

struct file_operations *f_op;

atomic_t f_count;

unsigned int f_flags;

mode_t f_mode;

loff_t f_pos;

unsigned long f_reada, f_ramax, f_raend, f_ralen, f_rawin;

struct fown_struct f_owner;

unsigned int f_uid, f_gid;

int f_error;

unsigned long f_version;

/* needed for tty driver, and maybe others */

void *private_data;

/* preallocated helper kiobuf to speedup O_DIRECT */

struct kiobuf *f_iobuf;

long f_iobuf_lock;

};

3.xx/4.xx/5.xx style (quite similar to 2.4)

775 struct file {

776 union {

777 struct llist_node fu_llist;

778 struct rcu_head fu_rcuhead;

779 } f_u;

780 struct path f_path;

781 #define f_dentry f_path.dentry

782 struct inode *f_inode; /* cached value */

783 const struct file_operations *f_op;

784

785 /*

786 * Protects f_ep_links, f_flags.

787 * Must not be taken from IRQ context.

788 */

789 spinlock_t f_lock;

790 atomic_long_t f_count;

791 unsigned int f_flags;

792 fmode_t f_mode;

793 struct mutex f_pos_lock;

794 loff_t f_pos;

795 struct fown_struct f_owner;

796 const struct cred *f_cred;

797 struct file_ra_state f_ra;

798

………

………. __randomize_layout;;

Now we have randomized

layout and a few fields are

moved to other pointed

tables

Randomized from kernel 4.8

Linux VFS API layering

• System call layer

✓ Session setup

✓ Channel ID based data access/manipulation

• Path-based VFS layer

✓ Do something on file system based on a path

passed as parameter

• Data structure based VFS layer

✓ Do something on file system based on pointers to

data structures

Relations

System call layer

Path-based VFS API

Data-structure-based

VFS API

open

read/write

…

vfs_create

vfs_mkdir

vfs_read

vfs_write

dget

dput

alloc_inode

…

filp_open

path_lookup

lookup_create

…

Path-based API examples

struct file *filp_open(const char * filename, int

flags, int mode)

returns the address of the struct file associated with the opened file

filp_open()

i-node operation lookup()

open() system-call

kernel-level

In the end we pass trough dentry/i-node/char-dev/superblock drivers

Data-structure based API examples
int vfs_mkdir(struct inode *dir, struct dentry *dentry,

int mode)

Creates an i-node and associates it with dentry. The parameter dir is used to

point to a parent i-node from which basic information for the setup of the child

is retrieved. mode specifies the access rights for the created object

int vfs_create(struct inode *dir, struct dentry *dentry,

int mode)

Creates an i-node linked to the structure pointed by dentry, which is child of

the i-node pointed by dir. The parameter mode corresponds to the value of

the permission mask passed in input to the open system call. Returns 0 in case

of success (it relies on the i-node-operation create)

static __inline__ struct dentry * dget(struct dentry

*dentry)

Acquires a dentry (by incrementing the reference counter)

void dput(struct dentry *dentry)

Releases a dentry (this module relies on the dentry operation d_delete)

… still on data-structure based API examples

ssize_t vfs_read(struct file *file, char __user *buf,

size_t count, loff_t *pos)

file operation read(……)

In the end we traverse dentry/i-node structures to retrieve the

file operations table associated with that dentry

file operation write(……)

ssize_t vfs_write(struct file *file, char __user

*buf, size_t count, loff_t *pos)

https://elixir.bootlin.com/linux/latest/ident/ssize_t
https://elixir.bootlin.com/linux/latest/ident/__user
https://elixir.bootlin.com/linux/latest/ident/size_t
https://elixir.bootlin.com/linux/latest/ident/loff_t
https://elixir.bootlin.com/linux/latest/ident/pos
https://elixir.bootlin.com/linux/latest/ident/ssize_t
https://elixir.bootlin.com/linux/latest/ident/__user
https://elixir.bootlin.com/linux/latest/ident/size_t
https://elixir.bootlin.com/linux/latest/ident/loff_t
https://elixir.bootlin.com/linux/latest/ident/pos

Relating I/O objects and drivers: the

MAJOR number

• A driver (for either a block or a char device) is registered into

so called device-drivers table

• The table is an array and the displacement into the array where

the driver is registered is called MAJOR number

• Suppose we have to instantiate in memory the dentry/i-node of

a file belonging to a specific file system type, then we need to:

✓ Identify the char-dev driver for operating on the file (this

will depend on where we registered the driver for files of

that file system into the table)

✓ Link the dentry/i-node to that driver (recall a char-device

driver is a table of file-operations

Lets’ simplify the job

• Suppose we instantiate in memory a dentry/i-node that

depends on another one on the same file system

• They are “homogeneous”

• In this case we simply inherit the same char-device driver of

the parent

dentry/i-node (parent)

dentry/i-node (child)
file_operations

Actual operations

on the stream

What about data isolation?

• Generally the i-node identifies what data are touched by a

call to a function in file_operations

• This might not be the case with generic I/O objects that

are not regular files

• As an example, what about things that are not files??

• We may have an I/O object that

✓ Can be managed by a given char-device driver

✓ Can be an instance in a group of many that need to be

driven by the same char-device driver (they are

homogeneous but are not regular files)

VFS “nodes” and device numbers

• The field umode_t i_mode within struct inode keps an

information indicating the type of the i-node, e.g.:
➢directory

➢file

➢char device

➢block device

➢(named) pipe

• The kernel function sys_mknod() allows creating an i-node

associated with a generic type

• In case the i-inode represents a device, the operations for managing

the device are retrieved via the device driver tables

• Particularly, the i-node keeps the field kdev_t i_rdev which logs

information related to both MAJOR and MINOR numbers for the

device

The mknod()system call

int mknod(const char *pathname, mode_t

mode, dev_t dev)

•mode specifies the permissions to be used and the type of the node

to be created

• permissions are filtered via the umask of the calling process

(mode & umask)

• several different macros can be used for defining the node type:
S_IFREG, S_IFCHR, S_IFBLK, S_IFIFO

• when using S_IFCHR or S_IFBLK, the parameter dev specifies

MAJOR and MINOR numbers for the device file that gets

created, otherwise this parameter is a don’t care

Device numbers

• for x86 machines, device numbers are represented as bit

masks

• MAJOR corresponds to the least significant byte within

the mask

• MINOR corresponds to the second least significant byte

within the mask

• The macro MKDEV(ma,mi), which is defined in

include/linux/kdev_t.h , can be used to setup a

correct bit mask by starting from the two numbers

Usage of MINOR numbers in drivers

• The functions belonging to the driver take a pointer to

struct file in input

• Therefore we know the session – the dentry – and the i-

node ...

• …. hence we know the MINOR!

• …. and we can do stuff based on the MINOR!

• … as an example we might have that the driver manages

an array of tables, each associated with the state of an I/O

object with a given MINOR (an index)

The Linux block devices table (classical style)

static struct {

const char *name;

struct block_device_operations *bdops;

} blkdevs[MAX_BLKDEV];

➢ In fs/block_devices.c we can find the below functions for

registering/deregistering the driver

int register_blkdev(unsigned int major,

const char * name, struct

block_device_operations *bdops)

int unregister_blkdev(unsigned int major,

const char * name)

struct block_device_operations {

int (*open) (struct inode *, struct file *);

int (*release) (struct inode *, struct file *);

int (*ioctl) (struct inode *, struct file *,

unsigned, unsigned long);

int (*check_media_change) (kdev_t);

int (*revalidate) (kdev_t);

struct module *owner;

};

struct block_device_operations

(a bit more fields in very recent kernel versions)

Char devices table

struct device_struct {

const char * name;

struct file_operations * fops;

};

static struct device_struct chrdevs[MAX_CHRDEV];

Device name

Device operations

➢ in fs/devices.c we can find the following functions for

registering/deregistering a driver

int register_chrdev(unsigned int major,

const char * name, struct file_operations

*fops)

Registration takes place onto the entry at displacement MAJOR (0 means

the choice is up to the kernel). The actual MAJOR number is returned

int unregister_chrdev(unsigned int major,

const char * name)

Releases the entry at displacement MAJOR

struct file_operations

(a bit more fields in very recent kernel versions)

sruct file_operations {

struct module *owner;

loff_t (*llseek) (struct file *, loff_t, int);

ssize_t (*read) (struct file *, char *, size_t, loff_t *);

ssize_t (*write) (struct file *, const char *, size_t, loff_t *);

int (*readdir) (struct file *, void *, filldir_t);

unsigned int (*poll) (struct file *, struct poll_table_struct *);

int (*ioctl) (struct inode*, struct file *, unsigned int, unsigned long);

int (*mmap) (struct file *, struct vm_area_struct *);

int (*open) (struct inode *, struct file *);

int (*flush) (struct file *);

int (*release) (struct inode *, struct file *);

int (*fsync) (struct file *, struct dentry *, int datasync);

int (*fasync) (int, struct file *, int);

int (*lock) (struct file *, int, struct file_lock *);

ssize_t (*readv) (struct file *, const struct iovec *,

` unsigned long, loff_t *);

ssize_t (*writev) (struct file *, const struct iovec *,

unsigned long, loff_t *);

ssize_t (*sendpage) (struct file *, struct page *, int, size_t,

loff_t *, int);

unsigned long (*get_unmapped_area)(struct file *, unsigned long,

unsigned long, unsigned long, unsigned long);

};

Kernel 3 or later: augmenting flexibility

and structuring

Pointer to file-operations is here

Minor number ranges

already indicated and

flushed to the cdev table

A scheme on i-node to file operations

mapping for kernel 3 or later
Direct linkage in

older kernels

Operations remapping

int register_chrdev(unsigned int major, const

char *name, struct file_operations *fops)

int __register_chrdev(unsigned int major,

unsigned int baseminor, unsigned int count,

const char *name, const struct file_operations

*fops)

int unregister_chrdev(unsigned int major, const char

*name)

void __unregister_chrdev(unsigned int major,

unsigned int baseminor, unsigned int count,

const char *name)

New features

Final part of the boot

(activating the INIT thread - 2.4 style)

• The last function invoked while running start_kernel() is

rest_init() and is defined in init/main.c

• This function spawns INIT, which is initially created as a kernel

level thread, and eventually activates the l’IDLE PROCESS

function

static void rest_init(void)

{

kernel_thread(init, NULL, CLONE_FS |

CLONE_FILES | CLONE_SIGNAL);

unlock_kernel();

current->need_resched = 1;

cpu_idle();

}

… and 3.xx or later style

static noinline void __init_refok rest_init(void)
395 {
396 int pid;
397
398 rcu_scheduler_starting();
399 /*
400 * We need to spawn init first so that it obtains pid 1, however
401 * the init task will end up wanting to create kthreads, which, if
402 * we schedule it before we create kthreadd, will OOPS.
403*/
404 kernel_thread(kernel_init, NULL, CLONE_FS);

…………

numa_default_policy();
……..
…..

see linux/init/main.c

Switch off round-robin to first-touch

http://lxr.free-electrons.com/source/?v=3.16
http://lxr.free-electrons.com/source/init/?v=3.16
http://lxr.free-electrons.com/source/init/main.c?v=3.16

The mount_root() function

static void __init mount_root(void)

{

……

create_dev("/dev/root", ROOT_DEV,

root_device_name);

……

mount_block_root("/dev/root", root_mountflags);

}

static int __init create_dev(char *name, kdev_t dev,

char *devfs_name)

{

void *handle;

char path[64];

int n;

sys_unlink(name);

if (!do_devfs)

return sys_mknod(name, S_IFBLK|0600,

kdev_t_to_nr(dev));

……

}

The function init()

• The init() function for INIT is defined in init/main.c

• This function is in charge of the following main operations

➢Mount of ext2 (or the reference root file system)

➢Activation of the actual INIT process (or a shell in case of

problems)

static int init(void * unused){

struct files_struct *files;

lock_kernel();

do_basic_setup();

prepare_namespace();

………

if (execute_command) run_init_process(execute_command);

run_init_process("/sbin/init");

run_init_process("/etc/init");

run_init_process("/bin/init");

run_init_process("/bin/sh");

panic("No init found. Try passing init= option to

kernel.");

}

registering drivers

The prepare_namespace() function (2.4

style - minor variations are in kernels 3/4)

void prepare_namespace(void){

……

sys_mkdir("/dev", 0700);

sys_mkdir("/root", 0700);

sys_mknod("/dev/console", S_IFCHR|0600,

MKDEV(TTYAUX_MAJOR, 1));

……

mount_root();

out:

……

sys_mount(".", "/", NULL, MS_MOVE, NULL);

sys_chroot(".");

……

}

The scheme

This is the typical state before calling mount_root()

/

dev root

console
all in Rootfs (in RAM)

The function mount_block_root()

static void __init mount_block_root(char *name, int flags) {

char *fs_names = __getname(); char *p;

get_fs_names(fs_names);

retry: for (p = fs_names; *p; p += strlen(p)+1) {

int err = sys_mount(name, "/root", p, flags, root_mount_data);

switch (err) {

case 0: goto out;

case -EACCES: flags |= MS_RDONLY; goto retry;

case -EINVAL:

case -EBUSY: continue;

}

printk ("VFS: Cannot open root device \"%s\" or %s\n",

root_device_name, kdevname (ROOT_DEV));

printk ("Please append a correct \"root=\" boot option\n");

panic("VFS: Unable to mount root fs on %s", kdevname(ROOT_DEV));

}

panic("VFS: Unable to mount root fs on %s", kdevname(ROOT_DEV));

out: putname(fs_names);

sys_chdir("/root");

ROOT_DEV = current->fs->pwdmnt->mnt_sb->s_dev;

printk("VFS: Mounted root (%s filesystem)%s.\n",

current->fs->pwdmnt->mnt_sb->s_type->name,

(current->fs->pwdmnt->mnt_sb->s_flags & MS_RDONLY) ?

" readonly" : "");

}

The mount()system call
int mount(const char *source, const char *target,

const char *filesystemtype, unsigned long mountflags,

const void *data);

MS_NOEXEC Do not allow programs to be executed from this file

system.

MS_NOSUID Do not honour set-UID and set-GID bits when execut-

ing programs from this file system.

MS_RDONLY Mount file system read-only.

MS_REMOUNT Remount an existing mount. This is allows you to

change the mountflags and data of an existing mount

without having to unmount and remount the file sys-

tem. source and target should be the same values

specified in the initial mount() call; filesystem-

type is ignored.

MS_SYNCHRONOUS Make writes on this file system synchronous

(as though the O_SYNC flag to open(2) was specified

for all file opens to this file system).

Mounting scheme

• The device to be mounted is used for accessing the driver

(e.g. to open the device and to load the super-block)

• The superblock read function is identified via the device

(file system type) to be mounted

• The super-block read-function will check whether the

superblock is compliant with what expected for that

device (i.e. file system type)

• In case of success, the 4 classical file system

representation structures get allocated and linked in main

memory

• Note: sys_mount relies on do_kern_mount()

The scheme

➢ This is the state at the end of the execution of mount_root()

/

dev root

console

in Rootfs (in RAM)

/
root

in EXT2 (or

other)
new pwd for INIT

Mount point

• NOTE: any directory selected as the target for the mount

operation becomes a so called “mount point”

• struct dentry keeps the field int d_mounted to

determine whether we are in presence of a mount point

• the function path_lookup() ignores the content of mount

points (namely the name of the dentry) while performing

pattern matching

• hence sys_chroot(“.”) (executed right after

prepare_namespace()) brings INIT onto the root of the

EXT2 file system (or any other root file system)

• the move takes place after repositioning EXT2 (or other) onto

“/” of Rootfs

Description of an open() – kernel side

The steps

1. Get a free file descriptor (via

current->files->fd)

2. Get the dentry via

filp_open()(internally calls

file_operation open)

3. Link the two things together

Description of a close() – kernel side

The steps

1. Release the dentry (by file

descriptor) via

filp_close()(internally calls

file_operation close)

2. Release the file decriptor (via

current->files->fd)

Description of a read()/write() –

kernel side

The steps

1. Get reference to dentry via file

descriptor

2. Get reference to
file_operations

3. Call the associated interface in
file_operations

proc file system

• It is an in-memory file system which provides information on

➢Active programs (processes)

➢The whole memory content

➢Kernel level settings (e.g. the currently mounted modules)

• Common files on /proc are

➢cpuinfo contains the information established by the kernel

about the processor at boot time, e.g., the type of processor,

including variant and features.

➢kcore contains the entire RAM contents as seen by the kernel.

➢meminfo contains information about the memory usage, how

much of the available RAM and swap space are in use and how

the kernel is using them.

➢version contains the kernel version information that lists the

version number, when it was compiled and who compiled it.

•net/ is a directory containing network information.

•net/dev contains a list of the network devices that are compiled

into the kernel. For each device there are statistics on the number of

packets that have been transmitted and received.

•net/route contains the routing table that is used for routing

packets on the network.

•net/snmp contains statistics on the higher levels of the network

protocol.

•self/ contains information about the current process. The contents

are the same as those in the per-process information described below.

•pid/ contains information about process number pid. The kernel

maintains a directory containing process information for each process.

•pid/cmdline contains the command that was used to start the

process (using null characters to separate arguments).

•pid/cwd contains a link to the current working directory of the

process.

•pid/environ contains a list of the environment variables that the

process has available.

•pid/exe contains a link to the program that is running in the

process.

•pid/fd/ is a directory containing a link to each of the files that the

process has open.

•pid/mem contains the memory contents of the process.

•pid/stat contains process status information.

•pid/statm contains process memory usage information

Registering the proc file system type

• Registration of the proc file system type occurs (if configured)

in start_kernel() right before executing

rest_init()

• It is configured via the macro CONFIG_PROC_FS, exploited

as follows in start_kernel()

#ifdef CONFIG_PROC_FS

proc_root_init();

#endif

• The function proc_root_init(), defined in

fs/proc/root.c, is in charge of both registering /proc

and creating the actual instance

proc features
•stuct file_system_type for the proc file system is

initialized at compile time in fs/proc/root.c come segue

static DECLARE_FSTYPE(proc_fs_type,

"proc", proc_read_super, FS_SINGLE);

• NOTE:

➢The flag FS_SINGLE is registered within the field

fs_flags of the proc_fs_type variable

➢ It indicates that this file system is managed as a single instance

➢Even though /proc is an in-RAM file system, it is completely

different from Rootfs, in fact they have very different super-

block read functions

Creation of the proc instance

• It occurs right after registering proc as a valid file

system, and takes place in proc_root_init()

• Additional tasks by this function include creating some

subdirs of proc such as
➢net

➢sys

➢sys/fs

• Creating a subdir in proc takes place via the kernel

function proc_mkdir()

Core data structures for proc
• proc exploits the following data structure defined in
include/linux/proc_fs.h

struct proc_dir_entry {

unsigned short low_ino;

unsigned short namelen;

const char *name;

mode_t mode;

nlink_t nlink; uid_t uid; gid_t gid;

unsigned long size;

struct inode_operations * proc_iops;

struct file_operations * proc_fops;

get_info_t *get_info;

struct module *owner;

struct proc_dir_entry *next, *parent, *subdir;

void *data;

read_proc_t *read_proc;

write_proc_t *write_proc;

atomic_t count; /* use count */

int deleted; /* delete flag */

kdev_t rdev;

};

Properties of struct proc_dir_entry

• It fully describes any element of the proc file system in

terms of

➢name

➢i-node operations (typically NULL)

➢file operations (typically NULL)

➢Specific read/write functions for the element

• We have specific functions to create proc entries, and to

link the proc_dir_entry to the file system tree

Mounting proc

• The proc file system is not necessarily (depends on kernel version or

config) mounted upon booting the kernel, it only gets instantiated if

configured (see the macro CONFIG_PROC_FS)

• The proc file system gets mounted by INIT (if not before)

• This is done in relation to information provided by /etc/fstab

• Typically, the root of the application level root-file-system keeps the

directory /proc that is exploited as the mount point for the proc-

file-system

• NOTE: given that the proc-file-system is single instance

➢ No device needs to be specified for mounting proc, thus only the

type of file system is required as parameter

➢ Hence the /etc/fstab line for mounting proc does not

specify any device

Specific identifiers

struct vfsmount *proc_mnt;

(in fs/proc/inode.c)

struct proc_dir_entry *proc_net,

*proc_bus, *proc_root_fs,

*proc_root_driver;

(in fs/proc/root.c)

Handling proc (see include/linux/proc_fs.h)

struct proc_dir_entry *proc_mkdir(const char *name,

struct proc_dir_entry *parent);

Creates a directory called name within the directory pointed by parent.

Returns the pointer to the new struct proc_dir_entry

static inline struct proc_dir_entry

*create_proc_read_entry(const char *name,

mode_t mode, struct proc_dir_entry *base,

read_proc_t *read_proc, void * data)

Creates a node called name, with type and permissions mode, linked to

base, and where the reading function is set to read_proc end the data

field to data. It returns the pointer to the new struct

proc_dir_entry

struct proc_dir_entry *create_proc_entry(const char

*name, mode_t mode, struct proc_dir_entry *parent)

Creates a node called name, with type and permissions mode, linked to

parent. It returns the pointer to the new struct proc_dir_entry

static inline struct proc_dir_entry

*proc_create(const char *name, umode_t

mode, struct proc_dir_entry *parent, const

struct file_operations *proc_fops)

name: The name of the proc entry

mode: The access mode for proc entry

parent: The name of the parent directory under /proc

proc_fops: The structure in which the file operations for

the proc entry will be created

Read/Write operations

• Read/write operations for proc have the same interface as for any file

system handled by VFS

ssize_t (*read) (struct file *, char *,

size_t, loff_t *);

ssize_t (*write) (struct file *, const char *,

size_t, loff_t *);

• If not NULL, then actual read/write operations are those registered

by the fields read_proc_t *read_proc and

write_proc_t *write_proc

typedef int (read_proc_t)(char *page, char **start,

off_t off, int count, int *eof, void *data);

typedef int (write_proc_t)(struct file *file, const

char *buffer, unsigned long count, void *data);

An example with read_proc_t

char*

page
A pointer to a one-page buffer. (A page is PAGE_SIZE bytes big)

char**

start

A pass-by-reference char * from the caller. It is used to tell the

caller where is the data put by this procedure. (If you're curious,

you can point the caller's pointer at your own text buffer if you
don't want to use the page supplied by the kernel in page.)

off_t

off
An offset into the buffer where the reader wants to begin reading

int

count
The number of bytes after off the reader wants.

int*

eof

A pointer to the caller's eof flag. Set it to 1 if the current read hits

EOF.

void*

data
Extra info you won't need

return

value
Number of bytes written into page

We assume that the content of the proc-entry is within the buffer

pContent and that it has size N bytes

int MyReadProc(char *page, char **start, off_t off, int

count, int *eof, void *data)

{

int n;

if (off >= N) {

*eof = 1;

return 0;

}

n = N-off;

*eof = n>count ? 0 : 1;

if (n>count)

n=count;

memcpy(page, pContent+off, n);

*start = page;

return n;

}

The sys file system (available since kernel 2.6)

• Similar in spirit to /proc
• It is an alternative way to make the kernel export information

(or set it) via common I/O operations

• Very simple API

• More clear cut structuring

• sysfs is compiled into the kernel by default depending on the

configuration option CONFIG_SYSFS (visible only if

CONFIG_EMBEDDED is set)

sysfs core API for kernel objects

Main fields: parent - name

• it is possible to call sysfs_create_dir without k->parent
set

• it will create a directory at the very top level of the sysfs

file system

• this can be useful for writing or porting a new top-level

subsystem using the kobject/sysfs model

struct kobject {

const char * name ;

struct list_head entry ;

struct kobject * parent ;

struct kset * kset ;

struct kobj_type * ktype ;

struct sysfs_dirent * sd ;

struct kref kref ;

unsigned int state_initialized : 1 ;

unsigned int state_in_sysfs : 1 ;

unsigned int state_add_uevent_sent : 1 ;

unsigned int state_remove_uevent_sent : 1 ;

unsigned int uevent_suppress : 1 ;

};

The kernel object structure

sysfs core API for object attributes

The owner field may be set by the caller to point to the module

in which the attribute code exists

struct kobj_attribute {

struct attribute attr;

ssize_t (*show)(struct kobject *kobj,

struct kobj_attribute *attr, char *buf);

ssize_t (*store)(struct kobject *kobj,

struct kobj_attribute *attr,

const char *buf, size_t count);

}

Actual object attributes

https://elixir.bootlin.com/linux/latest/ident/kobj_attribute
https://elixir.bootlin.com/linux/latest/ident/kobject
https://elixir.bootlin.com/linux/latest/ident/kobj_attribute
https://elixir.bootlin.com/linux/latest/ident/kobject
https://elixir.bootlin.com/linux/latest/ident/kobj_attribute

The specification of the read/write operations

occurs via the sysfs_ops coupe of functions

struct sysfs_ops {

/* method invoked on read of a sysfs file */

ssize_t (*show) (struct kobject *kobj,

struct attribute *attr,

char *buffer);

/* method invoked on write of a sysfs file */

ssize_t (*store) (struct kobject *kobj,

struct attribute *attr,

const char *buffer,

size_t size);

}

Kernel API for creating devices in /sys

•/sys/class is a device file that internally hosts the reference to

other device files

• To create a device file in this “directory” one can resort to:

static struct class* class_create(struct

moudule* owner, char* class_name)

static struct class* device_create(static struct

class* the_class, … kdev_t i_rdev, … char*

name)

• There are similar API functions for destroying the device and the class

