
Software security aspects

1. Authentication and habilitation

2. Classical software vulnerabilities

3. Protection domains and secure operating systems

4. Reference Monitor architectures

Advanced Operating Systems

MS degree in Computer Engineering

University of Rome Tor Vergata

Lecturer: Francesco Quaglia

IT security: the very baseline

1. Systems/applications must be usable by legitimate

users only

2. Access is granted on the basis of an authorization,

and according to the rules established by some

administrator (beware this term)

➢ As for point 1, an unusable system is a useless

one

➢ However, in several scenarios the attacker might

only tailor system non-usability by legitimate

users (so called DOS – Denial of Service-

attacks)

DOS basics

• Based on flooding of

1. Connections (TCP layer) and (probably) threads

2. Packets (UDP and/or application layers)

3. Requests (on application specific protocols)

• In some sense these attacks are trivial since they could

be typically handled by trading-off operation

acceptance (habilitation) vs current resource usage

• However the big issue is how to determine what to

accept (and what to reject) in the flood

• Rejecting all at a given point in time would lead to

deny the execution of legitimate operations

Overall
• Copying with DOS is not exactly a matter of how to

build system software

• It is essentially a matter of how to identify “good”

things in the flood (we need methods!)

• Clearly, the identification needs to be done on the fly

in an efficient manner

• So we need anyhow mechanisms for making the

software performing the identification task scalable

1. Multi-core exploitation

2. NUMA awareness

3. Non-blocking parallel algorithms …

Let’s slide to the “legitimate” term

• This term includes a lot of IT concepts,

mostly related to the access to resources:

➢Data

➢ Code or portions of it (either user or

kernel)

The very bad part since it can imply the data

illegitimate usage scenarios

Security approaches

• They are typically 3

1. Cryptography (e.g. for data)

2. Authentication/habilitation (e.g. for code or

portions of it, including the kernel code)

3. Security enhanced operating systems (as a

general reference model for system software

configuration and resource usage)

• Each approach targets specific security aspects

• They can/should be combined together to improve

the overall security level of an IT system

➢Side channel

➢Branch miss-prediction (Spectre variants)

➢Speculation along “trap” affected execution

paths (Meltdown)

➢Speculation on TAG-to-value (LT1 terminal)

➢Hacked kernel structures (sys-call interface,

VFS operations …)

Non-legitimate access to data: what

we looked at so far

• Randomization (of the address space and of data-

structure padding) – compile/runtime

• Signature inspection (avoidance of dangerous

instructions for data/code integrity) – loadtime

• Cyphering

➢ For streams

➢ For device blocks

➢ For memory pages/locations

➢ For generic data (e.g. passwords)

The countermeasures (so far)

This should come from

other courses

Password cyphering

• Done via the crypt() standard function

• Works with

➢ Salt

➢ Different one-way encryption methods

ID | Method

1 | MD5

2a | Blowfish (on some Linux distributions)

5 | SHA-256 (since glibc 2.7)

6 | SHA-512 (since glibc 2.7)

Encryption library function

#include <unistd.h>

char *crypt(const char *key, const char

*settings)

The original passwd

Encryption algorithm (the method) + salt

Encryption method+salt+encrypted passwd

Lets’ look at UNIX (Linux) systems

• The passwords’ database is kept within 2 distinct files
1./etc/passwd

2./etc/shadow

• /etc/passwd is accessible to every user and is used for

running base commands (such as id) - BEWARE THIS!!

• /etc/shadow is confidential to the root user, and keeps

critical authentication data such as the encrypted

passwords

Non-legitimate access to code: what

we looked at so far

➢Miss-speculation (for branches or traps)

➢Hacked kernel structures (sys-call interface,

VFS operations …)

➢Hacked hardware operation mode

• The same as before, plus …

• Explicit value corrections on branches (see the

syscall dispatcher) … plus

• ….. full avoidance of kernel modules insertions

(which could otherwise subvert all the used

countermeasures)!!

The countermeasures (so far)

The big questions here is: who does the

job of mounting a kernel module??

A human or a piece of code??

• If no thread is active, then no module load

can ever take place

• If there is at least one thread active in the

system, then the answer is clearly: a piece of

code that can be run along that thread

• So, what if we make non-legitimate usage of

a piece of code along an active thread??

…. the answer is easy

• It is a mean for leading a thread to make non-

legitimate usage of memory locations,

including, blocks of code

• These blocks of code can already be present

into the address space accessible by the thread

• Or we can inject them from an external source

• Or we can compose them by fractions we take

somewhere

Coming to buffer overflow

• A buffer overflow leads the content of some

memory location to be overwritten by another

value

• The newly installed value is however non-

compatible with the actions that a thread should

perform based on its control flow logic

• Minimal damage: e.g. some segfault

• Maximal damage: the thread grubs access to

any resource (coda/data in the system)

The technical point

• The location targeted by the memory overwrite

operation is located in the current stack area

• As the bare minimal, this is the location that

contains the return address of the currently

executed machine routine

• So, if the machine routine shuts down its stack

frame and then returns, control can reach any

point in the address space

Lets’ begin from the beginning

A scheme

when a call to a procedure is executed the following steps

take place:

1. Parameters might be copied into the stack

2. The PC return value is then logged into the stack

3. Stack room is reserved for local variables

void do_work(int x){

char v[SIZE];

int y;

…….

}
pc

y

v

stack

growth

• The v buffer could be used with no explicit control on its

boundaries, this may happen when using classical standard

functions like scanf/gets

• This may also occur because of a bug on pointers

handling

• This limitation can be exploited in order to impose a

variation of the control flow by overwriting PC

• This is also called stack exploit

• Control can be returned either to the original code or to a

new injected one

• If the target code is injected, we say that the attack is based

on external job – stack exploit with payload

E baseline example of buffer overflow

PC

void f(){

char v[128];

……

scanf(“%s”,v);

……

}

Stack area

stack pointer

as seen by f()

area for

the array v[]

Strings longer than

128 will overflow

the buffer v[]

Risk of destroying

PC value

Examples of deprecated functions

scanf()

gets()

scanf_s ()

Libraries typically make

available variants where

parameters allow full

control in the boundaries of

memory buffers

Important notice

• Buffer overflows may also be linked to

simple software bugs

• We may have bad usage of pointers, so that

even if we use non-deprecated functions, we

may still pass some wrong pointer leading to

overwrite some memory location in a

software unsafe manner

Another example scheme

pc

y

v

TCP stream

Sever

side
Client

Side (attacker)

xor %eax, %eax

push %eax

…..

…….

movb $0xb, %al

int $0x80

pc //0x…

pc //0x…

pc //0x…

On improving the attack success probability

nop

nop

nop

…….

nop

nop

nop

xor %eax, %eax

push %eax

…..

…….

movb $0xb, %al

int $0x80

pc //0x…

pc //0x…

pc //0x…

this widens the likelihood of

actually grubbing control

and can also reduce the number

of tries (namely PC values to

be tried)

Buffer overflow protection methods:

the canary tag

• Canary random-tags as cross checks into the stack before

exploiting the return point upon the ret instruction

• This is the (nowadays default) –z stackprotector option

in gcc

Executable vs non-executable

address space portions

• x86-64 processors provide page/region protection against

instruction-fetches

• This is the XD flag within the entries of the page tables

• Such a support was not present in 32-bit versions of x86

machines

• To enable instruction-fetches from the stack on x86-64

you can use the “-z execstack” option of the gcc

compiler

Are we finally safe??

• We cannot install code wherever we want, since flags

like XD will not allow us to run whatever we would

like from stack or data OS pages

• However, as we saw, running an exec for activating a

new program is a matter of very few machine

instructions

• These instructions cold be already present into the

executable the thread is running so ….

• Why not doing a patch work and using them all

together even if they are scattered into the address

space??

ROP (Return Oriented Programming)

• Rather than using a single poisoned return address

we use a set

• Each element in the set returns control to a code

portion that will then return control to the

subsequent element in the set

• It looks like we activated N calls to arbitrary pieces

of code that in the end return control to each other

• These N pieces of code are typically named gadgets

(a term we already saw while discussing of Spectre)

A ROP scheme

retq

Code area

Stack area Poisoned return

addresses (e.g.

via buffer

overflow) – called

ROP chain

Countermeasures (so far)

• Run any function in a shadow stack area – requires

compile time intervention – generates overhead

• Use the call/return hardware branch predictor to

detect mismatches in between system calls

✓ Does not cope with asynchronous control flow

change

✓ Requires serious patching of the system calls

(via wrappers) to analyze the predictor state

(via performance counters)

Heap overflow

• It is an alternative way of attacking the memory

layout of a running program (still because of an

overflow)

• The target can be a function pointer, which can be

redirected to already existing code or freshly

injected one

overflow

Pointer redirection

Original target

Heap buffer

Additional countermeasures

• Memory sanitize (-fsanitize=memory gcc flag)

• Based on memory allocators (in data/heap or stack)

providing shadow memory

✓ Each buffer has surrounding areas

✓ Each memory access is tracked via

instrumentation

✓ Each (surrounding) area has a shadow tag

telling if access is legitimate

• Unfeasible for real operations – useful for off line

analysis and training

• The buffer overflow attack can cause damages

related to the level of privilege of the exploited

application

• If the exploited application runs with SETUID-root

then the attacker can even be able to get full control

of the system, e.g. by manipulating the SETUID bit

of the shell program

• …. actually the system root user is indirectly doing

something non legitimate!!

The actual damage by buffer overflows

User IDs in Unix (e.g. Linux)

• The username is only a placeholder

• What discriminates which user is running a

program is the UID

• The same is for GID

• Any process is at any time instant associated

with three different UIDs/GIDs:

✓ Real – this tells who you are

✓ Effective – this tells what you can actually do

✓ Saved – this tells who you can become again

UID/GID management system calls

• setuid()/seteuid() – these are open to EUID equal to 0

(root)

• getuid()/geteuid() – these are queries available for all

users

• similar services exist for managing GID

• setuid is “non reversible” in the value of the saved UID – it

overwrites all the three used IDs

• seteuid is reversible and does not prevent the restore of a

saved UID

• … an UID-root user can temporarily become different EUID

user and then resume UID-root identity

• UID and EUID values are not forced to correspond to those

registered in the /etc/passwd file

An example

UID EUID saved-UID

x 0 0

x y 0

x x 0

x 0 0

seteuid(y)

setuid(x)

setuid(0)

Line not flushed to x

since EUID is not

root

setuid changes all the three if the current euid is root (0)

Non-privileged threads can

only set to UID or saved-UID

Operations by su/sudo commands

• Both these commands are setuid-root

• They enable starting with the EUID-root

identity

• Then subject to correct input passwd by the

user, they move the real UID to root or the

target user (in case of su)

• After moving the UID to root, sudo execs the

target command

Coming back to non-legitimate

code usage

• How to prevent that non-legitimate usage

occurs along threads running on behalf of

the root-user??

• This is a matter of making the operational

root of a system stand as something like a

regular user

• So who should really administrate security

in our software system?

Secure (not only security enhanced)

operating systems

• A secure operating system is different from a

conventional one because of the different granularity

according to which we can specify resource access rules

• This way, an attacker (even an actual user of the system)

has lower possibility to make damages (e.g. in term of

data access/manipulation) with respect to a conventional

system

• SELinux (by the NSA) is an example of secure

operating systems in the Linux world

• Secure operating systems rely (not only) on the notion

of protection domain

Protection domain (i)

DEIFNITION: a protection domain is a set of tuples

<resource, access-mode>

• If some resource is not recorded in any tuple within the

domain associated with users or programs (or both)

then it cannot be accessed at all by that user/program

• Otherwise access is granted according to the access-

mode specification

• The philosophy that stands beside operating systems

relying on protection domains is the one of always

granting the minimum privilege level

• Sometimes the protection domain is associated with

individual processes (rather than users/programs)

• Therefore it can even be changed along time (generally by

reducing the actual privileges)

• Hence different instances of the same program may have

different protection domains associated with them

• So privilege reduction for a given process does not

compromise correct functioning of other process instances

Protection domain (ii)

Advantages from protection domains

•Let’s suppose an attacker grubs access to the

system, e.g. via a bug that subverts authentication

•His potential for damage is bounded by the actual

protection domain of the process that has been

exploited in the attack

•As an example, if the attacker exploits the web

server, the damages are bound by the protection

domain of this server

Linux capabilities

• They allow the introduction of a third type of

possibility to operate, which is between root and

non-root

• Hence, if some thread needs to do something not

allowed to non-root, in not necessarily need to be

a root thread

• Capabilities are also seen as an approach to build

protection domains (a thread has grants to do

something but not everything)

A representation

Root thread

(ID = 0)

All kernel

level security

checks are

bypassed

Non-root

thread

(ID != 0)

All kernel

level security

checks are

executed

Non-root

thread with

capability

(ID != 0)

Some kernel

level security

checks are

bypassed

Capabilities masks

• a 32/64 bit mask is used to determine whether a

thread has some capability

• several bit-masks are used to record

– Permitted capabilities (what we can do)

– Effective capabilities (the ones that we have now)

– Inheritable capabilities (the once we leave to someone in

exec)

– Bounding capabilities (limit for inherit/permitted sets)

– Ambient capabilities (what we allow to do with non-SUID

programs, in any case limited by inheritable&permitted

capabilities)

Exploitation

• Running as root allows all capabilities

• The SECBIT_KEEP_CAPS flag determines

whether they are still kept when using
setuid()

• This flag can be configured based on the
prctl() system call

• After we change UID, we can release some

capability

Linux system calls for thread capabilities

#include <sys/capability.h>

int capget(cap_user_header_t hdrp,
cap_user_data_t datap);

int capset(cap_user_header_t hdrp,
const cap_user_data_t datap);

typedef struct __user_cap_header_struct {
__u32 version;
int pid;

} *cap_user_header_t;

typedef struct __user_cap_data_struct {
__u32 effective;
__u32 permitted;
__u32 inheritable;

} *cap_user_data_t;

File capabilities

#include <sys/capability.h>

cap_t cap_get_file(const char *path_p);

int cap_set_file(const char *path_p,
cap_t cap_p);

cap_t cap_get_fd(int fd);

int cap_set_fd(int fd, cap_t caps);

Usable if the file system is mounted without the NOSUID option

Also. the user needs to have the CAP_SETFCAP capability

available to set capabilities for files

Coming to the core: security policies

DEFINITION: a security policy is termed discretionary

if ordinary users (including the administrator/root user)

are involved in the definition of security attributed (e.g.

protection domains)

DEFINITION: a security policy is termed mandatory if

its logics and the actual definition of security attributes is

demanded to a security policies’ administrator (who is

not an actual user/root of the system)

Security policies vs secure OS

• A secure operating system does not only require to

implement protection domains, rather it also needs

mandatory security policies

• In fact, if discretionary policies were used, then

domains would have no actual usefulness

• Conventional operating systems do not offer mandatory

policies (even for ACLs), rather discretionary ones

(such as the possibility to redefine file system access

rules by the users, including root)

Secure operating systems administration

• In a conventional operating system the root user is

allowed to gain/grant access to any resource

• If an attacker grubs root permission then it can do

whatever he would like

• In a secure operating system even root undergoes

protection domain rules, as specified by the

security administration, and as setup at system

startup

Reference Monitors

• They aim at enforcing protection domains for any user,

even

• Generally speaking they operate at kernel level, within

secure operating systems (but we may have reference

monitors for other layers such as databases)

• Typically, these modules supervise the execution of

individual system calls allowing the job to be carried

out only if parameters and system state match what is

specified within an Access Control Database (which is

based on protection domains)

• Close relation with the mandatory model

A classical Reference Monitor

architecture

Passing this check is not

a matter of being root

An example usage

• Some SETUID application can be subject to a buffer overflow

attack

• If the application is not actually run by root, the dangerous

system calls can be forbidden (such as the one that opens

SETUID to programs)

• They can be done in real-time by the reference monitor on the

basis of its ACL

• Particularly, the treatment of user ID and effective user ID in

the context of buffer overflow can be based on detecting their

values starting from current

A second example

• We can discriminate whether specific services can be executed by

root or SETUID processes depending on whether these are

daemons or not (interactive ones)

• This can be still done in real-time by the reference monitor via the

reliance on the ACL

• Particularly, daemons targeted by buffer overflows can be treated

by discovering starting from current whether they have a

valid terminal

