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IT security: the very baseline

1. Systems/applications must be usable by legitimate

users only

2. Access is granted on the basis of an authorization, 

and according to the rules established by some 

administrator (beware this term)

➢ As for point 1, an unusable system is a useless 

one

➢ However, in several scenarios the attacker might 

only tailor system non-usability by legitimate 

users (so called DOS – Denial of Service-

attacks)



DOS basics

• Based on flooding of

1. Connections (TCP layer) and (probably) threads

2. Packets (UDP and/or application layers)

3. Requests (on application specific protocols)

• In some sense these attacks are trivial since they could 

be typically handled by trading-off operation 

acceptance (habilitation) vs current resource usage

• However the big issue is how to determine what to 

accept (and what to reject) in the flood  

• Rejecting all at a given point in time would lead to 

deny the execution of legitimate operations  



Overall 
• Copying with DOS is not exactly a matter of how to 

build system software

• It is essentially a matter of how to identify “good” 

things in the flood (we need methods!)

• Clearly, the identification needs to be done on the fly 

in an efficient manner

• So we need anyhow mechanisms for making the 

software performing the identification task scalable

1. Multi-core exploitation

2. NUMA awareness

3. Non-blocking parallel algorithms …    



Let’s slide to the “legitimate” term 

• This term includes a lot of IT concepts, 

mostly related to the access to resources:

➢Data

➢ Code or portions of it (either user or 

kernel)

The very bad part since it can imply the data 

illegitimate usage scenarios



Security approaches

• They are typically 3

1. Cryptography (e.g. for data)

2. Authentication/habilitation (e.g. for code or 

portions of it, including the kernel code)

3. Security enhanced operating systems (as a 

general reference model for system software 

configuration and resource usage)

• Each approach targets specific security aspects

• They can/should be combined together to improve 

the overall security level of an IT system



➢Side channel

➢Branch miss-prediction (Spectre variants)

➢Speculation along “trap” affected execution 

paths (Meltdown)

➢Speculation on TAG-to-value (LT1 terminal)

➢Hacked kernel structures (sys-call interface, 

VFS operations …)

Non-legitimate access to data: what 

we looked at so far



• Randomization (of the address space and of data-

structure padding) – compile/runtime

• Signature inspection (avoidance of dangerous 

instructions for data/code integrity) – loadtime

• Cyphering

➢ For streams

➢ For device blocks

➢ For memory pages/locations

➢ For generic data (e.g. passwords)

The countermeasures (so far) 

This should come from 

other courses



Password cyphering

• Done via the crypt() standard function

• Works with 

➢ Salt

➢ Different one-way encryption methods

ID | Method

1   | MD5 

2a | Blowfish (on some Linux distributions) 

5   | SHA-256 (since glibc 2.7) 

6   | SHA-512 (since glibc 2.7)



Encryption library function

#include <unistd.h>

char *crypt(const char *key, const char 

*settings)

The original passwd

Encryption algorithm (the method) + salt

Encryption method+salt+encrypted passwd



Lets’ look at UNIX (Linux) systems

• The passwords’ database is kept within 2 distinct files
1./etc/passwd

2./etc/shadow

• /etc/passwd is accessible to every user and is used for 

running base commands (such as id)  - BEWARE THIS!!

• /etc/shadow is confidential to the root user, and keeps 

critical authentication data such as the encrypted 

passwords



Non-legitimate access to code: what 

we looked at so far

➢Miss-speculation (for branches or traps)

➢Hacked kernel structures (sys-call interface, 

VFS operations …)

➢Hacked hardware operation mode



• The same as before, plus …

• Explicit value corrections on branches (see the 

syscall dispatcher) … plus

• ….. full avoidance of kernel modules insertions 

(which could otherwise subvert all the used 

countermeasures)!!

The countermeasures (so far) 

The big questions here is: who does the 

job of mounting a kernel module?? 

A human or a piece of code??



• If no thread is active, then no module load 

can ever take place

• If there is at least one thread active in the 

system, then the answer is clearly: a piece of 

code that can be run along that thread

• So, what if we make non-legitimate usage of 

a piece of code along an active thread??

…. the answer is easy



• It is a mean for leading a thread to make non-

legitimate usage of memory locations, 

including, blocks of code

• These blocks of code can already be present 

into the address space accessible by the thread

• Or we can inject them from an external source 

• Or we can compose them by fractions we take 

somewhere

Coming to buffer overflow



• A buffer overflow leads the content of some 

memory location to be overwritten by another 

value

• The newly installed value is however non-

compatible with the actions that a thread should 

perform based on its control flow logic 

• Minimal damage: e.g. some segfault

• Maximal damage: the thread grubs access to 

any resource (coda/data in the system)

The technical point



• The location targeted by the memory overwrite 

operation is located in the current stack area

• As the bare minimal, this is the location that 

contains the return address of the currently 

executed machine routine

• So, if the machine routine shuts down its stack 

frame and then returns, control can reach any 

point in the address space 

Lets’ begin from the beginning



A scheme

when a call to a procedure is executed the following steps 

take place:

1. Parameters might be copied into the stack

2. The PC return value is then logged into the stack

3. Stack room is reserved for local variables 

void do_work(int x){

char v[SIZE];

int y;

…….

} 
pc

y

v

stack

growth



• The v buffer could be used with no explicit control on its 

boundaries, this may happen when using classical standard 

functions like scanf/gets

• This may also occur because of a bug on pointers 

handling

• This limitation can be exploited in order to impose a 

variation of the control flow by overwriting PC 

• This is also called stack exploit

• Control can be returned either to the original code or to a 

new injected one 

• If the target code is injected, we say that the attack is based 

on external job – stack exploit with payload



E baseline example of buffer overflow

PC

void f(){

char v[128];

……

scanf(“%s”,v);

……

}

Stack area

stack pointer 

as seen by f()

area for 

the array v[]

Strings longer than

128 will overflow

the buffer v[]

Risk of destroying 

PC value



Examples of deprecated functions

scanf()

gets()

scanf_s ()

Libraries typically make 

available variants where 

parameters allow full 

control in the boundaries of 

memory buffers



Important notice

• Buffer overflows may also be linked to 

simple software bugs

• We may have bad usage of pointers, so that 

even if we use non-deprecated functions, we 

may still pass some wrong pointer leading to 

overwrite some memory location in a 

software unsafe manner   



Another example scheme

pc

y

v

TCP stream

Sever

side
Client

Side (attacker)

xor %eax, %eax

push %eax

…..

…….

movb $0xb, %al

int $0x80

pc //0x…

pc //0x…

pc //0x…



On improving the attack success probability

nop

nop

nop

…….

nop

nop

nop

xor %eax, %eax

push %eax

…..

…….

movb $0xb, %al

int $0x80

pc //0x…

pc //0x…

pc //0x…

this widens the likelihood of

actually grubbing control

and can also reduce the number 

of tries (namely PC values to 

be tried)



Buffer overflow protection methods: 

the canary tag

• Canary random-tags as cross checks into the stack before 

exploiting the return point upon the ret instruction

• This is the (nowadays default) –z stackprotector option 

in gcc



Executable vs non-executable 

address space portions

• x86-64 processors provide page/region protection against 

instruction-fetches  

• This is the XD flag within the entries of the page tables

• Such a support was not present in 32-bit versions of x86 

machines

• To enable instruction-fetches from the stack on x86-64 

you can use the “-z execstack” option of the gcc

compiler



Are we finally safe??

• We cannot install code wherever we want, since flags 

like XD will not allow us to run whatever we would 

like from stack or data OS pages

• However, as we saw, running an exec for activating a 

new program is a matter of very few machine 

instructions

• These instructions cold be already present into the 

executable the thread is running so ….

• Why not doing a patch work and using them all 

together even if they are scattered into the address 

space??



ROP (Return Oriented Programming)

• Rather than using a single poisoned return address 

we use a set

• Each element in the set returns control to a code 

portion that will then return control to the 

subsequent element in the set

• It looks like we activated N calls to arbitrary pieces 

of code that in the end return control to each other

• These N pieces of code are typically named gadgets

(a term we already saw while discussing of Spectre)



A ROP scheme

retq

Code area

Stack area Poisoned return 

addresses (e.g.

via buffer 

overflow) – called 

ROP chain



Countermeasures (so far)

• Run any function in a shadow stack area – requires 

compile time intervention – generates overhead

• Use the call/return hardware branch predictor to 

detect mismatches in between system calls

✓ Does not cope with asynchronous control flow 

change

✓ Requires serious patching of the system calls 

(via wrappers) to analyze the predictor state 

(via performance counters)



Heap overflow

• It is an alternative way of attacking the memory 

layout of a running program (still because of an 

overflow)

• The target can be a function pointer, which can be 

redirected to already existing code or freshly 

injected one

overflow

Pointer redirection

Original target

Heap buffer



Additional countermeasures

• Memory sanitize (-fsanitize=memory gcc flag)

• Based on memory allocators (in data/heap or stack) 

providing shadow memory

✓ Each buffer has surrounding areas

✓ Each memory access is tracked via 

instrumentation

✓ Each (surrounding) area has a shadow tag 

telling if access is legitimate 

• Unfeasible for real operations – useful for off line

analysis and training



• The buffer overflow attack can cause damages 

related to the level of privilege of the exploited 

application 

• If the exploited application runs with SETUID-root 

then the attacker can even be able to get full control 

of the system, e.g. by manipulating the SETUID bit 

of the shell program

• …. actually the system root user is indirectly doing 

something non legitimate!!

The actual damage by buffer overflows



User IDs in Unix (e.g. Linux)

• The username is only a placeholder 

• What discriminates which user is running a 

program is the UID

• The same is for GID 

• Any process is at any time instant associated 

with three different UIDs/GIDs:

✓ Real – this tells who you are

✓ Effective – this tells what you can actually do

✓ Saved – this tells who you can become again



UID/GID management system calls 

• setuid()/seteuid() – these are open to EUID equal to 0 

(root)

• getuid()/geteuid() – these are queries available for all 

users

• similar services exist for managing GID

• setuid is “non reversible” in the value of the saved UID – it 

overwrites all the three used IDs

• seteuid is reversible and does not prevent the restore of a 

saved UID  

• … an UID-root user can temporarily become different EUID 

user and then resume UID-root identity

• UID and EUID values are not forced to correspond to those 

registered in the /etc/passwd file



An example

UID EUID saved-UID

-------------------------------

x 0 0

x y 0

x x 0

x 0 0

seteuid(y)

setuid(x)

setuid(0)

Line not flushed to x 

since EUID is not 

root

setuid changes all the three if the current euid  is root (0)

Non-privileged threads can 

only set to UID or saved-UID



Operations by su/sudo commands

• Both these commands are setuid-root

• They enable starting with the EUID-root 

identity

• Then subject to correct input passwd by the 

user, they move the real UID to root or the 

target user (in case of su)

• After moving the UID to root, sudo execs the 

target command



Coming back to non-legitimate 

code usage

• How to prevent that non-legitimate usage 

occurs along threads running on behalf of 

the root-user??

• This is a matter of making the operational 

root of a system stand as something like a 

regular user

• So who should really administrate security 

in our software system? 



Secure (not only security enhanced) 

operating systems

• A secure operating system is different from a 

conventional one because of the different granularity 

according to which we can specify resource access rules

• This way, an attacker (even an actual user of the system) 

has lower possibility to make damages (e.g. in term of 

data access/manipulation) with respect to a conventional 

system

• SELinux (by the NSA) is an example of secure 

operating systems in the Linux world 

• Secure operating systems rely (not only) on the notion 

of protection domain



Protection domain (i)

DEIFNITION: a protection domain is a set of tuples 

<resource, access-mode>

• If some resource is not recorded in any tuple within the 

domain associated with users or programs (or both) 

then it cannot be accessed at all by that user/program

• Otherwise access is granted according to the access-

mode specification 

• The philosophy that stands beside operating systems 

relying on protection domains is the one of always 

granting the minimum privilege level



• Sometimes the protection domain is associated with 

individual processes (rather than users/programs)

• Therefore it can even be changed along time (generally by 

reducing the actual privileges)

• Hence different instances of the same program may have 

different protection domains associated with them

• So privilege reduction for a given process does not 

compromise correct functioning of other process instances

Protection domain (ii)



Advantages from protection domains

•Let’s suppose an attacker grubs access to the 

system, e.g. via a bug that subverts authentication 

•His potential for damage is bounded by the actual 

protection domain of the process that has been 

exploited in the attack 

•As an example, if the attacker exploits the web 

server, the damages are bound by the protection 

domain of this server



Linux capabilities

• They allow the introduction of a third type of 

possibility to operate, which is between root and 

non-root

• Hence, if some thread needs to do something not 

allowed to non-root, in not necessarily need to be 

a root thread

• Capabilities are also seen as an approach to build 

protection domains (a thread has grants to do 

something but not everything)



A representation

Root thread 

(ID = 0)

All kernel 

level security 

checks are 

bypassed

Non-root 

thread 

(ID != 0)

All kernel 

level security 

checks are 

executed

Non-root 

thread with 

capability

(ID != 0)

Some kernel 

level security 

checks are 

bypassed



Capabilities masks

• a 32/64 bit mask is used to determine whether a 

thread has some capability 

• several bit-masks are used to record

– Permitted capabilities (what we can do)

– Effective capabilities (the ones that we have now)

– Inheritable capabilities (the once we leave to someone in 

exec)

– Bounding capabilities (limit for inherit/permitted sets)

– Ambient capabilities (what we allow to do with non-SUID

programs, in any case limited by inheritable&permitted

capabilities)



Exploitation

• Running as root allows all capabilities

• The SECBIT_KEEP_CAPS flag determines 

whether they are still kept when using
setuid()

• This flag can be configured based on the
prctl() system call

• After we change UID, we can release some 

capability



Linux system calls for thread capabilities

#include <sys/capability.h>

int capget(cap_user_header_t hdrp,
cap_user_data_t datap);

int capset(cap_user_header_t hdrp,
const cap_user_data_t datap);

typedef struct __user_cap_header_struct {
__u32 version;
int pid;

} *cap_user_header_t;

typedef struct __user_cap_data_struct {
__u32 effective;
__u32 permitted;
__u32 inheritable;

} *cap_user_data_t;



File capabilities

#include <sys/capability.h>

cap_t cap_get_file(const char *path_p);

int cap_set_file(const char *path_p, 
cap_t cap_p);

cap_t cap_get_fd(int fd);

int cap_set_fd(int fd, cap_t caps);

Usable if the file system is mounted without the NOSUID option

Also. the user needs to have the CAP_SETFCAP capability 

available to set capabilities for files



Coming to the core: security policies

DEFINITION: a security policy is termed discretionary

if ordinary users (including the administrator/root user) 

are involved in the definition of security attributed (e.g.

protection domains)

DEFINITION: a security policy is termed mandatory if 

its logics and the actual definition of security attributes is 

demanded to a security policies’ administrator (who is 

not an actual user/root of the system)



Security policies vs secure OS

• A secure operating system does not only require to 

implement protection domains, rather it also needs 

mandatory security policies

• In fact, if discretionary policies were used, then 

domains would have no actual usefulness

• Conventional operating systems do not offer mandatory 

policies (even for ACLs), rather discretionary ones 

(such as the possibility to redefine file system access 

rules by the users, including root)



Secure operating systems administration

• In a conventional operating system the root user is 

allowed to gain/grant access to any resource 

• If an attacker grubs root permission then it can do 

whatever he would like 

• In a secure operating system even root undergoes 

protection domain rules, as specified by the 

security administration, and as setup at system 

startup 



Reference Monitors

• They aim at enforcing protection domains for any user, 

even 

• Generally speaking they operate at kernel level, within 

secure operating systems (but we may have reference 

monitors for other layers such as databases)

• Typically, these modules supervise the execution of 

individual system calls allowing the job to be carried 

out only if parameters and system state match what is 

specified within an Access Control Database (which is 

based on protection domains)

• Close relation with the mandatory model



A classical Reference Monitor 

architecture

Passing this check is not 

a matter of being root



An example usage

• Some SETUID application can be subject to a buffer overflow 

attack

• If the application is not actually run by root, the dangerous 

system calls can be forbidden (such as the one that opens 

SETUID  to programs)

• They can be done in real-time by the reference monitor on the 

basis of its ACL

• Particularly, the treatment of user ID and effective user ID in 

the context of buffer overflow can be based on detecting their 

values starting from current



A second example

• We can discriminate whether specific services can be executed by 

root or SETUID processes depending on whether these are 

daemons or not (interactive ones)

• This can be still done in real-time by the reference monitor via the 

reliance on the ACL

• Particularly, daemons targeted by buffer overflows can be treated 

by discovering starting from current whether they have a 

valid terminal 


