
Cross ring data move
1. Segmentation based protection breaks
2. Kernel level actual data move facilities
3. Enhanced hardware/software data move support

Advanced Operating Systems (and System Security)
MS degree in Computer Engineering
University of Rome Tor Vergata
Lecturer: Francesco Quaglia

User/kernel interactions so far

 We can change execution flow between user and kernel

 The effects are
 the switch of segmentation information (CS, DS ….)
 the switch of the CPL

 We can use CPU general purpose registers to

 Post register-fitting input data to the kernel

 Get register-fitting results from the kernel

 What about the need for exchanging larger data sets?

 see, e.g., Posix read()/write(), or Win-API
ReadFile()/WriteFile()

Usage of pointers

 Clearly, to exchange larger data sets between user and kernel software we use
buffers, hence pointers

 Pointers fully break the ring-based protection model

 A pointer value can be defined at user level
 The actual pointed content can be (over)written or read executing

at kernel level
 Without additional mechanisms, kernel software can be tampered

 The actual solution to this problem depends on a lot of factors
 Actual segmentation support in the hardware
 Absence or presence of additional protection mechanisms in the

hardware

The case of flexible segmentation

 This is x86 protected mode segmentation

 We can make, e.g., CS and DS point to whatever we want in the linear
address space

 Actual advantages and problems:

 Segment full separation in the address space will allow
protecting illegal read/writes from kernel segments

 We need a mechanism for making this protection occur
seamless to the software development process

A scheme

user
CS/DS

kernel
CS/DS

read(x,y,z)

y is an offset in DS

If we simply use the offset y for
putting data into the destination
buffer (e.g. “mov source,(y)”)
then we will point to kernel level DS
upon kernel access

limit

If we use pure compiler-selected segmentation
then the ring model is broken

A solution

 Pieces of kernel code for moving data cross user/kernel must be
“handcrafted” (since choices involving segments must be carefully handled
– not solely based on compilers)

 We can use a programmable segment selector (e.g. FS) to do this
 map FS to the user DS
 move data using the pointer ‘y’ applying the displacement to FS

 These operations are generally called ‘segmentation fixup’

 Clearly they have a cost in terms of processor state setup for carrying out
the memory copy

Solution details

user
CS/DS

kernel
CS/DS

read(x,y,z)
y is an offset in DS

1) Trap to kernel
2) Materialize data to be delivered

into the buffer cache (or other
kernel buffers)

3) Set FS base to user DS base
4) Execute a memory copy module

based on the
“mov source, FS:(y)”
pattern

5) Restore FS to the original content

limit

The case of “constrained” segmentation

 This is x86 long mode segmentation

 This is also x86 protected mode with classical mapping of user/kernel CS,
DS, SS, ES to base 0x0

 Making FS to point to the base of “user DS” does not work (it fails)

 The offset ‘y’ will still apply to kernel DS

 Hence the “mov source, FS:(y)” construct may lead to write kernel
level memory pages, depending on the value of ‘y’

A representation of the failure

user
CS/DS

kernel
CS/DS

read(x,y,z)
y is an offset in DS

1) Trap to kernel
2) Materialize data into the buffer

cache (or other kernel buffers)
3) Set FS base to user DS base
4) Execute a memory copy module

based on the
“mov source, FS:(y)”
pattern

5) Restore FS to the original content

limit

Actual solutions with constrained segmentation

 Where to point for a user/kernel data exchange operation is not only defined
by the processor state (and its relation to parameters passed to the kernel)

 It is determined by the kernel software

 The determination is actuated per each individual address space the kernel is
managing

 Hence each thread has its limitations on where pointers can be redirected for
user/kernel data move

 When an operation is requested, the data move fixup inspects the per-thread
limitations to determine if the operation is “legitim”

Per-thread memory limits in Linux

 Each thread management metadata keep a field called addr_limit

 It is embedded into a struct (in a field called seg) which can be read via the
kernel API get_fs()

 It can also be updated to a generic value ‘x’ via the kernel API set_fs(x)

 All the kernel services that implement user/kernel data move make a check on
addr_limit

 If the memory area (based on passed pointer and size of the destination/source
buffer) is not within addr_limit the service does not (or partially)
perform(s) memory copy

Example of addr_limit read

unsigned long limit;

......

limit = (unsigned long)get_fs().seg;

 printk("limit is %p\n", limit);

Currently the limit in Linux is set to 0x00007ffffffff000 which is
the lower half of the x86 long mode canonical addressing form

addr_limit update vs security

 Updates of addr_limit are typically infrequent (if not executed at all)
operations

 At the same time enabling the update of addr_limit allows a thread to
execute highly critical tasks (read/write) related to the access to kernel level
zones

 The current plan in Linux is the one of eliminating this value from updatable
thread management data

 The limit will be then identified on the basis of a non-modifiable compile time
defined value

User/kernel level data move API

unsigned long copy_from_user(void *to, const void *from,
unsigned long n)
Copies n bytes from the user address(from) to the kernel address space(to).

unsigned long copy_to_user(void *to, const void *from, unsigned
long n)
Copies n bytes from the kernel address(from) to the user address space(to).

void get_user(void *to, void *from)
Copies an integer value from userspace (from) to kernel space (to).

void put_user(void *from, void *to)
Copies an integer value from kernel space (from) to userspace (to).

User/kernel level data move API

long strncpy_from_user(char *dst, const char *src, long count)
Copies a null terminated string of at most count bytes long from userspace (src) to kernel
space (dst)

int access_ok(int type, unsigned long addr, unsigned long size)
Returns nonzero if the userspace block of memory is valid and zero otherwise

These data move operations may “memory fail” but limited to
already mapped regions – the results returned indicates the residual
bytes of the data move operation, not the amount of data actually
moved

A scheme

These functions return the residuals
(bytes not managed)

Most of them ground on
access_ok()

The actual copy operation may lead the thread to sleep
 (we will be back to this issue when talking of contexts)

Overall view of the API actions

 Segment fixup (if segmentation takes a real role in the composition of the
addresses)

 Check on address ranges related to user level

The actual depth of check may depend on the specific implementation
(namely on the kernel version)

E.g., the process memory map might be checked or not

 Note: associating physical to virtual memory is demanded to the page-fault
handler

Performance impact due to (possible) non-atomicity while finalizing the
handling

Service redundancy approaches

• Check and fixup are required only in case we need to link activities across
different privilege levels within the ring model (as when calling system calls)

• Particularly, this occurs when the execution semantic crosses the boundaries
of individual segments

• Bypassing check e fixup when no crossing of segment boundaries occurs
takes place via “service redundancy” (for performance reasons)

• The kernel layer entails an internal API for executing activities that are
typically triggered when running in user mode

Classical examples

• kernel_read() is a redundancy for read()
• kernel_write() is a redundancy for write()

read() – syscall

sys_read()

read() – file operation
real data movement

call from the kernel

kernel_read()

This requires
fixup with
possible update of
addr_limit

memcpy with tampered pointers

 Clearly, the usage of fixup based APIs for data movement does not break
the ring model under normal operating conditions

 What if a memcpy() is called by the kernel, with arbitrary pointers after
a subversion (speculative or not) or in presence of bugs?

 In more dated processor/kernel versions we could do nothing

 In more modern processors/kernels we have ad additional security
oriented hardware support, which leads to constrained supervisor
mode!!

The actual hardware support on x86

 SMAP (Supervisor Mode Access Prevention)

 It blocks data access to user pages when running at CPL 0

 SMEP (Supervisor Mode Execution Prevention)

 It blocks instruction fetches from user pages when running at
CPL 0

 Two bits in CR4 (21 and 20) activate them

 They can be temporary disabled (e.g. setting the AC bit in EFLAGS for
the case of SMAP)

copy_to_user timeline (as a reference example)

 Check within per-thread limit

 Determine the legal amount of data to be copied

 Disable SMAP (via the AC flag through the stac x86 instruction)

 Make the copy (may wait but not SEGFAULT)

 Enable SMAP again (via the AC flag through the clac x86 instruction

access_OK limitations

 The determination of the legal amount of data to be copied requires
inspecting the memory map (via *mm) of the running thread

 Various additional machine instructions used just to move data between
kernel and user

 Interactions with suboptimal usage of I/O services (e.g. byte
rather than segment reads/writes)

 mm inspection may have linear (non-constant) cost

Newer approaches - kernel masked SEGFAULTS

 Access OK control only checks the addr_limit

 If addr_limit is OK then the memory copy is directly executed

 If and only if some user page not mapped (or not compliant with the
protection requested by the memory copy) is touched we have a
SEGFAULT from kernel software (RIP points to a kernel page)

 The philosophy is the one of speeding up the normal scenario

Kernel masked SEGFAULTS details

copy_to_user A A’

Segfaulting RIP

put_user B B’

Known at kernel
compile/load time

Alternative RIP

……
The page fault
handler check this table
and passes control to the
alternative block of code

The alternative code block
finalizes the data
move simply returning
the residual bytes number

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

