
Kernel level memory management
1. The very base on boot vs memory management
2. Memory ‘Nodes’ (UMA vs NUMA)
3. x86 paging support
4. Memory allocators
5. Boot and steady state behavior of the memory management system in the Linux kernel

Advanced Operating Systems (and System Security)
MS degree in Computer Engineering
University of Rome Tor Vergata
Lecturer: Francesco Quaglia

Memory management vs system startup
• System startup steps lead to change the image of data/code that we have in

memory

• These changes need to happen just based on various memory handling
policies/mechanisms, operating at:

 Architecture setup

 Kernel initialization (including kernel level memory management
initialization)

 Kernel common operations (which make large usage of kernel level
memory management services that have been setup along the boot phase)

An initially loaded kernel memory-image is not the same as the one that
common applications ``see’’ when they are activated

Basic aspects to consider

• Where do we load the actual kernel image in physical memory?

– Randomization?

• How do we make this “physical memory image” reachable using virtual addresses?

– Randomization?

• How do we deal with kernel level information (e.g. routines) that we only need at
kernel startup?

– They just become useless at some point in time

• What are the actual kernel level mechanisms for managing memory at steady

state (after boot)?

Loading the kernel to physical memory

• The target physical memory region is determined by the boot-loader

• Randomization can be put in place, meaning that a given initial zone of RAM
memory is left as an unused hole

– How do we make the actual kernel reach its information?

– Recall that kernel software typically executes using virtual addresses

kernel
kernel

RAM address 0x0 At startup we need to
use/organize a
correct page table to
achieve the target
physical memory
zone

Making the kernel reach itself via logical addresses

• The target logical memory region is determined by the boot-loader

• Randomization can be put in place, meaning that a given initial zone of logical
memory is left as an unused hole

– How do we make the actual kernel reach its information?

kernel
kernel

Reference kernel start
virtual address 0xff...

At startup we need to
use/organize a
correct page table to
achieve the target
virtual memory zone

One (typical) way to proceed

• The kernel image loaded in memory at physical address P-ADDR has a page table in its
image

• This pagetable is somehow updated in order to map to P-ADDR the virtual address V-
ADDR selected for the kernel startup image

• After this is done, the kernel can start using that page table for its operations

• NOTE: we need to know the position (the offset) of the kernel page table into the kernel
image, this imposes that kernel compiling has some limits, e.g. in terms of possibility to
expand data structures

Kernel page table
Physical address = P_ADDR + offset

V-ADDR Map to P-ADDR

Page table identities

• The kernel page table to be generated/finalized at kernel startup is typically know as
identity page table

• The boot loader code exploits another page table to reach memory and the booting kernel
image, which is called trampoline page table

Kernel page table

…

RAM

… Address 0x0
Trampoline page table

A baseline example case – non-randomized addresses

• The physical address of the kernel page table (the identity one) is known at compile time

• The logical address of the kernel page table is know at compile time (as well as any other
kernel portion)

• The startup code for paging (virtual to physical memory translation) can simply set the page
table pointer register of the CPU with the compile time known virtual counterpart of that
physical address

– That page table already redirects to the compile time known physical memory that hosts the kernel image

• Then paging can be started up on the processor

• With this solution the startup code for paging is extremely simple and can even work
without virtual addresses to load the kernel in memory and to setup the state of the CPU
right before kernel specific startup

An example head.S code snippet -
triggering Linux paging (IA32 case)

/* * Enable paging */ 3:
movl $swapper_pg_dir-__PAGE_OFFSET,%eax
movl %eax,%cr3 /* set the page table pointer.. */
movl %cr0,%eax
orl $0x80000000,%eax
movl %eax,%cr0 /* ..and set paging (PG) bit */

An example head_64.S code snippet -
triggering Linux paging (x86-64 case /kernel5)

/* Form the CR3 value being sure to include the CR3 modifier */
addq $(early_top_pgt - __START_KERNEL_map), %rax

………. /* we are accounting for other stuff */

movq %rax, %cr3

https://elixir.bootlin.com/linux/v5.9.1/C/ident/early_top_pgt
https://elixir.bootlin.com/linux/v5.9.1/C/ident/__START_KERNEL_map
https://elixir.bootlin.com/linux/v5.9.1/C/ident/rax
https://elixir.bootlin.com/linux/v5.9.1/C/ident/movq
https://elixir.bootlin.com/linux/v5.9.1/C/ident/rax
https://elixir.bootlin.com/linux/v5.9.1/C/ident/cr3

Compile time symbols for accessing the page table

• Kernel 2

– swapper_pg_dir

• Kernel 3

– init_level4_pgt

• Kernel 4/5

– init_top_pgt (the early_top_pgt one is not the actual kernel page
table)

Looking at what we actually loaded in RAM when
loading the initial kernel image

Initialization functions/data
Steady state functions/data

Not yet final data

Whole set of reachable
memory pages of the
kernel image

Reachable but still
free memory

RAM

Dealing with initialization stuff

• initialization stuff becomes completely useless once the kernel has reached steady state
behavior

• For an operating system kernel the design always targets eliminating any no longer useful
stuff from memory

– For optimizing resource management (like for, e.g., special purpose kernel configuration)

– For better coping with the growth of startup complexity

– For better coping with security aspects (e.g. for eliminating potential gadgets)

• The elimination requires both compile-time and run-time support

– We need to know what (and where) is stuff only useful at early stage based on compilation
choices

– We need to recover the usage of the corresponding memory pages at run-time

Looking at Linux - hints on the signature of the
start_kernel function (as well as others)

…… __init start_kernel(void)

This only lives in memory during kernel boot (or startup)

Recall that the kernel image is not subject to swap out
(conventional kernels are always resident in RAM)

Management of __init functions

• The kernel compile/linking stage locates these functions on specific logical
pages (recall what we told about the fixed positioning of specific kernel level
stuff in the kernel layout!!)

• These logical pages are identified within a “bootmem” subsystem that is used
for managing memory when the kernel is not yet at steady state of its memory
management operations

• Essentially the bootmem subsystem keeps a bitmask with one bit indicating
whether a given page has been used (at compile time) for specific stuff

… still on bootmem

• The bootmem subsystem also allows for memory allocation upon the very initial
phase of the kernel startup

• In fact, the data structures (e.g. the bitmaps) it keeps not only indicate if some
page has been used for specific data/code

• They also indicate if some page which is actually reachable at the very early
phase of boot is not used for any stuff

• These are clearly “free buffers” exploitable upon the very early phase of boot

• Bootmem can be exploited through a specific API

An exemplified picture of bootmem

Data

Code

.

.

.

.

Link in a single image

Bootmem
bitmap

0x80000000

0xc0800000

free

free

free

Compact status of
busy/free buffers (pages)

Logical pages immediately reachable at the
very early phase of kernel startup

The meaning of ``reachable page’’

• The kernel software can access the actual content of the page (in RAM) by
simply expressing an address falling into that page

• The point is that the expressed address is typically a virtual one (since kernel
code is commonly written using ``pointer’’ abstractions)

• So the only way we have to make a virtual address correspond to a given page
frame in RAM is to rely on at least a page table that makes the translation (even
at the very early stage of kernel boot)

• In early builds of Linux, the initial kernel image had a page table, with a
minimum number of pages mapped to RAM, those handled by the bootmem
subsystem

How is RAM organized on modern (large scale/parallel)
machines?

• In modern chipsets, the CPU-core count continuously increases

• However, it is increasingly difficult to build architectures with a flat-latency
memory access (historically referred to as UMA)

• Current machines are typically NUMA

• Each CPU-core has some RAM banks that are close and other that are far

• Generally speaking, each memory bank is associated with a so called NUMA-node

• Modern operating systems are designed to handle NUMA machines (hence UMA
as a special case)

Looking at the Linux NUMA setup via Operating
System facilities

• A very simple way is the numactl command
• It allows to discover

 How many NUMA nodes are present
 What are the nodes close/far to/from any CPU-core
 What is the actual distance of the nodes (from the CPU-cores)

Let’s see a few ‘live’ examples …….

Bootmem vs Memblock

• In more recent versions of OS kernels the bootmem architecture has been
enriched

• It allows for keeping track of free/busy frames with a per-NUMA node
granularity

• The newer architecture is called “memblock” in Linux

• An additional logic is inserted for setting up the memblock system to
indicate how many NUMA nodes we have

• The API for managing memory in memblock has been slightly changed with
respect to traditional bootmem

• However the essence of the operations we can do is the same

Bootmem vs Memblock allocation API examples

• in bootmem al allocation deals with “low pages”

 alloc_bootmem_lowpages() - this returns the virtual address of the
allocated memory

• in memblock the classical “low pages” allocators have been encapsulated into a
slightly different API functions

 memblock_phys_alloc*() - these functions return the physical address of
the allocated memory

 memblock_alloc*() - these functions return the virtual address of the

allocated memory

Actual kernel data structures for managing memory

• Kernel (identity) Page table
This is a kind of ‘ancestral’ page table (all the others are somehow derived

from this one)
It keeps the memory mapping for kernel level code and data (thread stack

included)

• Core map
The map that keeps status information for any frame (page) of physical

memory, and for any NUMA node

• Free list of physical memory frames, for any NUMA node

None of them is already finalized when we startup the kernel

A scheme

Free list Free list

Status (free/busy)
of memory frames

mov (%rax), %rbx

Frames’
zone x

Frames’
zone y

Kernel page
table

Target frame

Core
map

Objectives of the kernel (identity) page table setup

• These are basically two:

 Allowing the kernel software to use virtual addresses while executing (either at startup
or at steady state)

 Allowing the kernel software (and consequently the application software) to reach (in
read and/or write mode) the maximum admissible (for the specific machine) or
available RAM storage

• The finalized shape of the kernel page table is therefore typically not setup into the original
image of the kernel loaded in memory

– given that the available RAM to drive can be parameterized

– given that we may have randomization

A classical scheme for Linux/x86 protected mode (i386)

Range of linear
addresses
reachable when
switching to
protected mode
plus paging

Range of linear
addresses
reachable when
running at steady
state

Increase
of the size
of reachable
RAM locations
(e.g. according
to boot
parameters)

Passage from the compile-time
defined kernel-page table
to the boot time reshuffled one

Directly mapped memory pages
• They are kernel level pages whose mapping onto physical memory (frames) is based

on a simple shift between virtual and physical addresses
 PA = (VA) where is (typically) a simple function subtracting a predetermined and

known constant value to VA

• Not all the kernel level virtual pages are directly mapped

Page
frames

Directly
mapped

Non-directly
mapped

Kernel level logical pages

Page mapping vs ZONEs

• It is typical for an operating system kernel to organize physical memory into ZONEs

• The ZONE determines the type of usage we need to do with pages

• The more commonly known zones are

– DMA

– NORMAL

– HIGH

• DMA is used for reserving memory to specific device operations

• NORMAL is used for directly mapped pages from the kernel

• HIGH is used for non-directly mapped pages from the kernel and else (e.g. user stuff)

– Useful when, e.g., physical memory is close to or greater than virtual memory

– Useful for flexibility of memory mapping

A simple case of Linux and x86 protected mode

ZONE_DMA < 16 MB ISA DMA capable memory

ZONE_NORMAL 16-896 MB direct mapped by the kernel

ZONE_HIGHMEM > 896 MB only page cache and user

A scheme

The case of Linux and x86-64 (long mode)

• The kernel takes all the RAM for direct mapping

• The kernel can also take the whole RAM memory for non-directly mapped stuff

• This capability simply derives from the extremely enlarged possibility to address
logical and physical memory with an x86-64 processor

• As we will see we can in fact use 2^48 bytes in the logical address space

• ZONEs are no longer relevant, but non direct mapping still stands there

The scheme for Linux/x86-64 (long mode)

Numa node 0

Numa node 1

Directly mapped
kernel virtual
addresses

Non-directly mapped
kernel virtual
addresses

Page table structure in x86 protected mode (i386)
Linear
address

<10 bits page number,
22 bits page offset>

<20 bits page number,
12 bits page offset>

<10 bits page section,
10 bits actual page>

<physical 4MB frame address>

<physical 4KB frame address>

1 Level paging 2 Levels paging

PD(E)
PT(E)

PT(E)

Page table entries

• Each page table entry is made of 32 bits (and there are 1024 in each page
table)

• Each (part of) the i386 page table needs to be allocated in memory aligned to
the 4K address

• If we are working at one or two levels is determined by the control bits kept
into the first level page table

• The maximum amount of logical memory we can access is 4GB

• The maximum amount of physical memory we can access is 4GB

i386 PDE entries

Nothing tells whether we can fetch (so execute)
from there

i386 PTE entries

Nothing tells whether we can fetch (so execute)
from there

Field semantics

• Present: indicates whether the page or the pointed page table is loaded in physical
memory. This flag is not set by firmware (rather by the kernel)

• Read/Write: define the access privilege for a given page or a set of pages (as for
PDE) . Zero means read only access

• User/Supervisor: defines the privilege level for the page or for the group of pages
(as for PDE). Zero means supervisor privilege

• Write Through: indicates the caching policy for the page or the set of pages (as
for PDE). Zero means write-back, non-zero means write-through

• Cache Disabled: indicates whether caching is enabled or disabled for a page or a
group of pages. Non-zero value means disabled caching (as for the case of
memory mapped I/O)

• Accessed: indicates whether the page or the set of pages has been accessed. This is a
sticky flag (no reset by firmware). Reset is controlled via software

• Dirty: indicates whether the page has been write-accessed. This is also a sticky flag

• Page Size (PDE only): if set indicates 4 MB paging otherwise 4 KB paging

• Page Table Attribute Index: ….. Do not care ……

• Page Global (PTE only): defines the caching policy for TLB entries. Non-zero
means that the corresponding TLB entry does not require reset upon loading a
new value into the page table pointer CR3

Page table setup at boot in Linux -
the i386/kernel2.4 very didactical example

• Upon kernel startup addressing relies on a simple single level paging mechanism that
only maps 2 pages (each of 4 MB) up to 8 MB physical addresses

• The physical address of the setup page table is kept within the CR3 register

• The page table is updated in order to enable reaching up to 1 GB of memory via
kernel level addresses

• Recall that on i386 processors Linux has

– [0, 3GB) for user stuff

– [3GB, 4GB] for kernel stuff

i386/kernel2.4 memory layout at kernel startup

8 MB (mapped on
virtual memory)

code

data

free

X MB (unmapped on
virtual memory)

Page table
With 2 valid
entries only
(each one for a
 4 MB page)

Issues to be tackled

1. We need to reach the correct granularity for paging (4KB rather than 4MB)

2. We need to span logical to physical address across the whole 1GB of
kernel-manageable physical memory

3. We need to re-organize the page table in two separate levels

4. So we need to determine ‘free buffers’ within the already reachable
memory segment to initially expand the page table

5. We cannot use memory management facilities other than paging (since core
maps and free lists are not yet at steady state)

i386/kernel2.4 memory layout at steady state

Almost 1 GB (mapped on virtual
memory starting from 3 GB
within virtual addressing)

Code

data

free
Page table
(formed by 4 KB
non-contiguous
blocks)

The passage through low level “pages”

Kernel boot

Load undersized page table
(kernel page size not finalized: 4MB)
- 4 KB (1K entry)

Expand page table via
bootmem low pages
(not marked in the page table)
- compile time identification

Finalize kernel handled
page size (4KB)

i386/kernel2.4 paging data structures
• Linux virtual addresses since kernel 2.4 exhibit (at least) 3 indirection levels

Physical
(frame) adress

Page Middle
Directory

Page Table
Entries

Page General
Directory

pgd pmd pte

• On i386 machines, paging is supported limitedly to 2 levels (pde, page directory entry –
pte, page table entry)

pgd Linux maps to i386 pde

pte Linux maps to i386 pte

offset

Some useful macros

• The following macros define the size of the page tables blocks (they can be found in
the file include/asm-i386/pgtable-2level.h)

#define PTRS_PER_PGD 1024

#define PTRS_PER_PMD 1

#define PTRS_PER_PTE 1024

• the value1 for PTRS_PER_PMD is used to simulate the existence of the
intermediate level such in a way to keep the 3-level oriented software structure to be
compliant with the 2-level architectural support

Some useful data structures

• A core structure is represented by the symbol swapper_pg_dir which is defined within
the file arch/i386/kernel/head.S

• This symbol expresses the virtual memory address of the PGD (PDE) portion of the kernel
page table

• This value is initialized at compile time, depending on the memory layout defined for the
kernel bootable image

• Any entry within the PGD is accessed via displacement starting from the initial PGD address

• The C types for the definition of the content of the page table entries on i386 are defined
in include/asm-i386/page.h

typedef struct { unsigned long pte_low; } pte_t;
typedef struct { unsigned long pmd; } pmd_t;
typedef struct { unsigned long pgd; } pgd_t;

Debugging
• The redefinition of different structured types, which are identical in size and equal to an
unsigned long, is done for debugging purposes

• Specifically, in C technology, different aliases for the same type are considered as
identical types

• For instance, if we define

typedef unsigned long pgd_t;

typedef unsigned long pte_t;

pgd_t x; pte_t y;

the compiler enables assignments such as x=y and y=x

• Hence, there is the need for defining different structured types which simulate the base
types that would otherwise give rise to compiler equivalent aliases

Bit-masks

• in include/asm-i386/pgtable.h there exist some macros defining the positioning
of control bits within the entries of the PDE or PTE

• There also exist the following macros for masking and setting those bits

#define _PAGE_PRESENT 0x001
#define _PAGE_RW 0x002
#define _PAGE_USER 0x004
 …
#define _PAGE_ACCESSED 0x020
#define _PAGE_DIRTY 0x040 /* proper of PTE */

• These are all machine dependent macros

An example

pte_t x;

x = …;

if ((x.pte_low) & _PAGE_PRESENT){
/* the page is loaded in a frame */

}
else{

 /* the page is not loaded in any
 frame */
} ;

i386/kernel2.4 initialization algorithm

• we start by the PGD entry which maps the address 3 GB, namely the entry numbered
768

• cyclically

1. We determine the virtual address to be memory mapped (this is kept within the
vaddr variable)

2. One page for the PTE table gets allocated which is used for mapping 4 MB of
virtual addresses

3. The table entries are populated

4. The virtual address to be mapped gets updated by adding 4 MB

5. We jump to step 1 unless no more virtual addresses or no more physical memory
needs to be dealt with (the ending condition is recorded by the variable end)

pagetable_init()
for (; i < PTRS_PER_PGD; pgd++, i++) {

vaddr = i*PGDIR_SIZE; /* i is set to map from 3 GB */
if (end && (vaddr >= end)) break;
pmd = (pmd_t *)pgd;/* pgd initialized to (swapper_pg_dir+i) */

………
for (j = 0; j < PTRS_PER_PMD; pmd++, j++) {

………

pte_base = pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);

for (k = 0; k < PTRS_PER_PTE; pte++, k++) {
vaddr = i*PGDIR_SIZE + j*PMD_SIZE + k*PAGE_SIZE;
if (end && (vaddr >= end)) break;

………

*pte = mk_pte_phys(__pa(vaddr), PAGE_KERNEL);
}
set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte_base)));
………

}
}

Important note

• The final PDE buffer coincides with the initial page table that maps 4
MB pages

• 4KB paging gets activated upon filling the entry of the PDE table (since the
Page Size bit gets updated)

• For this reason the PDE entry is set only after having populated the
corresponding PTE table to be pointed

• Otherwise memory mapping would be lost upon any TLB miss

Direct memory-mapping macros

• We know that directly mapped logical memory (e.g. the one used for bootmem) is
located in physical memory by replying on a fixed offset

• The __pa() (physical address) macro allows retrieving the virtual address that
corresponds to the physical address passed as input parameter

• This mapping rule is anyhow not valid for all kernel level addresses, since some
of them might be non-directly mapped

• The __va() (virtual address) macro allows performing the dual mapping between
physical and virtual addresses – still for directly mapped memory

Relations with trap/interrupt events

• Upon a TLB miss, firmware accesses the page table

• The first checked bit is typically _PAGE_PRESENT

• If this bit is zero, a page fault occurs which gives rise to a trap (with a given
displacement within the trap/interrupt table)

• Hence the instruction that gave rise to the trap can get finally re-executed

• Re-execution might give rise to additional traps, depending on firmware
checks on the page table

• As an example, the attempt to access a read only page in write mode will give rise
to a trap (which triggers the segmentation fault handler)

#include <kernel.h>

#define MASK 1<<7

unsigned long addr = 3<<30; // fixing a reference on the
 // kernel boundary

asmlinkage int sys_page_size(){

 //addr = (unsigned long)sys_page_size; // moving the reference
 return(swapper_pg_dir[(int)((unsigned long)addr>>22)]&MASK?

4<<20:4<<10);
}

An additional baseline example -
run time detection of current page size (still for i386)

PAE - Physical address extension

 increase of the bits used for physical addressing (e.g. Intel Pentium Pro)
 provides 36 bits for physical addressing
 we can drive up to 64 GB of RAM memory
• paging operates at 3 levels (instead of 2)
• the traditional page tables get modified by extending the entries at

 64-bits and reducing their number by a half (hence we can support

 ¼ of the address space)
• an additional top level table gets included called “page directory

 pointer table” which entails 4 entries, pointed by CR3
• CR4 indicates whether PAE mode is activated or not (which is done

 via bit 5 – PAE-bit)

x86-64 architectures

• They extend the PAE scheme via a so called “long addressing mode”

• Theoretically they allow addressing 2^64 bytes of logical memory

• In actual implementations we reach up to 2^48 canonical form addresses (lower/
upper half within a total address space of 2^48)

• The total allows addressing to span over 256 TB

• Not all operating systems allow exploiting the whole range up to 256 TB of
logical/physical memory

• LINUX currently allows 128 TB for logical addressing of individual processes
and 64 TB for physical addressing

Addressing scheme

64-bit 48 out of 64-bit

Linux address space on x86-64 processors

text
data

kernel

Heap
Stack
DLL

Non-allowed
logical addresses
(canonical 64-bit
 addressing)

48-bit addressing - page tables

• Page directory pointer has been expanded from 4 to 512 entries

• An additional paging level has been added thus reaching 4 levels,
this is called “Page-Map level”

• Each Page-Map level table has 512 entries

• Hence, we get 512^4 pages of size 4 KB that are addressable
(namely, a total of 256 TB)

also referred to as PGD
(Page General Directory)

Direct vs non-direct page mapping

• In long mode x86 processors allow one entry of the PML4 to be associated
with 2^27 frames

• This amounts to 2^29 KB = 2^9 GB = 512 GB

• Clearly, we have plenty of room in virtual addressing for directly mapping all
the available RAM into kernel pages on most common chipsets

• This is the typical approach taken by Linux, where we directly map all the
RAM memory

• However, we also remap the same RAM memory in non-direct manner
whenever required

Huge pages

• Ideally x86-64 processors support them starting from PDPT

• Linux typically offers the support for huge pages pointed to by the PDE (page
size 512*4KB)

• See: /proc/meminfo and /proc/sys/vm/nr_hugepages

• These can be “mmaped” via file descriptors and/or mmap parameters (e.g.
MAP_HUGETLB flag)

• They can also be requested via the madvise(void*, size_t, int)
system call (with MADV_HUGEPAGE flag)

Hardware supported “virtual memory” virtualization

• Intel Extended Page Tables (EPT)

• AMD Nested Page Tables (NPT)

• A scheme:

Keeps track of
the physical
memory location
of the page frames
used for activated
VM

Back to speculation in the hardware

• From Meldown we already know that a page table entry plays a central role in
hardware side effects with speculative execution

• The page table entry provides the physical address of some “non-accessible” byte,
which is still accessible in speculative mode

• This byte can flow into speculative incarnations of registers and can be used for
cache side effects

• ….. but, what about a page table entry with “presence bit” not set???

• ….. is there any speculative action that is still performed by the hardware with
the content of that page table entry?

The L1 Terminal Fault (L1TF) attack

• It is based on the exploitation of data cached into L1

• More in detail:

 A page table entry with presence bit set to 0 propagates the value of the target
physical memory location (the TAG) upon loads if that memory location is
already cached into L1

 If we use the value of that memory location as an index (Meltdown style) we can
grub it via side effects on cache latency

• Overall, we can be able to indirectly read the content of any physical memory
location if the same location has already been read, e.g., in the context of another
process on the same CPU-core

• Affected CPUs: AMD, Intel ATOM, Intel Xeon PHI …

The scheme

Page table

Virtual address “invalid” physical address

L1

Tag present

Speculatively
propagate to CPU

L1TF big issues

• To exploit L1TF we must drive page table entries

• A kernel typically does not allow it (in fact kernel mitigation of this attack
simply relies on having “invalid” page table entries set to proper values that
do not map cacheable data)

• But what about a guest kernel?

• It can attack physical memory of the underlying host

• So it can also attack memory of co-located guests/VMs

• It is as simple as hacking the guest level page tables, on which an attacker that
drives the guest may have full control

Attacking the host physical memory

Change this to whatever
physical address and
make the entry invalid

Linux core map
• It is an array of mem_map_t (also known as struct page) structures defined in
include/linux/mm.h

• The actual type definition is as follows (or similar along kernel advancement):

typedef struct page {

struct list_head list; /* ->mapping has some page lists. */

……

atomic_t count; /* Usage count, see below. */

……

unsigned long flags; /* atomic flags, some possibly
 updated asynchronously */

……
} mem_map_t;

Linux free list data structures

• Free lists information is kept within the pg_data_t data structure defined in
include/linux/mmzone.h, and whose actual instance is contig_page_data,
which is declared in mm/numa.c

typedef struct pglist_data {
struct zone node_zones[MAX_NR_ZONES];
……
int nr_zones; //actually used zones
……
struct page *node_mem_map;
……

} pg_data_t;

struct zone {
……

free_area_t free_area[MAX_ORDER];
……

spinlock_t lock;
……

struct page *zone_mem_map;

……

}

Up to 11 in recent
kernel versions
(it was typically 5
before)

Where we do pick free memory
 blocks in a buddy allocator

Describing a memory zone

Buddy system features

frame Order 0

Order 0

Order 1 Order 2

Size 20 Size 21 Size 22

Buddy allocation vs core map vs free list

Order 0 free frames

Order 0 free frames

Order 1 free frame

Order 1 free frame

free_area[0]

free_area[1]

references based on
struct list_head

Recall that spinlocks are used to manage this data structure

mem_map (the core map array)

A higher level view

A scheme (picture from: Understanding the Linux
Virtual Memory Manager – Mel Gorman)

Jumping to NUMA aware Linux kernels (e.g.
starting from kernel 2.6)

• The concept of multiple NUMA zones is represented by a struct
pglist_data even if the architecture is Uniform Memory Access (UMA)

• This struct is always referenced by its typedef pg_data_t

• Every node in the system is kept on a NULL terminated list called
pgdat_list, and each node is linked to the next with the field
pg_data_t→node_next

• For UMA architectures like PC desktops, only one static pg_data_t
structure is used

A scheme

mem_map
pglist_data

pg_data_t record

struct page *node_mem_map

From kernel
2.6.17 we have
an array of entries
called
node_data[]

One buddy
allocator
per each
node

Allocation contexts - more generally, kernel level
execution contexts

• Process context
– Allocation is caused by a system call or a trap

• Not satisfiable wait is experienced along the current execution trace
• Priority based schemes

• Interrupt
– Allocation requested by an interrupt handler

• Not satisfiable no-wait is experienced along the current execution
trace

• Priority independent schemes

Buddy-system API
• After booting, the memory management system can be accessed via proper APIs, which

drive operations on the aforementioned data structures

• The prototypes are in #include <linux/malloc.h>

• The very base allocation APIs are (bare minimal – page aligned allocation)

 unsigned long get_zeroed_page(int flags)
 removes a frame from the free list, sets the content to zero and returns the virtual

address

 unsigned long __get_free_page(int flags)
 removes a frame from the free list and returns the virtual address
 unsigned long __get_free_pages(int flags, unsigned long

order)
 removes a block of contiguous frames with given order from the free list and returns

the virtual address of the first frame

 void free_page(unsigned long addr)
 puts a frame into the free list again, having a given initial virtual address

 void free_pages(unsigned long addr, unsigned long
order)

 puts a block of frames of given order into the free list again
 Note!!!!!!! Wrong order may give rise to kernel corruption in several

kernel configurations

flags - used contexts

GFP_ATOMIC the call cannot lead to sleep (this is for interrupt contexts)

GFP_USER - GFP_BUFFER - GFP_KERNEL the call can lead to sleep

Buddy allocation vs direct mapping

• All the buddy-system API functions return virtual addresses of directly mapped
pages

• We can therefore directly discover the position in memory of the corresponding
frames

• Also, memory contiguity is guaranteed for both virtual and physical addresses

• Additonal flags could be used for memory allocation in specific zobbes (e.g. the
ZONE_DMA flag)

Binding actual allocation to NUMA nodes

The real core of the Linux page allocator is the function

struct page *alloc_pages_node(int nid, unsigned int flags, unsigned int
order);

Hence the actual allocation chain is:

__get_free_pages

mempolicy data
Node ID

alloc_pages_node (per NUMA node allocation)

Mem-policy details
• Generally speaking, mem-policies determine what NUMA node needs to be involved

in a specific allocation operation which is thread specific

• Starting from kernel 2.6.18, the determination of mem-policies can be configured by
the application code via system calls

Synopsis

#include <numaif.h>

int set_mempolicy(int mode, unsigned long *nodemask,
unsigned long maxnode);

 sets the NUMA memory policy of the calling process, which consists of a policy mode
and zero or more nodes, to the values specified by the mode, nodemask and maxnode
arguments. The mode argument must specify one of MPOL_DEFAULT,
MPOL_BIND, MPOL_INTERLEAVE or MPOL_PREFERRED

… another example

Synopsis
#include <numaif.h>
int mbind(void *addr, unsigned long len, int mode,
unsigned long *nodemask, unsigned long maxnode, unsigned
flags);

sets the NUMA memory policy, which consists of a policy mode and zero or more
nodes, for the memory range starting with addr and continuing for len bytes. The
memory policy defines from which node memory is allocated.

… finally you can also move pages around

Synopsis
#include <numaif.h>
long move_pages(int pid, unsigned long count, void
**pages, const int *nodes, int *status, int flags);

moves the specified pages of the process pid to the memory nodes specified by
nodes. The result of the move is reflected in status. The flags indicate constraints on
the pages to be moved.

The case of frequent allocation/deallocation of
target-specific data structures

• Here we are talking about allocation/deallocation operations of data structures
1. that are used for a target-specific objective (e.g. in terms of data structures to be

hosted)
2. which are requested/released frequently

• The problem is that getting the actual buffers (pages) from the buddy system will lead
to contention and consequent synchronization costs (does not scale)

• In fact the (per NUMA node) buddy system operates with spinlock synchronized
critical sections

• Kernel design copes with this issue by using pre-reserved buffers with lightweight
allocation/release logic

… a classical example

• The allocation and deletion of page tables, at any level, is a very frequent operation,
so it is important the operation is as quick as possible

• Hence the pages used for the page tables are cached in a number of different lists
called quicklists

• For 3/4 levels paging, PGDs, PMDs/PUDs and PTEs have two sets of functions
each for the allocation and freeing of page tables.

• The allocation functions are pgd_alloc(), pmd_alloc(), pud_alloc() and
pte_alloc(), respectively the free functions are, predictably enough, called
pgd_free(), pmd_free, pud_free() and pte_free()

• Broadly speaking, these APIs implement caching

Actual quicklists

• Defined in include/linux/quicklist.h

• They are implemented as a list of per-processing -unit page lists

• There is no need for synchronization

• If allocation fails, they revert to

 __get_free_page()

• In very latest versions of the Linux kernel, pre-reserving is done at the buddy
allocator API

Quicklist API and algorithm

Beware these!!

Very recent quicklist vs buddy-system layering

• In more recent kernel versions the quicklist is one if the components of the
buddy system

• It is used internally to this system, in particular for handling 4KB size
allocation operations

• This allows using quicklists transparently by relying on the same API used
for the buddy

• Quicklists operating at other levels are still available for kernel
programming

SLAB (or SLUB) allocator - a cache of ‘small’ size buffers

• The main APIs are

 void *kmalloc(size_t size, int flags)
 allocation of contiguous memory of a given size - it returns the virtual address

 void kfree(void *obj)
 frees memory allocated via kmalloc()

• Main features
 Cache aligned delivery of memory chunks (performance optimal access of data within

the same chunk)
 Multiple caches associated with different allocation sizes
 Fast allocation/deallocation support

• Clearly, we can also perform node-specific requests via
 void *kmalloc_node(size_t size, int flags, int node)

kzalloc() for
zeroed buffers

Details on cached allocation

• Slab is based on pre-allocating pages from the buddy system

• The areas in these pages are then managed in a transparent manner by the slab system

• Cached-allocator instances for chunks of a given size can be created dynamically – this
allows separation of memory usage for different services at kernel level

• The creation of a new cached allocator is only “virtual” (the real allocations can take place
from another “equivalent allocator” (working with chunks of the same size)

• Any new cached allocator with “memory initialization” is never fused to existing ones

• A cached-allocator can be released when all its managed chunks have already been
released

• You can check the existing allocators using /proc/slabinfo

Cached allocation low level API - baseline

struct kmem_cache *kmem_cache_create(char *name,
size_t size,

 size_t align,
unsigned long flags,

 void (*ctl)(void *))

int kmem_cache_destroy(struct kmem_cache *cache)

void *kmem_cache_alloc(struct kmem_cache_t *cache, int prio)

void kmem_cache_free(struct kmem_cache_t *cache, void *ptr)

This is the memory
initialization function

SLAB coloring

• A slab allocator is also assigned a color → this is a numerical code

• It is used to determine the position of the “first chunk” to be delivered into
the slab

• Recall that the slab is a set of contiguous memory pages

• This allows mapping the first object of two different slabs for a same size on
different cache lines with some (hopefully non-minimal) probability

• Clearly, the set of different colors is limited

Coloring details

• Suppose DSIZE is the dsize of metadata for a cached allocator

• Suppose it delivers chunks aligned to ALN

• Then assigning the color COL means that the first chunk of the slab is at the
following offset from the beginning of the cached allocator → DSIZE +
ALN * COL

• Essentially slab coloring means that the initial slab free areas are moved
more or less close to the end of the used cached allocator areas

• Classically employed while adding large size data structures to the kernel in a
stable way

• We can go beyond the size-limit of the specific buddy system implementation

• This is the case when, e.g., mounting external modules

• This time we are not guaranteed to get directly mapped pages

• The main APIs are:
void * vmalloc(unsigned long size);

 allocates memory of a given size, which can be non-contiguous physically, and
returns the virtual address (the corresponding frames are anyhow reserved)

void vfree(void * addr)

 frees the above mentioned memory

What about (very) large size allocations

kmalloc vs vmalloc - an overall reference picture

• Allocation size:
 128 KB for kmalloc (cache aligned)
 64/128 MB for vmalloc

• Physical contiguousness
 Yes for kmalloc
 No for vmalloc

• Effects on TLB
 None for kmalloc
 Global for vmalloc (transparent to vmalloc users)

vmalloc operations (i)

• Based in remapping a range of contiguous pages in (non contiguous) physical
memory

Kernel level
pages Page

frames Directly
mapped

Non-
directly
mapped

Suppose we need 3
contiguous virtual
pages

Busy frame
Free frame

vmalloc operations (ii)

Clearly with vmalloc we typically remap much larger
blocks of pages

Kernel level
pages Page

frames Directly
mapped

Non-
directly
mapped

We remap the three pages within
the page table (also moving the
green frames to red)

Busy frame
Free frame

Kernel-page remapping vs hardware state

• Kernel-page mapping has a “global nature”

• Any core can use the same mapping, supported by the same page tables

• When running vmalloc/vfree services on a specific core, all the
other cores need to observe the updated mapping

• Cached mappings within TLBs need therefore to be updated via proper
operations

TLB implicit vs explicit operations

• The level of automation in the management process of TLB entries depends
on the specific hardware architecture

• Kernel hooks have to exist for explicit management of TLB operations
(these are compile-time mapped to null operations in case of fully
automated TLB management)

• For x86 processors automation is only partial

• Specifically, automatic TLB flushes occur upon updates of the CR3 register
(e.g. page table changes)

• Changes inside the current page table are not automatically reflected within
the TLB

Types of TLB relevant events

• Scale classification

 Global: dealing with virtual addresses accessible by every CPU/core
in real-time-concurrency

 Local: dealing with virtual addresses accessible in time-sharing
concurrency

• Typology classification

 Virtual to physical address remapping

 Virtual address access rule modification (read only vs write access)

• Typical management, TLB implicit renewal via flush operations

TLB flush costs
• Direct costs

 The latency of the firmware level protocol for TLB entries invalidation
(selective vs non-selective)

 plus, the latency for cross-CPU coordination in case of global TLB flushes

• Indirect costs

TLB renewal latency by the MMU firmware upon misses in the translation
process of virtual to physical addresses

This cost depends on the amount of entries to be refilled

Tradeoff vs TLB API and software complexity inside the kernel (selective vs
non-selective flush/renewal)

void flush_tlb_all(void)

• This flushes the entire TLB on all processors running in the system,
which makes it the most expensive TLB flush operation

• After it completes, all modifications to the page tables will be visible
globally

• This is required after the kernel page tables, which are global in nature,
have been modified

• Examples are vmalloc()/vfree() operations

Linux global TLB flush

• x86 does not offer pure hardware support for flushing all the TLBs on
board of the architecture

• It offers a baseline mechanism to let CPU-cores coordinate

• A software layer is used to drive what to do while coordinating (namely
TLB invalidation)

• We will come back to this issue when analyzing actual interrupt
achitectures on multi-core machines

Linux global TLB flush vs x86

The x86 timeline of vmalloc

• Acquire memory from the buddy allocator
• Update kernel page table

Cross CPU-core
coordination for
TLB invalidation
(via CR3 rewriting)

Invocation (on some generic CPU-core)

return

void flush_tlb_mm(struct mm_struct *mm)

• This flushes all TLB entries related to the userspace portion for the
requested mm context

• This is only called when an operation has been performed that affects the
entire address space

• e.g., after all the address mapping has been duplicated with
dup_mmap() for fork or after all memory mappings have been deleted
with exit_mmap()

• Interaction with COW protection

Linux partial TLB flush

void flush_tlb_range(struct mm_struct *mm, unsigned
long start, unsigned long end)

• This flushes all entries within the requested user space range for the mm
context

• This is used after a region has been moved (e.g. mremap()) or when
changing permissions (e.g. mprotect())

• This API is provided for architectures that can remove ranges of TLB
entries quickly rather than iterating with flush_tlb_page()

void flush_tlb_page(struct vm_area_struct *vma,
unsigned long addr)

• This API is responsible for flushing a single page from the TLB

• The two most common uses of it are for flushing the TLB after a
page has been faulted in or has been paged out

 Interactions with page table access firmware

x86 partial TLB invalidation

void flush_tlb_pgtables(struct mm_struct *mm,
unsigned long start, unsigned long end)

 This API is called when the page tables are being torn down and freed

 Some platforms cache the lowest level of the page table, i.e., the actual
page frame storing entries, which needs to be flushed when the pages
are being deleted (e.g. Sparc64)

 This is called when a region is being unmapped and the page directory
entries are being reclaimed

void update_mmu_cache(struct vm_area_struct *vma,
unsigned long addr, pte_t pte)

 This API is only called after a page fault completes

 It tells that a new translation now exists at pte for the virtual address
addr

 Each architecture decides how this information should be used

 In some case it is used for preloading TLB entries (e.g. like in ARM
Cortex processors)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114

