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Linear addressing

Whatever memory slice available 

for software execution (physical vs logical)

Linear address (<offset>)



Segmentation

Segment A

Segment B

Segment C

Address space (a linear one)

address = <seg.id,offset> (es. <A,0x10)



Combining segments in a linear address space

Segment A

Segment B

Segment C

Address specification = <seg.id,offset> (es. <B,offset>)

Need to know where B is 

located in the linear address 

space (this is the “base” of B)

Then the linear address is 

<base+offset>



Virtual memory

Kernel mode (code + data/stack)

user mode (code + data/stack)

Linear addressing + mapping to actual storage (if existing)

RAM



Segmentation based addresses

• Code relies on addresses formed by <segment number, 

offset>

• If segment numbers are not specified by the machine 

instruction, some default segment is used for each target 

datum (instruction or operand)

• Modern processors (system processors) are equipped such in a 

way to support segmentation efficiently, in combination with 

linear addressing and virtual memory (say paging)

• The whole architecture is therefore requested to handle a 

complex address mapping scheme such as 

segmented addr  linear addr  paged addr  physical addr



A very base x86 example

mov (%rax), %rbx

push %rbx  

We might not imagine it but, 

when running this piece of 

code our x86 processor is 

implicitly using 3 different 

segments of memory!!

To have an exact idea of what is going on along program flow 

(in terms of reflection on the hardware usage) we need to know 

such segmentation related details



“System” processors vs segmentation

• “system” processors (those oriented to host operating 

system software) rely on hardware components that 

allow fast and transparent access to segmentation 

information (e.g. segment specific information)

• These are

➢CPU registers

➢Main memory tables (directly pointed by 

registers)



Segmentation with paging

Segment number offset

HW supported 

translation

PDE page offsetPTE

• both are logical 

addresses 

• the offset value may 

differ

2-level paging example
Determination of the 

linear address relying on

<base,offset>



The concept of segment selector

• In general, when a memory address is expressed, the target 

segment is identified via a segment selector register (or simply 

segment register)

• Hence the access is based on segment-selector identifiers

• Through the content of the segment selector we get information on 

what segment ID needs to be involved in the access

• This also means that using a same selector may lead to access to 

different segment IDs (hence to different bases)

Address = <segment-selector ID, offset> 

Segment selector register

Target segment ID



x86 memory access modes

• Real mode

✓ Offers backward compatibility towards 286!! 

✓ a 16-bit segment register (there where four!) keeps the target 

segment ID

✓ 16-bit (general) registers keep the segment offset

✓ Targeted addresses are physical, and are computed as

PhysicalAddress = Segment * 16 + Offset

✓ Around 1MB (2^20B) of memory is allowed

✓ Minimal support for separating chunks of memory in the 

addressing scheme

✓ No segment specific protection information!!

✓ Not suited for modern software systems!!!



x86 memory access modes

• 80386 protected mode

✓ a 16-bit segment register keeps the target segment ID (using 13 

bits) 

✓ 32-bit (general) registers keep the segment offset

✓ The base of the segment in linear addressing is kept into a table 

in memory

✓ Targeted addresses are linear and are computed as

address = TABLE[segment].base + offset

✓ Up to 4GB of linear (either physical or logical) memory is 

allowed

✓ 3-bit for control (protection) are kept in the segment register …. 

much better for OS software!!! 



x86 memory access modes

• Long mode (x86-64)

✓ a 16-bit segment register keeps the target segment ID (using 

13 bits) 

✓ 64-bit (general) registers keep the segment offset (limited to 

48-bit global addressing in canonical form)

✓ The base of the segment in linear addressing is kept into a 

table in memory

✓ Targeted addresses are linear and are computed as

address = TABLE[segment].base + offset

✓ Up to 2^48 B (256 TB) of linear memory is allowed

✓ 3-bit for control (protection) are kept in the segment register 



x86 segment tables

• The are two table types keeping segments information: 

Global Descriptor Table (GDT) and Local Descriptor 

Table (LDT)

• Typically GDT and LDT are kept in main memory, and are 

directly accessible via pointers maintained by CPU registers

• GDT determines the mapping of linear addresses at least for 

kernel mode (namely kernel level segments) ... nowadays it is 

the unique used segment table in most operating systems

• LDT determines the mapping of linear addresses for user 

mode (namely user level segments), if not done via GDT

• These addresses are then used to access physical memory via 

page tables (if paging is activated)



GDT organization

generic 

entry

Segment base within 

linear addressing

FLAGS

To be composed with

segment-offset upon access

Segment protection and 

usage rules



Segmentation vs paging

• Segmentation and paging typically have different targets

• Segmentation is a classical means for protecting code and data

• This protection mechanism is generally based on coarse grain 

schemes (in fact, segments may have very large sizes, covering 

up to the whole address space of the application) 

• Paging (possibly coupled with virtual memory techniques) is 

generally employed as a means for improving physical-

memory management efficiency 

• Such “efficiency oriented” mechanism is based on a fine-grain 

approach, namely it relies on the size of the page frame for the 

specific hardware architecture (e.g. 4KB or 2/4MB for x86 

architectures)



Segmentation vs multi-cores/multi-threading

• … we know that paging schemes are still able to enforce 

protection of memory (via control bits in page-table entries)

• So we may think that segmentation is somehow useless in 

modern software systems

• This is a wrong concept, since as we will show segmentation 

still plays a central role in multi-core architectures

• It also plays a central role in multi-thread programming

• …… in 1985 paging was already there in the hardware but 

Intel further extended the segmentation support (e.g. in the 

80386 processor)

• …. although the segmentation logic has been significantly 

revised in x86-64 processors  



Segmentation based protection model (i)

• Each segment is associated with a given protection level (or 

privilege level)

• Each routine having protection level h can invoke any other routine 

having protection level h, within any segment (this can be achieved 

via intra-segment and cross-segment jumps)

• Routines having protection level h can invoke routines having 

protection level different from h via cross-segment jumps

• Cross-segment jumps always allow jumping from protection level 

h to protection level h+i

• Each segment having protection level h is associated with a set of 

access points, called GATEs, each one identified as <seg.id,offset> 

• Any GATE is associated with a maximum level max=h+j starting 

from which the GATE can be passed through



Segmentation based protection model (ii)

• If level(S)=h and max(GATE(S))=h+i then segment S

entails a GATE for accessing level h for modules 

associated with protection level up to h+i

• Cross-segment jumps deny the access to the destination 

if the source operates at protection level greater than the 

maximum one associated with the gate

• Overall, cross-segment jumps deny the access to the 

destination anytime we do not use a GATE as the 

destination entry for the jump 



Protection levels and jumps: the ring model

Level 0

Level 1

Level 2

Always admitted

Admitted depending on the max origin level associated with

the target GATE



User routine

Kernel routine A

Kernel routine B

<S1, offset1> 

(S1: level 0 – offset1: max = 0)

<S1, offset2> 

(S1: level 0 – offset2: max = 3)

S2 (level 2)

Admitted cross-segment

jumps

Non-admitted

cross-segment

jump

An example



Objectives of protection levels

• Denial of uncontrolled access to kernel level modules

• Kernel level access is controlled via specific “entry 

points” (the GATEs), which are explicitly used as 

destinations for jumps (more generally control flow 

variations) originated while running at worse protection 

levels

• In conventional operating systems, the entry points are 

typically associated with:

➢ interrupt handlers (asynchronous invocations)

➢ software traps (synchronous invocations)



Ring scheme for x86 machines



x86 address composition with segmentation

• An address does not specify the segment ID directly

• It can specify a segment-selector register

• This register keeps information on the actual segment to which 

we are accessing

• An example: 

<segment-selector-register,displacement>



x86 details on the segmentation support

CS: code segment register

SS: stack segment register

DS: data segment register

ES: data segment register

FS: data segment register

GS: data segment register

• CS (Code Segment Register)  points to the current segment. The 2  lsb identify the 

CPL (Current Privilege Level) for the CPU (from 0 to 3).

• SS (Stack Segment Register) points to the segment for the current stack.

• DS (Data Segment Register)  points to the segment containing static and global data.

For CS RPL is 

called CPL

This register is only 

writable by control 

flow variation 

instructions
added in 

80386



Back to the very early x86 example

mov (%rax), %rbx

push %rbx  

Here we are seamlessly (say 

implicitly) using CS, and DS

for the first instruction

and CS and SS for the second 

instruction

ES is an additional (to DS) implicit segment for 

specific classes of machine instructions, e.g. 

string-targeted ones like stos and movs



x86 GDT entries (segment descriptors)

Access byte content:

Pr - Present bit. This must be 1 for all valid selectors. 

Privl - Privilege, 2 bits. Contains the ring level (0 to 3)

Ex - Executable bit (1 if code in this segment can be executed) 

…….

Flags:

Gr - Granularity bit. If 0 the limit is in 1 B blocks (byte granularity), 

if 1 the limit is in 4 KB blocks (page granularity)

…. 

This directly supports 

protected mode



Accessing GDT entries

• Given that a segment descriptor is 8 bytes in size, its 
relative address within GDT is computed by 
multiplying the 13 bits of the index field of segment 
selector by 8

• E.g, in case GDT is located at address 0x00020000 
(value that is kept by the gdtr register) and the index 
value within segment selector is set to the value 2, the 
address associated with the segment descriptor is 
0x00020000 + (2*8), namely 0x00020010

This is not only a pointer but actually a packed struct 

describing positioning and size of the GDT



Long mode descriptors

ignored bits



x86 long mode provides 2 (the table size) + 8 (the table address) bytes 



Long mode GDTR extensions



Example code
#include <stdio.h>

struct desc_ptr {

unsigned short size;

unsigned long address;

} __attribute__((packed)) ;

#define store_gdt(ptr) asm volatile("sgdt %0":"=m"(*ptr))

int main (int argc, char**argv){

struct desc_ptr gdtptr;

char v[10];//another way to see 10 bytes packed in memory

store_gdt(&gdtptr);

store_gdt(v);

printf("comparison is %d\n",memcmp(v,&gdtptr,10));

printf("GDTR is at %x - size is %d\n",gdtptr.address, gdtptr.size);

printf("GDTR is at %x - size is %d\n",((struct desc_ptr*)v)->address,

((struct desc_ptr*)v)->size);

}



Access scheme

Caching of descriptors

(1 cache register per segment

selector – non-programmable)

Cache line filled upon  selector 

update



Making explicit usage of segments while coding

#include <stdio.h>

#define load(ptr,var) asm volatile("mov %%ds:(%0), %%rax":"=a" (var):"a" (ptr))

#define store(val,ptr) asm volatile(" mov %0, %%ds:(%1)“\

::"a" (val), "b" (ptr):)

int main (int argc, char**argv){

unsigned long x = 16;

unsigned long y;

load(&x,y);

printf("variable y has value %u\n",y);

store(y+1,&x);

printf("variable x has value %u\n",x);

}

explicit reference

to the data segment

register (DS)



Code/data segments for LINUX

Can we read/write/execute?

Is the segment present?
x86-64 directly forces base to 0x0 for 

the corresponding segment registers



The x86-64 revision

• Registers keeping track of segment IDs (also known as 

selectors) are not all managed the same way by firmware on 

board of the processor

• For some registers keeping segment IDs (hence for the 

corresponding segments in the GDT table) a fixed base of 0x0 

is enforced for the segments

• Protection bits in the segment table entries associated with 

those segments IDs still work  

• For a few registers keeping segment IDs the classical rule 

relying on arbitrary base values for the segments is adopted



x86-64 selector management details

CS

SS

DS

ES

FS

GS

Base = 0x0

Privilege level is still there 

and working

Arbitrary Base



Segment selectors update rules

• CS plays a central role, since it keeps the CPL 

(Current Privilege level)

• CS is only updated via control flow variations

• All the other segment registers can be updated if 

the segment descriptor they would point to after 

the update has DPL  CPL

• Clearly, with CPL = 0 we can update 

everything (ring 0 has no limit)



LINUX GDT on x86

Beware

these



TSS 

• TSS (Task State Segment): the set of linear addresses associated 

with TSS is a subset of the linear address space destined to kernel 

data segment

• each TSS (one per CPU-core) is kept within the int_tss array

• the Base field within the n-th core TSS register points to the  n-th 

entry of the int_tss array (transparently via the TSS segment)

• Gr=0 while limit is 104 * 4 bytes

• DPL=0, since the TSS segment cannot be accessed in user mode



x86 TSS structure

Although it could be ideally 

used for hardware based 

context switches, it is not in 

Linux/x86

It is essentially used for 

privilege level switches (e.g. 

access to kernel mode), based 

on stack differentiation



x86-64 variant

room for 64-bit

stack pointers has been created

sacrificing general registers 

snapshots



Loading the TSS register

• x86 ISA (Instruction Set Architecture) offers the 

instruction LTR

• This is privileged and must be executed at CPL = 

0

• The TSS descriptor must be filled with a source 

operand

• The source can be a general-purpose register or a 

memory location

• Its value (16 bits) keeps the index of the TSS 

descriptor into the GDT





GDT replication

• By the discussion on TSS we might have already 

observed that different CPU-cores in a multi-core/multi-

processor system may need to fill a given entry of the 

GDT with different values

• To achieve this goal the GDT is actually replicated in 

common operating systems, with one copy for each 

CPU-core

• Then each copy slightly diverges in a few entries

• The main (combined) motivations are

✓ performance  

✓ transparency of data access separation



Actual architectural scheme

RAM memory

CPU-core 0 CPU-core 1

gdtr

gdtr

The two tables may differ in a few entries!!



Replication benefits: per-CPU seamless 

memory accesses

RAM memory

CPU-core 0 CPU-core 1

gdtr

gdtr

GS segment = X GS segment = X 

Base is B Base is B’

Same displacement within segment X seamlessly leads the two CPU-

cores to access different linear addresses



Per-CPU memory

• No need for a CPU-core to call, e.g. CPUID (… 

devastating for the speculative pipeline …) to determine 

what memory portion is explicitly dedicated to it

• Fast access via GS segment displacing for per-CPU 

common operations such as

✓ Statistics update (non need for LOCKED 

CMPXCHG)

✓ Fast control operations



Per-CPU memory setup in Linux

• Based on some per-CPU reserved zone in the linear 

addressing scheme

• The reserved zone is displaced by relying on the GS 

segment register

• Based on macros that select a displacement in the GS 

segment

• Based on macros that implement memory access relying on 

the selected displacement 



An example

DEFINE_PER_CPU(int, x); 

int z; 

z = this_cpu_read(x);

The above  statement results in a single instruction: 

mov ax, gs:[x]

To operate with no special define we can also get the 

actual address of the per-CPU data and work 

normally:

y = this_cpu_ptr(&x)



TLS – Thread Local Storage

• It is based on setting up different segments associated 

with FS and GS selectors

• Each time a thread is CPU-dispatched, kernel software 

restores its corresponding segment descriptors into 

TLS#1, TLS#2 and TLS#3 within the GDT

• We have system calls allowing us to change the segment 

descriptors to be posted on TLS entries 



Segment management system calls (i)



Segment management system calls (ii)



x86-64 control registers

• CR0-CR3 or CR0-CR4 (on more modern x86 CPUs)

• CR0: is the baseline one

• CR1: is reserved

• CR2: keeps the linear address in case of a fault

• CR3: is the page-table pointer



CR0 structure vs long mode

Long mode uses a combination of this and 

the EFER (Extended Feature Enable Register) 

MSR (model specific register)



Interrupts/traps vs kernel access

• Interrupts are asynchronous events that are not correlated with 

the current CPU-core execution flow

• Interrupts are generated by external devices, and can be masked 

(vs non-masked)

• Traps, also known as exceptions, are synchronous events, 

strictly coupled with the current  CPU-core execution (e.g. 

division by zero)

• Multiple executions of the same program, under the same input, 

may (but not necessarily do) give rise to the same exceptions

• Traps are (actually have been historically) used as the 

mechanism for on demand access to kernel mode (via system 

calls)



Management of trap/interrupt events

• The kernel keeps a trap/interrupt table

• Each table entry keeps a GATE descriptor, which provides 

information on the address associated with the GATE (e.g. 

<seg.id,offset>) and the GATE protection level 

• The content of the trap/interrupt table is exploited to determine 

whether the access to the GATE can be enabled

• The check relies on the current content of CPU registers, the 

segment registers, which specify the current privilege level 

(CPL)

• In principle, it may occur that a given GATE is described 

within multiple entries of the trap/interrupt table (aliasing), 

possibly with different protection specifications



Summary on x86 control flow variations

• intra-segment: standard jump instruction (e.g. JMP <displacement> 

on x86 architectures)

➢ firmware only verifies whether the displacement is within the 

current segment boundary

• cross-segment: long jump instructions (e.g. LJMP <seg.id>, 

<displacement> on x86 architectures)

➢Firmware verifies whether jump is enabled on the basis of 

privilege levels (no CPL improvement is admitted) 

➢Then, firmware checks whether the displacement is within the 

segment boundaries

• cross-segment via GATEs: trap instructions (e.g. INT <table 

displacement> on x86 architectures)

➢Firmware checks whether jumping is admitted depending on the 

privilege level associated with the target GATE as specified 

within the trap/interrupt table



An overview

Seg 0 – level = 0

Seg 1 – level  0

Seg i – level  n

Not always admitted

(requires consulting the

Trap/interrupt table

+

Segment Tables)

Always admitted

(requires anyway consulting

the segment Tables)

Move across

segments



GATE details for the x86 architecture (i)

• The trap/interrupt table is called Interrupt Descriptor Table 

(IDT) 

• Any entry keeps 

➢ The ID of the target segment and the segment displacement

➢ the max level starting from which the access to the GATE is 

granted

• IDT is accessible via the idtr register which is a packed 

structure keeping the linear address of the IDT and the size 

(number of entries, each made up by 8 or 16 bytes, depending on 

whether extended 64-bit mode is active)

• The register is loadable via the LIDT machine instruction



GATE details for the x86 architecture (ii)

• We know the current privilege level is kept within CS

• If protection information enables jumping, the segment ID within 

IDT is used to access GDT in order to check whether jumping is 

within the segment boundaries

• If check succeeds the current privilege level gets updated

• The new value is taken from the corresponding entry of GDT 

(this value corresponds to the privilege level of the target 

segment)

• The GATE description also tells whether the activated code is 

interruptible or not 



Conventional operating systems

• For LINUX/Windows systems, the GATE for on-demand access 

(via software traps) to the kernel is unique

• For i386 machines the corresponding software traps are

➢ INT 0x80 for LINUX (with backward compatibility in x86-64)

➢ INT 0x2E for Windows

• Any other GATE is reserved for the management of run-time errors 

(e.g. divide by zero exceptions) and interrupts

• They are not usable for on-demand access via software  (clearly 

except if you hack the kernel)

• The software module associated with the on-demand access  GATE 

implements a dispatcher that is able to trigger the activation of 

the specific system call targeted by the application



Data structures for system call dispatching

• There exists a “system call table” that keeps, in any entry, the 

address of a specific system call 

• Such an address becomes the target for a subroutine activation by 

the dispatcher

• To access the correct entry, the dispatcher gets in input the 

number (the numerical code – the index) of the target system 

call (typically this input is provided within a CPU register)

• The code is used to identify the target entry within the system call 

table

• Then the dispatcher invokes the system call routine (as a “jump 

sub-routine” – CALL instruction on x86) 

• The actual system call, once executed, provides its output (return) 

value within a CPU register



The trap-based dispatching scheme

User level

define input and

access GATE (trap)

dispatcher

Kernel level

System call table

System call 

code

system call 

activation

return from

trap

retrieve system call

return value

retrieve the reference to

the system call code
User space return



Trap vs interruptible execution

• Differently from interrupts, trap management is typically 

configured so as not to entail/enable automatically resetting 

the interruptible-state for the CPU-core

• Any critical code portion associated with the management of 

the trap within the kernel requires explicit set of the 

interruptible-state bit, and the reset after job is complete (e.g.  

via CLI e STI instructions in x86 processors)

• For SMP/multi-core machines this may not suffice for 

guaranteeing correctness (e.g. atomicity) while handling the 

trap 

• To address this issue, spinlock mechanisms are adopted, which 

are base on atomic test-end-set code portions  (e.g., generated 

via the x86 LOCK prefix on standard compilation tool chains)



Test-and-set support

• Modern instruction sets offer a single instruction to 

atomically test-and-set memory, this is the CAS (Compare 

And Swap) intruction

• On x86 machines the actual CAS is called CMPXCHG

(Compare And Exchange)

• ... but we already discussed of this while dealing with 

memory consistency!!



System call software components

• User side: software module (a) providing the input 

parameters to the GATE (and to the actual system call) (b) 

activating the GATE and (c) recovering the system call return 

value

• kernel side: 

➢ dispatcher

➢system call table

➢ actual system call code

• Addition of a new system call means working on both sides

• Typically, this happens with no intervention on the dispatcher 

in all the cases where the system call format is compliant 

with those predefined for the target operating system



Linux along our path

• Kernel 2.4 : highly oriented to expansibility 

modifiability

• Kernel 2.6: more scalable

• Kernel 3.x: more structured and secure

• Kernel 4.x, 5.x: even more secure



LINUX system calls support:

the whole (long) history up to 

kernel 5.x



System call indexing

• This has changes along time

• We originally had the so called UNISTD_32 indexing scheme

• This is still supported in modern kernel versions (e.g. 4.x and 5.x)

• Now we have the UNISTD_64 indexing

• Given that the system call indexes are used/needed at user space, we 

can exploit them for user code programming via the 

/usr/include/asm directory (or /usr/include/x86_64-linux-
gnu/asm)

• The two indexing schemes are stated in 

– unistd_32.h

– unistd_64.h

• Two indexing schemes imply two different system call tables at 

kernel level, which coexist with each other (and of course two 

dispatchers)



UNISTD_32 listing

#ifndef _ASM_X86_UNISTD_32_H

#define _ASM_X86_UNISTD_32_H 1

#define __NR_restart_syscall 0

#define __NR_exit 1

#define __NR_fork 2

#define __NR_read 3

#define __NR_write 4

#define __NR_open 5

#define __NR_close 6

#define __NR_waitpid 7

#define __NR_creat 8

#define __NR_link 9

#define __NR_unlink 10

#define __NR_execve 11

#define __NR_chdir 12

#define __NR_time 13

#define __NR_mknod 14

#define __NR_chmod 15

#define __NR_lchown 16

……



UNISTD_64 listing

#ifndef _ASM_X86_UNISTD_64_H

#define _ASM_X86_UNISTD_64_H 1

#define __NR_read 0

#define __NR_write 1

#define __NR_open 2

#define __NR_close 3

#define __NR_stat 4

#define __NR_fstat 5

#define __NR_lstat 6

#define __NR_poll 7

#define __NR_lseek 8

#define __NR_mmap 9

#define __NR_mprotect 10

#define __NR_munmap 11

#define __NR_brk 12

#define __NR_rt_sigaction 13

#define __NR_rt_sigprocmask 14

……



User level tasks for accessing the gate GATE

1. Specification of the input parameters via CPU registers 

(note that these include the actual system call parameters 

and the dispatcher ones)

2. ASM instructions triggering the GATE (e.g. traps)

3. Recovery of the return value of the systems call (upon 

returning from the trap associated with GATE activation) 



Predefined system call formats

• These are specified in header files that enable using GATE 

access functions in C 

• These header files define the standard formats for the user 

level module triggering access to the system GATE (namely 

the module that activates the system call dispatcher), each for a 

different value of the number of system call parameters (from 0 

to 6) 

• Essentially these header files contain ASM vs C directives and 

architecture specific compilation directives

• They represent a meeting point between standard C 

programming and machine specific ASM language (in relation 

to the GATE access functionality)



Code block for a standard system call with no 

parameter (e.g. fork()) – classical define style

#define _syscall0(type,name) \

type name(void) \

{ \

long __res; \

__asm__ volatile ("int $0x80" \

: "=a" (__res) \

: "0" (__NR_##name)); \

__syscall_return(type,__res); \

}

Assembler instructions

Tasks preceding the assembler

code block

Tasks to be done after the 

execution of the  assembler 

code block



Managing the return value and errno

/* user-visible error numbers are in the range -1 - -124: 

see <asm-i386/errno.h> */

#define __syscall_return(type, res) \

do { \

if ((unsigned long)(res) >= (unsigned long)(-125)) { \

errno = -(res); \

res = -1; \

} \

return (type) (res); \

} while (0)

Case of res within the 

interval [–1, -124]



Note: why the do/while(0) construct?

It is a C construct that allows to 

• #define a multi-statement operation

• put a semicolon after and 

• still use within an if statement



Code block for a standard system call with one 

parameter (e.g. close()) – classical define style

#define _syscall1(type,name,type1,arg1) \

type name(type1 arg1) \

{ \

long __res; \

__asm__ volatile ("int $0x80" \

: "=a" (__res) \

: "0" (__NR_##name),"b" ((long)(arg1))); \

__syscall_return(type,__res); \

}

2 registers used for the input



Code block for a system call with six parameters –

classical define style (tailored to UNISTD_32)
#define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, 

\

type5,arg5,type6,arg6) \

type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,type6 

arg6) \

{ \

long __res; \

__asm__ volatile ("push %%ebp ; movl %%eax,%%ebp ; movl %1,%%eax ; int 

$0x80 ; pop %%ebp" \

: "=a" (__res) \

: "i" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \

"d" ((long)(arg3)),"S" ((long)(arg4)),"D" ((long)(arg5)), \

"0" ((long)(arg6))); \

__syscall_return(type,__res); \

}

We use 4 general purpose registers (eax,ebx,ecx,edx) plus the 

additional registers ESI e EDI, and the ebp register (base pointer for 

the current stack frame, which is saved before overwriting) and a 

local integer variable “i”



UNISTD_32 calling conventions for system calls

/*

* 0(%esp) - %ebx     ARGS

* 4(%esp) - %ecx

* 8(%esp) - %edx

*     C(%esp) - %esi

* 10(%esp) - %edi

* 14(%esp) - %ebp END ARGS

* 18(%esp) - %eax

* 1C(%esp) - %ds

* 20(%esp) - %es

* 24(%esp) - orig_eax

* 28(%esp) - %eip

* 2C(%esp) - %cs

* 30(%esp) - %eflags

* 34(%esp) - %oldesp

* 38(%esp) - %oldss

*/

Ring and baseline CPU 

state information 

(firmware saved onto 

the system stack)

The stack layout representation 

complies with the traditional 

stack based passage of 

parameters 



UNISTD_64 calling conventions for system calls

/*

* Register setup:

* rax  system call number

* rdi  arg0

* rcx  return address for syscall/sysret, C arg3 

* rsi  arg1

* rdx  arg2

* r10  arg3 (--> moved to rcx for C)

* r8   arg4

* r9   arg5

* r11  eflags for syscall/sysret, temporary for C

* r12-r15,rbp,rbx saved by C code, not touched. 

* 

* Interrupts are off on entry.

* Only called from user space.

*/ 



System V AMD64 ABI additional details

• If the callee wishes to use registers RBX, RBP, and 

R12–R15, it must restore their original values before 

returning control to the caller

• All other registers must be saved by the caller if it 

wishes to preserve their values



Details on passing parameters

• Once gained control, the dispatcher will take a complete 

snapshot of  CPU registers 

• The snapshot is taken within the system level stack

• Then the dispatcher will invoke the system call as a 

subroutine call (e.g. via a CALL instruction in x86 

architectures)

• The actual system call will retrieve the parameters according 

to the proper ABI 

• The taken snapshot can be modified upon the system call 

return (e.g. for delivering the return value) 



registers

System stack

upon triggering 

dispatcher 

Stack pointer

Base pointer

Stack pointer
PC

Base pointer

Stack pointer
PHASE 1 PHASE 2

PHASE 3

Dispatcher execution
system call

execution

An example

Sys call NR

Sys call NR
Sys call NR



UNISTD_32 stack alignment  
struct pt_regs { 

unsigned long bx; 

unsigned long cx; 

unsigned long dx; 

unsigned long si; 

unsigned long di; 

unsigned long bp; 

unsigned long ax; 

unsigned short ds; 

unsigned short __dsh; 

unsigned short es; 

unsigned short __esh; 

unsigned short fs; 

unsigned short __fsh; 

unsigned short gs; 

unsigned short __gsh; 

unsigned long orig_ax; 

unsigned long ip; 

unsigned short cs; 

unsigned short __csh; 

unsigned long flags; 

unsigned long sp; 

unsigned short ss; 

unsigned short __ssh; 

} 

Firmware saved

Software saved

(no distinction between 

caller/callee save)

https://elixir.bootlin.com/linux/v4.18.12/ident/pt_regs
https://elixir.bootlin.com/linux/v4.18.12/ident/bx
https://elixir.bootlin.com/linux/v4.18.12/ident/cx
https://elixir.bootlin.com/linux/v4.18.12/ident/dx
https://elixir.bootlin.com/linux/v4.18.12/ident/si
https://elixir.bootlin.com/linux/v4.18.12/ident/di
https://elixir.bootlin.com/linux/v4.18.12/ident/ax
https://elixir.bootlin.com/linux/v4.18.12/ident/ds
https://elixir.bootlin.com/linux/v4.18.12/ident/es
https://elixir.bootlin.com/linux/v4.18.12/ident/fs
https://elixir.bootlin.com/linux/v4.18.12/ident/gs
https://elixir.bootlin.com/linux/v4.18.12/ident/ip
https://elixir.bootlin.com/linux/v4.18.12/ident/cs
https://elixir.bootlin.com/linux/v4.18.12/ident/sp
https://elixir.bootlin.com/linux/v4.18.12/ident/ss


UNISTD_64 stack alignment  
struct pt_regs {

/* * C ABI says these regs are callee-preserved. They aren't saved on 

kernel entry * unless syscall needs a complete, fully filled "struct pt_regs". */ 

unsigned long r15; unsigned long r14; unsigned long r13; 

unsigned long r12; unsigned long bp;  unsigned long bx; 

/* These regs are callee-clobbered. Always saved on kernel entry. */ 

unsigned long r11; 

unsigned long r10; 

unsigned long r9; 

unsigned long r8; 

unsigned long ax; 

unsigned long cx; 

unsigned long dx; 

unsigned long si; unsigned long di; 

/* * On syscall entry, this is syscall#. On CPU exception, this is error code. * On 

hw interrupt, it's IRQ number: */ 

unsigned long orig_ax; 

/* Return frame for iretq */ 

unsigned long ip; 

unsigned long cs; 

unsigned long flags; 

unsigned long sp; 

unsigned long ss; 

/* top of stack page */ 

}; 

Firmware 

managed

https://elixir.bootlin.com/linux/v4.18.12/ident/pt_regs
https://elixir.bootlin.com/linux/v4.18.12/ident/r15
https://elixir.bootlin.com/linux/v4.18.12/ident/r14
https://elixir.bootlin.com/linux/v4.18.12/ident/r13
https://elixir.bootlin.com/linux/v4.18.12/ident/r12
https://elixir.bootlin.com/linux/v4.18.12/ident/bx
https://elixir.bootlin.com/linux/v4.18.12/ident/r11
https://elixir.bootlin.com/linux/v4.18.12/ident/r10
https://elixir.bootlin.com/linux/v4.18.12/ident/r9
https://elixir.bootlin.com/linux/v4.18.12/ident/r8
https://elixir.bootlin.com/linux/v4.18.12/ident/ax
https://elixir.bootlin.com/linux/v4.18.12/ident/cx
https://elixir.bootlin.com/linux/v4.18.12/ident/dx
https://elixir.bootlin.com/linux/v4.18.12/ident/si
https://elixir.bootlin.com/linux/v4.18.12/ident/di
https://elixir.bootlin.com/linux/v4.18.12/ident/ip
https://elixir.bootlin.com/linux/v4.18.12/ident/cs
https://elixir.bootlin.com/linux/v4.18.12/ident/sp
https://elixir.bootlin.com/linux/v4.18.12/ident/ss


Simple examples for adding system calls to 

the user API

Provide a C file which:

• contains the definition of the numerical codes for the new system 

calls

• contains (or includes) the macro-definition for creating the actual 

standard  module associated with the new system calls (e.g. 

_syscall0()for UNISTD_32)

#include <unistd.h>

#define _NR_my_first_sys_call  254

#define _NR_my_second_sys_call  255

_syscall0(int,my_first_sys_call);

_syscall1(int,my_second_sys_call,int,arg);



Simple overriding of the 

fork()UNISTD_32 system call

#include <unistd.h>

#define __NR_my_fork 2 //same numerical code as the original

#define _new_syscall0(name) \

int name(void) \

{ \

asm("int $0x80" : : "a" (__NR_##name) ); \

return 0; \

} \

_new_syscall0(my_fork)

int main(int a, char** b){

my_fork();

pause();  // there will be two processes pausing !!

}



“int 0x80” system call path performance implications

• One memory access to the IDT

• One memory access to the GDT to retrieve the kernel CS 

segment

• One memory access to the GDT (namely the TSS) to retrieve 

the kernel level stack pointer

• A lot of clock cycles waiting for data coming from memory 

(just to control the execution flow)

• Asymmetric delays in asymmetric hardware (e.g. NUMA)

• Unreliable outcome for time-interval measures using system 

calls, see gettimeofday() (and rdtsc)



The x86 revolution (starting with Pentium3)

• CS value for kernel code cached into an apposite MSR (Model 

Specific Register)

• Kernel entry point offset (the target EIP/RIP) kept into an 

apposite MSR

• Kernel level stack/data base kept into an apposite MSR

• Entering kernel code is as easy as flushing the MSRs values 

onto the corresponding original registers (e.g. CS, DS, SS …. 

recall that the corresponding bases are defaulted to 0x0)

• No memory access for activating the system call dispatcher

• This is the fast system call path!!



Fast system call path additional details

SYSENTER instruction for 32 bits - SYSCALL 

instruction for 64 bits

based on (pseudo) register manipulation

• CS register set to the value of SYSENTER_CS_MSR for 

32 bits - another bitmask taken from IA32_STAR_MSR 

for 64 bits

• EIP register set to the value of SYSENTER_EIP_MSR 

for 32 bits – IA32_LSTAR_MSR for 64 bits

• SS register set to the sum of (8 plus the value in 

SYSENTER_CS_MSR for 32 bits – another bitmask 

taken from IA32_STAR_MSR for 64 bits)

• ESP register set to the value of (SYSENTER_ESP_MSR) 

for 32 bits – nothing is done for 64 bits



Details



Fast system call path additional details

SYSEXIT instruction for 32 bits - SYSRET instruction for 

64 bits 

based on pseudo register manipulation

• CS register set to the sum of 16 plus the value in 

SYSENTER_CS_MSR for 32 bits – another bitmask for 64 

bits

• EIP register set to the value contained in the EDX register 

for 32 bits – RCX for 64 bits

• SS register set to the sum of 24 plus the value in 

SYSENTER_CS_MSR for 32 bits – another bitmask for 64 

bits

• ESP register set to the value contained in the ECX register 

for 32 bits – nothing for 34 bits



MSR and their setup for UNISTD_32

/usr/src/linux/include/asm/msr.h: 

101 #define MSR_IA32_SYSENTER_CS   0x174 

102 #define MSR_IA32_SYSENTER_ESP 0x175 

103 #define MSR_IA32_SYSENTER_EIP  0x176

/usr/src/linux/arch/i386/kernel/sysenter.c: 

36 wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0); 

37 wrmsr(MSR_IA32_SYSENTER_ESP, tss->esp1, 0); 

38 wrmsr(MSR_IA32_SYSENTER_EIP, 

(unsigned long) sysenter_entry, 0);

rdmsr and  wrmsr are the actual machine instructions for 

reading/writing the registers



The syscall() construct  

(since Pentium3/kernel 2.6)

• syscall() is implemented within glibc (in stdlib.h)

• It allows triggering a trap to the kernel for the execution of a generic 

system call

• The first argument is the system call number

• The other parameters are the input for the system call code

• The actual ASM code implementation of syscall() is targeted 

and optimized for the specific architecture

• Specifically, the implementation (including the kernel level 

counterpart) relies on ASM instructions such as 

sysenter/sysexit or syscall/sysret, which have been 

made available starting from Pentium3 processors



An example

#include <stdlib.h>

#define __NR_my_first_sys_call  333

#define __NR_my_second_sys_call 334

int my_first_sys_call(){

return syscall(__NR_my_first_sys_call);

}

int my_second_sys_call(int arg1){

return syscall(__NR_my_second_sys_call, arg1);

}

int main(){

int x;

my_first_sys_call();

my_second_sys_call(x);

}



The system call table

• It is an array of function pointers

• However, we cannot easily resize the array and recompile the 

kernel

• This is because that table (like may other kernel level data 

structures) is positioned at compile time in specific zones of 

virtual addresses

• Simple enlarging on the table with no other modification of the 

kernel compilation layout will lead to data structures’ overlap 

• Such strict compilation rules depend on the fact that hardware 

setup for running the kernel may require CPU registers to be 

populated with compile time defined values 

• The before described fast system call path is a clear example!!



System call table hacking: entry reusage 

• In older versions of the kernel the system call table was oversized, just 

for kernel modifiability purposes

• Hence the addition of new system calls in the kernel software could be 

based on the free entries

• In current (or more recent) kernel versions no oversize is put in place

• This is because the less “free” zones of data structures exist, the less the 

likelihood that they can be exploited against security 

• But we are lucky because a few entries, although reserved, are not 

actually used to point to actual kernel level functions

• In the essence this is the scenario of kernel services that were planned 

(with given indexing) but not actually implemented

• All these entries point to the so called “sys_ni_syscall” kernel 

module, which simply returns upon its invocation



x86 system call table details

• For kernel 2.4 and i386 machines the system call table is defined 

in arch/i386/kernel/entry.S

• For kernel 2.6.xx the table is posted on the file 
arch/x86/kernel/syscall_table32.S 

• For kernel 4.15.xx and UNISTD_64 the table pointer is defined 

in /arch/x86/entry/syscall_64.c 

• The .S files contain pre-processor ASM directives 

• Any table entry keeps a symbolic reference to the kernel level 

name of a system call (typically, the kernel level name resembles 

the one used at application level)

• The above files (or other .S) also contains the code block for the 

dispatcher associated with the kernel access GATE



Table structure – i386/UNISTD_32 style

ENTRY(sys_call_table)

.long SYMBOL_NAME(sys_ni_syscall) /* 0  - old "setup()" 

system call*/

.long SYMBOL_NAME(sys_exit)

.long SYMBOL_NAME(sys_fork)

.long SYMBOL_NAME(sys_read)

.long SYMBOL_NAME(sys_write)

.long SYMBOL_NAME(sys_open) /* 5 */

.long SYMBOL_NAME(sys_close)

……

.long SYMBOL_NAME(sys_sendfile64)

.long SYMBOL_NAME(sys_ni_syscall) /* 240 reserved for futex 

*/

………

.long SYMBOL_NAME(sys_ni_syscall) /* 252 

sys_set_tid_address */

.rept NR_syscalls-(.-sys_call_table)/4

.long SYMBOL_NAME(sys_ni_syscall)

.endr

New symbols need to be inserted here



Definition of system call symbols

• For the previous example, the actual system call specification will 

be

.long SYMBOL_NAME(sys_my_first_sys_call)

.long SYMBOL_NAME(sys_my_second_sys_call)

• The actual code for the system calls (generally based exclusively 

on C with compilation directives for the specific architecture) can 

be included within new modules added to the kernel or within 

already exiting modules

• The actual code can rely on the kernel global data structures and 

on functions already available within the kernel, except for the 

case where they are explicitly masked (e.g. masking with 

static declarations external to the file containing the system 

call) 



Definition of the system call table –

UNISTD_64 style 

asmlinkage const sys_call_ptr_t sys_call_table[__NR_syscall_max+1] = {

[0 ... __NR_syscall_max] = &sys_ni_syscall, 

#include <asm/syscalls_64.h> 

}; 

• The kernel level source file that defines the system call table is 

arch/x86/entry/syscall_64.c

asmlinkage const sys_call_ptr_t sys_call_table[__NR_syscall_max+1]  =  {

[0 ... __NR_syscall_max] = &sys_ni_syscall, 

[0] = sys_read, 

[1] = sys_write, 

[2] = sys_open, 

... 

... 

... };

After the “include” expansion

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/syscall_64.c


Compilation directives for kernel side 

systems calls

• Specific directives are used to make the system call code compliant 

with the dispatching rules

• Compliance is assessed on the basis of how the input 

parameters are passed/retrieved

• The input parameters passage by convention historically took place 

via the kernel stack

• The corresponding compilation directive is asmlinkage

• This directive is now mapped to the current ABI

• Hence for the previous examples we will have the following system 

call definitions
asmlinkage long sys_my_first_sys_call() { return 0;}

asmlinkage long sys_my_second_sys_call(int x) { 

return ((x>0)?x:-x);}



The ni_sys_call module

asmlinkage long sys_ni_syscall(void) {

return -ENOSYS; 

} 



The actual dispatcher (trap driven activation –

i386/UNISTD_32)

ENTRY(system_call)

pushl %eax # save orig_eax

SAVE_ALL

GET_CURRENT(%ebx)

testb $0x02,tsk_ptrace(%ebx) # PT_TRACESYS

jne tracesys

cmpl $(NR_syscalls),%eax

jae badsys

call *SYMBOL_NAME(sys_call_table)(,%eax,4)

movl %eax,EAX(%esp) # save the return value

ENTRY(ret_from_sys_call)

cli # need_resched and signals atomic test

cmpl $0,need_resched(%ebx)

jne reschedule

cmpl $0,sigpending(%ebx)

jne signal_return

restore_all:

RESTORE_ALL

Manipulating 

the CPU 

snapshot in 

the stack

Beware this!!!



The actual dispatcher (syscall driven activation –

UNISTD_64/kernel 2.4)
ENTRY(system_call)

swapgs

movq %rsp,PDAREF(pda_oldrsp) 

movq PDAREF(pda_kernelstack),%rsp

sti

SAVE_ARGS 8,1

movq  %rax,ORIG_RAX-ARGOFFSET(%rsp) 

movq  %rcx,RIP-ARGOFFSET(%rsp)

GET_CURRENT(%rcx)

testl $PT_TRACESYS,tsk_ptrace(%rcx)

jne tracesys

cmpq $__NR_syscall_max,%rax

ja badsys

movq %r10,%rcx

call *sys_call_table(,%rax,8)  # XXX: rip relative

movq %rax,RAX-ARGOFFSET(%rsp)

.globl ret_from_sys_call

ret_from_sys_call:

sysret_with_reschedule:

GET_CURRENT(%rcx)

cli 

cmpq $0,tsk_need_resched(%rcx)

jne sysret_reschedule

cmpl $0,tsk_sigpending(%rcx)

jne sysret_signal

sysret_restore_args:

……….

#define PDAREF(field) %gs:field

Part of the stack switch 

work originally done 

via firmware is moved 

to software

Beware this!!!



User vs kernel GS segment



… moving to kernel 4.xx or later

Snippet taken from 

https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S

Here we pass 

control to a C-stub, 

not to the actual 

system call



Snippet taken from 

https://github.com/torvalds/linux/blob/master/arch/x86/entry/common.c

Wrong-speculation

cannot rely on arbitrary 

sys-call indexes!!!!

Also, from kernel 4.17 

the system call table 

entry no longer points 

to the actual system 

call code, rather to 

another wrapper that 

masks from the stack 

non-useful values



Overall

• For more security-oriented implementations we have

✓ More strict checks and manipulation of the user provided 

information before any action is taken

✓ A more layered architecture for better decoupling user/kernel 

information flows

• The latter point has reflection on programming aspects since for, 

e.g., Kernel 4.17 the kernel-side creation of a new system call 

should be based on kernel level macros for implementing a stub-

based execution of the native system-call code

• These macros are SYSCALL_DEFINE0, SYSCALL_DEFINE1, 
SYSCALL_DEFINE2, SYSCALL_DEFINE3 ……



Actual usage/effect of kernel-side sys-call macros

• The SYSCALL_DEFINE2 example (still representative of other macros)

SYSCALL_DEFINE2(name, param1type, param1name, param2type, param2name){

actual body implementing the kernel side system call

}

The macro creates a function 

sys_name (aliased by SyS_name) or 

__x86_sys_name from kernel 4.17

In 4.17 this function passes only the requested values (i.e. 

param1name and param2name) to the actual function 

related to the above specified body - such a function has 

now name __se_sys_name



Finally … PTI (Page Table Isolation)

Switch to the kernel 

view of memory



The swapgs attack

▪ It is based on making some piece of kernel-level 

code run speculatively under branch miss-

prediction

▪ This code uses displacement based on GS to do 

some read operation to memory

▪ At the end, cache side channel can be exploited to 

detect the speculatively accessed value 

▪ The big issue is that the GS base on x86 processors 

is ever taken by the MSR value IA32_GS_BASE 

(which is accessible to the user code via 

WRGSBASE) 



A scheme

IA32_GS_BASE

IA32_KERNEL_GS_BASE

Swap the two on branch miss-prediction in kernel mode

Use this attacker defined 

base to give rise to side 

effects at user accessible 

cache lines



swapgs common countermeasures

▪ Override any user level IA32_GS_BASE load 

while running in kernel mode

▪ This requires wide kernel side patching

▪ Exploit the SMAP (Supervisory Mode Access 

Prevention) service by the hardware

▪ This prevents that any user-level page is 

accessible while running in kernel mode

▪ We will come back to this when checking with 

memory management



Virtual Dynamic Shared Object (VDSO)

• Kernel also setups system call entry/exit points for user processes

• Kernel creates a single page (or a few) in memory and attaches it 

to all processes' address space when they are loaded into 

memory. 

• This page contains the actual implementation of the system call 

entry/exit mechanism 

• Kernel calls this page virtual dynamic shared object (VDSO)

• Originally exploited for making the fast system call path 

available (in relation to a few services)



VDSO and the address space

text

data bss

heap

stack

VDSO

User accessible memory

Environmental 

software is allowed 

to know where 

VDSO is located

Kernel posts 

code here



SYNOPSIS 

#include <sys/auxv.h>

void *vdso = (uintptr_t) getauxval(AT_SYSINFO_EHDR);

DESCRIPTION 

The "vDSO" (virtual dynamic shared object) is a small 

shared library that the kernel automatically maps into the 

address space of all user-space applications. Applications 

usually do not need to concern themselves with these 

details as the vDSO is most commonly called by the C 

library. This way you can code in the normal way using 

standard functions and the C library will take care of using 

any functionality that is available via the vDSO.

Application exposed facilities



The actual VDSO (getcpu example)



Performance effects

• The VDSO exploits flat (linear) addressing proper of 

operating system memory managers in order to bypass 

segmentation and the related operations

• It therefore reduces the number of accessed to memory in 

order to support the change to kernel mode

• Studies show that the reduction of clock cycles for system 

calls can be of the order of 75%

• This is in the end typical for any usage of the fast system call 

path



The current picture

• VDSO is now used to replace the old facilities supported via 

the vsyscall section, say support for specific system calls 

(e.g. query system calls such as gettimeofday()) 

• VDSO is randomized (in terms of positioning into the 

address space) so security gets increased

• The system call mechanism in the wide, which relies on 

sysenter/syscall and sysexit/sysret, is in 

charge of the dynamic linker (ld-linux.so)



Back to the coexistence of slow and 

fast system call paths

• Slow path 

✓ Still based on  int 0x80

✓ Still accessing IDT/GDT (which is the reason why the 

target entry still requires to be populated)

✓ The kernel level system call dispatcher accesses the 

i386/INISTD_32 system call table

• Fast path

✓ Base on the syscall instruction (no IDT/GDT access)

✓ The kernel level dispatcher (different from the previous 

one) accesses the x86-64/UNISTD_64 system call table



Kernel software organization

• About the  80-90% of the actual code for system calls is 

embedded within a few main portions of the kernel archive

• These are contained in the following directories

➢ kernel (process and used management)

➢ mm (basic memory management)

➢ ipc (interprocess communication management)

➢ fs (virtual file system management)

➢ net (network management)



Kernel compiling

• You can exploit make

• It executes a set of tasks (compilation, assembly and linking tasks) 

which are specified via a Makefile

• This file can specify differentiated actions to be done (possibly 

exhibiting dependencies) which are described within a field called  

target

• Each action can be specified by the following syntax: 

action-name: [ dependency-name]*{new-line}

{tab} action-body

• Further, we can define variables via the syntax:

variable-name = value

• Any variable can be accessed via the syntax:

$(variable-name)



make config (or menuconfig)

make 

make modules

make modules_install (ROOT)

make install (ROOT)

mkinitrd (or mkinitramfs) –o initrd.img-<vers> <vers>

update-grub

OR

grub(2)-mkconfig -o /boot/grub/grub.cfg (ROOT)

Standard compilation steps (current tyle)



About ‘config’

• The possibilities

– allyesconfig (likelihood of conflicting modules)

– allnoconfig (likelohood of non-sufficient services in 

the kernel image)

– Answer to the individual questions you may be 

asked for

– Retrieve a good configuration file (depending on 

your machine/settings) on the web

– Reuse the configuration files(s) you find in the 

/boot directory of your root file system (likely 

works when recompiling the same kernel version 

you already have) 



Role of initrd

• It is a RAM disk

• It can be (temporary) mounted as the root file 

system and programs can be run from it

• A different root file system can be then mounted 

from a different device 

• The previous root (from initrd) can then be moved 

to a directory and can be subsequently unmounted 

• With initrd system startup can occur in two phases

– the kernel initially comes up with a minimum 

set of compiled-in drivers 

– additional modules are loaded from initrd



make config (or menuconfig)

make 

make modules

make modules_install (ROOT) (writes into 

/lib/modules)

make install (ROOT) (writes into /boot: the kernel 

image, the system map and the config file)

update-grub

OR

grub(2)-mkconfig -o /boot/grub/grub.cfg (ROOT)

Step effects



“Extended” Kernel compilation (current style)

• Makefile updates

1. setting of the EXTRAVERSION variable 

(non-mandatory)

2. use obj- directive to add a file or a 

directory into the compilation tree

3. the addition is within already available 

makefiles (or new ones)



Kernel anatomy: the system map

• It contains the symbols and the corresponding virtual 

memory reference (as determined at compile/link time –

beware randomization) for:

• Kernel  functions (steady state ones)

• Kernel data structures  

• Each symbol is also associated with a tag that defines the 

‘storage class’ as determined by the compiling process

• As an example, 'T' usually denotes a global (non-static 

but not necessarily exported) function, 't' a function local 

to the compilation unit (i.e. static), 'D'  global data, 'd'  

data local to the compilation unit. 'R' and 'r' same as 

'D'/'d' but for read-only data



System map applications

• Kernel debugging

• Kernel run-time hacking

• The system map is also (partially) reported by the 
(pseudo) file /proc/kallsysm

• The latter is exploited for run-time kernel 

‘hacking’ via the modules’ technology



Just an example

2.6.5-7.282-smp #1 SMP ……. i686 i686 i386 GNU/Linux

c03a8a00 D sys_call_table

2.6.32-5-amd64 #1 SMP ……… x86_64 GNU/Linux

ffffffff81308240 R sys_call_table

Read/write data

Read-only data


