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Memory management vs system startup
• System startup steps lead to change the image of data/code that we have in 

memory

• These changes need to happen just based on various memory handling 
policies/mechanisms, operating at:

 Architecture setup

 Kernel initialization (including kernel level memory management 
initialization)

 Kernel common operations (which make large usage of kernel level 
memory management services that have been setup along the boot phase) 

An initially loaded kernel memory-image is not the same as the one that 
common applications ``see’’ when they are activated



Basic aspects to consider

• Where do we load the actual kernel image in physical memory?

– Randomization?

• How do we make this “physical memory image” reachable using virtual addresses?

– Randomization?

• How do we deal with kernel level information (e.g. routines) that we only need at 
kernel startup?

– They just become useless at some point in time 

• What are the actual kernel level mechanisms for managing memory at steady 

state (after boot)?  



Loading the kernel to physical memory

• The target physical memory region is determined by the boot-loader

• Randomization can be put in place, meaning that a given initial zone of RAM 
memory is left as an unused hole

– How do we make the actual kernel reach its information? 

– Recall that kernel software typically executes using virtual addresses

kernel
kernel

RAM address 0x0 At startup we need to 
use/organize a 
correct page table to 
achieve the target 
physical memory 
zone



Making the kernel reach itself via logical addresses

• The target logical memory region is determined by the boot-loader

• Randomization can be put in place, meaning that a given initial zone of logical 
memory is left as an unused hole

– How do we make the actual kernel reach its information? 

kernel
kernel

Reference kernel start 
virtual address 0xff...

At startup we need to 
use/organize a 
correct page table to 
achieve the target 
virtual memory zone



One (typical) way to proceed

• The kernel image loaded in memory at physical address P-ADDR has a page table in its 
image

• This pagetable is somehow updated in order to map to P-ADDR the virtual address V-
ADDR selected for the kernel startup image

• After this is done, the kernel can start using that page table for its operations

• NOTE: we need to know the position (the offset) of the kernel page table into the kernel 
image, this imposes that kernel compiling has some limits, e.g. in terms of possibility to 
expand data structures

Kernel page table
Physical address = P_ADDR + offset

V-ADDR Map to P-ADDR



Page table identities

• The kernel page table to be generated/finalized at kernel startup is typically know as 
identity page table

• The boot loader code exploits another page table to reach memory and the booting kernel 
image, which is called trampoline page table

Kernel page table

…

RAM

… Address 0x0
Trampoline page table



A baseline example case – non-randomized addresses

• The physical address of the kernel page table (the identity one) is known at compile time

• The logical address of the kernel page table is know at compile time (as well as any other 
kernel portion)

• The startup code for paging (virtual to physical memory translation) can simply set the page 
table pointer register of the CPU with the compile time known virtual counterpart of that 
physical address

– That page table already redirects to the compile time known physical memory that hosts the kernel image 

• Then paging can be started up on the processor

• With this solution the startup code for paging is extremely simple and can even work 
without virtual addresses to load the kernel in memory and to setup the state of the CPU 
right before kernel specific startup 



An example head.S code snippet - 
triggering Linux paging (IA32 case)

/* * Enable paging */ 3: 
movl $swapper_pg_dir-__PAGE_OFFSET,%eax 
movl %eax,%cr3 /* set the page table pointer.. */ 
movl %cr0,%eax 
orl $0x80000000,%eax 
movl %eax,%cr0 /* ..and set paging (PG) bit */ 



An example head_64.S code snippet - 
triggering Linux paging (x86-64 case /kernel5)

/* Form the CR3 value being sure to include the CR3 modifier */ 
addq $(early_top_pgt - __START_KERNEL_map), %rax 

………. /* we are accounting for other stuff  */

movq %rax, %cr3

https://elixir.bootlin.com/linux/v5.9.1/C/ident/early_top_pgt
https://elixir.bootlin.com/linux/v5.9.1/C/ident/__START_KERNEL_map
https://elixir.bootlin.com/linux/v5.9.1/C/ident/rax
https://elixir.bootlin.com/linux/v5.9.1/C/ident/movq
https://elixir.bootlin.com/linux/v5.9.1/C/ident/rax
https://elixir.bootlin.com/linux/v5.9.1/C/ident/cr3


Compile time symbols for accessing the page table

• Kernel 2

–  swapper_pg_dir 

• Kernel 3

– init_level4_pgt 

• Kernel 4/5 

– init_top_pgt (the early_top_pgt one is not the actual kernel page 
table)



Looking at what we actually loaded in RAM when 
loading the initial kernel image 

Initialization functions/data
Steady state functions/data

Not yet final data

Whole set of reachable
memory pages of the 
kernel image

Reachable but still 
free memory

RAM



Dealing with initialization stuff

• initialization stuff becomes completely useless once the kernel has reached steady state 
behavior

• For an operating system kernel the design always targets eliminating any no longer useful 
stuff from memory

– For optimizing resource management (like for, e.g., special purpose kernel configuration)

– For better coping with the growth of startup complexity 

– For better coping with security aspects (e.g. for eliminating potential gadgets)

• The elimination requires both compile-time and run-time support

– We need to know what (and where) is stuff only useful at early stage based on compilation 
choices 

– We need to recover the usage of the corresponding memory pages at run-time  



Looking at Linux - hints on the signature of the 
start_kernel function (as well as others)

……  __init start_kernel(void)

This only lives in memory during kernel boot (or startup)

Recall that the kernel image is not subject to swap out 
(conventional kernels are always resident in RAM )



Management of  __init functions

• The kernel compile/linking stage locates these functions on specific logical 
pages (recall what we told about the fixed positioning of specific kernel level 
stuff in the kernel layout!!)

• These logical pages are identified within a “bootmem” subsystem that is used 
for managing memory when the kernel is not yet at steady state of its memory 
management operations

• Essentially the bootmem subsystem keeps a bitmask with one bit indicating 
whether a given page has been used (at compile time) for specific stuff 



… still on bootmem

• The bootmem subsystem also allows for memory allocation upon the very initial 
phase of the kernel startup

• In fact, the data structures (e.g. the bitmaps) it keeps not only indicate if some 
page has been used for specific data/code

• They also indicate if some page which is actually reachable at the very early 
phase of boot is not used for any stuff

• These are clearly “free buffers” exploitable upon the very early phase of boot

• Bootmem can be exploited through a specific API



An exemplified picture of bootmem

Data 

Code

.

.

.

.

Link in a single image

Bootmem
bitmap

0x80000000

0xc0800000

free

free

free

Compact status of 
busy/free buffers (pages)

Logical pages immediately reachable at the 
very early phase of kernel startup



The meaning of ``reachable page’’

• The kernel software can access the actual content of the page (in RAM) by 
simply expressing an address falling into that page

• The point is that the expressed address is typically a virtual one (since kernel 
code is commonly written using ``pointer’’ abstractions)

• So the only way we have to make a virtual address correspond to a given page 
frame in RAM is to rely on at least a page table that makes the translation (even 
at the very early stage of kernel boot)

• In early builds of Linux, the initial kernel image had a page table, with a 
minimum number of pages mapped to RAM, those handled by the bootmem 
subsystem



How is RAM organized on modern (large scale/parallel) 
machines?

• In modern chipsets, the CPU-core count continuously increases

• However, it is increasingly difficult to build architectures with a flat-latency 
memory access (historically referred to as UMA)

• Current machines are typically NUMA

• Each CPU-core has some RAM banks that are close and other that are far

• Generally speaking, each memory bank is associated with a so called NUMA-node

• Modern operating systems are designed to handle NUMA machines (hence UMA 
as a special case)  



Looking at the Linux NUMA setup via Operating 
System facilities

• A very simple way is the numactl command
• It allows to discover 

 How many NUMA nodes are present
 What are the nodes close/far to/from any CPU-core
 What is the actual distance of the nodes (from the CPU-cores)

Let’s see a few ‘live’ examples ……. 



Bootmem vs Memblock

• In more recent versions of OS kernels the bootmem architecture has been 
enriched 

• It allows for keeping track of free/busy frames with a per-NUMA node 
granularity

• The newer architecture is called “memblock” in Linux

• An additional logic is inserted for setting up the memblock system to 
indicate how many NUMA nodes we have

• The API for managing memory in memblock has been slightly changed with 
respect to traditional bootmem

• However the essence of the operations we can do is the same



Bootmem vs Memblock allocation API examples

• in bootmem al allocation deals with “low pages”

 alloc_bootmem_lowpages() - this returns the virtual address of the 
allocated memory

• in memblock the classical “low pages” allocators have been encapsulated into a 
slightly different API functions

 memblock_phys_alloc*() - these functions return the physical address of 
the allocated memory

 
 memblock_alloc*() - these functions return the virtual address of the 

allocated memory 



Actual kernel data structures for managing memory

• Kernel (identity) Page table
This is a kind of ‘ancestral’ page table (all the others are somehow derived 

from this one)  
It keeps the memory mapping for kernel level code and data (thread stack 

included)

• Core map
The map that keeps status information for any frame (page) of physical 

memory, and for any NUMA node

• Free list of physical memory frames, for any NUMA node

None of them is already finalized when we startup the kernel 



A scheme

Free list Free list 

Status (free/busy)
of memory frames

mov (%rax), %rbx

Frames’ 
zone x

Frames’ 
zone y

Kernel page 
table

Target frame

Core 
map



Objectives of the kernel (identity) page table setup

• These are basically two:

 Allowing the kernel software to use virtual addresses while executing (either at startup 
or at steady state)

 Allowing the kernel software (and consequently the application software) to reach (in 
read and/or write mode) the maximum admissible (for the specific machine) or 
available RAM storage

• The finalized shape of the kernel page table is therefore typically not setup into the original 
image of the kernel loaded in memory

– given that the available RAM to drive can be parameterized

– given that we may have randomization



A classical scheme for Linux/x86 protected mode (i386)

Range of linear 
addresses
reachable when
switching to
protected mode
plus paging

Range of linear 
addresses
reachable when
running at steady 
state 

Increase
of the size 
of reachable 
RAM locations
(e.g. according
to boot 
parameters)

Passage from the compile-time
defined kernel-page table
to the boot time reshuffled one



Directly mapped memory pages
• They are kernel level pages whose mapping onto physical memory (frames) is based 

on a simple shift between virtual and physical addresses
 PA = (VA)  where  is (typically) a simple function subtracting a predetermined and 

known constant value to VA

•  Not all the kernel level virtual pages are directly mapped

Page
frames 

Directly 
mapped 

Non-directly 
mapped 

Kernel level logical pages



Page mapping vs ZONEs

• It is typical for an operating system kernel to organize physical memory into ZONEs

• The ZONE determines the type of usage we need to do with pages

• The more commonly known zones are 

– DMA

– NORMAL

– HIGH

• DMA is used for reserving memory to specific device operations

• NORMAL is used for directly mapped pages from the kernel

• HIGH is used for non-directly mapped pages from the kernel and else (e.g. user stuff)

– Useful when, e.g., physical memory is close to or greater than virtual memory

– Useful for flexibility of memory mapping



A simple case of Linux and x86 protected mode

ZONE_DMA      < 16 MB     ISA DMA capable memory

ZONE_NORMAL   16-896 MB direct mapped by the kernel

ZONE_HIGHMEM    > 896 MB only page cache and user

A scheme



The case of Linux and x86-64 (long mode)

• The kernel takes all the RAM for direct mapping

• The kernel can also take the whole RAM memory for non-directly mapped stuff

• This capability simply derives from the extremely enlarged possibility to address 
logical and physical memory with an x86-64 processor

• As we will see we can in fact use 2^48 bytes in the logical address space

• ZONEs are no longer relevant, but non direct mapping still stands there



The scheme for Linux/x86-64 (long mode)

Numa node 0

Numa node 1

Directly mapped 
kernel virtual 
addresses

Non-directly mapped 
kernel virtual 
addresses



Page table structure in x86 protected mode (i386)
Linear
address

<10 bits page number,
22 bits page offset>

<20 bits page number,
12 bits page offset>

<10 bits page section,
10 bits actual page>

<physical 4MB frame address>

<physical 4KB frame address>

1 Level paging 2 Levels paging

PD(E)
PT(E)

PT(E)



Page table entries

• Each page table entry is made of 32 bits (and there are 1024 in each page 
table)

• Each (part of) the i386 page table needs to be allocated in memory aligned to 
the 4K address

• If we are working at one or two levels is determined by the control bits kept 
into the first level page table

• The maximum amount of logical memory we can access is 4GB

• The maximum amount of physical memory we can access is 4GB 



i386 PDE entries

Nothing tells whether we can fetch (so execute) 
from there



i386 PTE entries

Nothing tells whether we can fetch (so execute) 
from there



Field semantics

• Present: indicates whether the page or the pointed page table is loaded in physical 
memory. This flag is not set by firmware (rather by the kernel)

• Read/Write: define the access privilege for a given page or a set of pages (as for 
PDE) . Zero means read only access

• User/Supervisor: defines the privilege level for the page or for the group of pages 
(as for PDE). Zero means supervisor privilege

• Write Through: indicates the caching policy for the page or the set of pages (as 
for PDE). Zero means write-back, non-zero means write-through

• Cache Disabled: indicates whether caching is enabled or disabled for a page or a 
group of pages. Non-zero value means disabled caching (as for the case of 
memory mapped I/O)



• Accessed: indicates whether the page or the set of pages has been accessed. This is a 
sticky flag (no reset by firmware). Reset is controlled via software

• Dirty: indicates whether the page has been write-accessed. This is also a sticky flag

• Page Size (PDE only): if set indicates 4 MB paging otherwise 4 KB paging

• Page Table Attribute Index: ….. Do not care ……

• Page Global (PTE only): defines the caching policy for TLB entries. Non-zero 
means that the corresponding TLB entry does not require reset upon loading a 
new value into the page table pointer CR3



Page table setup at boot in Linux -
the i386/kernel2.4 very didactical example

• Upon kernel startup addressing relies on a simple single level paging mechanism that 
only maps 2 pages (each of 4 MB) up to 8 MB physical addresses

• The physical address of the setup page table is kept within the CR3 register

• The page table is updated in order to enable reaching up to 1 GB of memory via 
kernel level addresses

• Recall that on i386 processors Linux has

– [0, 3GB) for user stuff

– [3GB, 4GB] for kernel stuff



i386/kernel2.4 memory layout at kernel startup

8 MB (mapped on 
virtual memory)

code

data

free

X MB (unmapped on 
virtual memory)

Page table
With 2 valid 
entries only
(each one for a
 4 MB page)



Issues to be tackled

1. We need to reach the correct granularity for paging (4KB rather than 4MB)

2. We need to span logical to physical address across the whole 1GB of 
kernel-manageable physical memory

3. We need to re-organize the page table in two separate levels

4. So we need to determine ‘free buffers’ within the already reachable 
memory segment to initially expand the page table

5. We cannot use memory management facilities other than paging (since core 
maps and free lists are not yet at steady state)



i386/kernel2.4 memory layout at steady state

Almost 1 GB (mapped on virtual 
memory starting from 3 GB
within virtual addressing)

Code

data

free
Page table
(formed by 4 KB 
non-contiguous
blocks)



The passage through low level “pages”

Kernel boot

Load undersized page table
(kernel page size not finalized: 4MB)
- 4 KB (1K entry)

Expand page table via 
bootmem low pages 
(not marked in the page table)
- compile time identification 

Finalize kernel handled 
page size (4KB)



i386/kernel2.4 paging data structures
• Linux virtual addresses since kernel 2.4 exhibit (at least) 3 indirection levels

Physical 
(frame) adress

Page Middle
Directory

Page Table
Entries

Page General
Directory

pgd pmd pte

• On i386 machines, paging is supported limitedly to 2 levels (pde, page directory entry – 
pte, page table entry)

pgd Linux maps to i386 pde

pte Linux maps to i386 pte

offset



Some useful macros

• The following macros define the size of the page tables blocks (they can be found in 
the file include/asm-i386/pgtable-2level.h)

#define PTRS_PER_PGD    1024

#define PTRS_PER_PMD    1

#define PTRS_PER_PTE    1024 

•  the value1 for PTRS_PER_PMD is used to simulate the existence of the 
intermediate level such in a way to keep the 3-level oriented software structure to be 
compliant with the 2-level architectural support



Some useful data structures

• A core structure is represented by the symbol swapper_pg_dir which is defined within 
the file arch/i386/kernel/head.S

• This symbol expresses the virtual memory address of the PGD (PDE) portion of the kernel 
page table

• This value is initialized at compile time, depending on the memory layout defined for the 
kernel bootable image

• Any entry within the PGD is accessed via displacement starting from the initial PGD address

• The C types for the definition of the content of the page table entries on i386 are defined 
in include/asm-i386/page.h 

typedef struct { unsigned long pte_low; } pte_t;
typedef struct { unsigned long pmd; } pmd_t;
typedef struct { unsigned long pgd; } pgd_t;



Debugging
• The redefinition of different structured types, which are identical in size and equal to an 
unsigned long, is done for debugging purposes

• Specifically, in C technology, different aliases for the same type are considered as 
identical types 

• For instance, if we define

typedef unsigned long pgd_t;

typedef unsigned long pte_t;

pgd_t x; pte_t y;

the compiler enables assignments such as x=y and y=x

• Hence, there is the need for defining different structured types which simulate the base 
types that would otherwise give rise to compiler equivalent aliases



Bit-masks

• in include/asm-i386/pgtable.h there exist some macros defining the positioning 
of control bits within the entries of the PDE or PTE

• There also exist the following macros for masking and setting those bits

#define _PAGE_PRESENT 0x001
#define _PAGE_RW 0x002
#define _PAGE_USER 0x004
   …
#define _PAGE_ACCESSED 0x020
#define _PAGE_DIRTY 0x040 /* proper of PTE */

• These are all machine dependent macros



An example

pte_t x;

x = …;

if ( (x.pte_low) & _PAGE_PRESENT){
/* the page is loaded in a frame */

}  
else{

 /* the page is not loaded in any 
         frame */
} ;



i386/kernel2.4 initialization algorithm 

• we start by the PGD entry which maps the address 3 GB, namely the entry numbered 
768

• cyclically

1. We determine the virtual address to be memory mapped (this is kept within the 
vaddr variable)

2. One page for the PTE table gets allocated which is used for mapping 4 MB of 
virtual addresses 

3. The table entries are populated 

4. The virtual address to be mapped gets updated by adding  4 MB

5. We jump to step 1 unless no more virtual addresses or no more physical memory 
needs to be dealt with (the ending condition is recorded by the variable end)  



pagetable_init()
for (; i < PTRS_PER_PGD; pgd++, i++) {

vaddr = i*PGDIR_SIZE;  /* i is set to map from 3 GB */
if (end && (vaddr >= end))   break;
pmd = (pmd_t *)pgd;/* pgd initialized to (swapper_pg_dir+i) */

………
for (j = 0; j < PTRS_PER_PMD; pmd++, j++) {

………

pte_base = pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);

for (k = 0; k < PTRS_PER_PTE; pte++, k++) {
vaddr = i*PGDIR_SIZE + j*PMD_SIZE + k*PAGE_SIZE;
if (end && (vaddr >= end)) break;

………

*pte = mk_pte_phys(__pa(vaddr), PAGE_KERNEL);
}
set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte_base)));
………

}
}



Important note

• The final PDE buffer coincides with the initial page table that maps 4 
MB pages

• 4KB paging gets activated upon filling the entry of the PDE table (since the 
Page Size bit gets updated)

• For this reason the PDE entry is set only after having populated the 
corresponding PTE table to be pointed

• Otherwise memory mapping would be lost upon any TLB miss



Direct memory-mapping macros

• We know that directly mapped logical memory (e.g. the one used for bootmem) is 
located in physical memory by replying on a fixed offset  

• The __pa() (physical address) macro allows retrieving the virtual address that 
corresponds to the physical address passed as input parameter

• This mapping rule is anyhow not valid for all kernel level addresses, since some 
of them might be non-directly mapped

•  The __va() (virtual address) macro allows performing the dual mapping between 
physical and virtual addresses – still for directly mapped memory



Relations with trap/interrupt events

• Upon a TLB miss, firmware accesses the page table

• The first checked bit is typically _PAGE_PRESENT

• If this bit is zero, a page fault occurs which gives rise to a trap (with a given 
displacement within the trap/interrupt table)

• Hence the instruction that gave rise to the trap can get finally re-executed

• Re-execution might give rise to additional traps, depending on firmware 
checks on the page table

• As an example, the attempt to access a read only page in write mode will give rise 
to a trap  (which triggers the segmentation fault handler)



#include <kernel.h>

#define MASK 1<<7

unsigned long addr = 3<<30; // fixing a reference on the 
 // kernel boundary

asmlinkage int sys_page_size(){

  //addr = (unsigned long)sys_page_size; // moving the reference
   return(swapper_pg_dir[(int)((unsigned long)addr>>22)]&MASK?

4<<20:4<<10);
}

An additional baseline example - 
run time detection of current page size (still for i386)



PAE - Physical address extension

 increase of the bits used for physical addressing (e.g. Intel Pentium Pro) 
 provides 36 bits for physical addressing 
 we can drive up to 64 GB of RAM memory
• paging operates at 3 levels (instead of 2)
• the traditional page tables get modified by extending the entries at  

   64-bits and reducing their number by a half (hence we can support     

   ¼  of the address space)
• an additional top level table gets included called “page directory   

  pointer table” which entails 4 entries, pointed by CR3
• CR4 indicates whether  PAE mode is activated or not (which is done 

  via bit  5 – PAE-bit)



x86-64 architectures

• They extend the PAE scheme via a so called “long addressing mode”

• Theoretically they allow addressing 2^64 bytes of logical memory

• In actual implementations we reach up to 2^48 canonical form addresses (lower/
upper half within a total address space of  2^48)

• The total allows addressing to span over 256 TB

• Not all operating systems allow exploiting the whole range up to 256 TB of 
logical/physical memory

• LINUX currently allows 128 TB for logical addressing of individual processes 
and  64 TB for physical  addressing



Addressing scheme

64-bit 48 out of 64-bit



Linux address space on x86-64 processors

text
data

kernel

Heap
Stack
DLL

Non-allowed 
logical addresses
(canonical 64-bit
  addressing)



48-bit addressing - page tables

• Page directory pointer has been expanded from 4 to 512 entries

• An additional paging level has been added thus reaching 4 levels, 
this is called “Page-Map level”

• Each Page-Map level table has 512 entries

• Hence, we get 512^4 pages of  size 4 KB that are addressable 
(namely, a total of 256 TB)



also referred to as PGD
(Page General Directory)







Direct vs non-direct page mapping 

• In long mode x86 processors allow one entry of the PML4 to be associated 
with 2^27 frames

• This amounts to 2^29 KB = 2^9 GB = 512 GB

• Clearly, we have plenty of room in virtual addressing for directly mapping all 
the available RAM into kernel pages on most common chipsets 

• This is the typical approach taken by Linux, where we directly map all the 
RAM memory

• However, we also remap the same RAM memory in non-direct manner 
whenever required 



Huge pages

• Ideally x86-64 processors support them starting from PDPT

• Linux typically offers the support for huge pages pointed to by the PDE (page 
size 512*4KB)

• See: /proc/meminfo and /proc/sys/vm/nr_hugepages

• These can be “mmaped” via file descriptors and/or mmap parameters (e.g. 
MAP_HUGETLB flag) 

• They can also be requested via the  madvise(void*, size_t, int) 
system call (with MADV_HUGEPAGE flag)



Hardware supported “virtual memory” virtualization 

• Intel Extended Page Tables (EPT)

• AMD Nested Page Tables (NPT)

• A scheme:

Keeps track of 
the physical 
memory location 
of the page frames 
used for activated 
VM



Back to speculation in the hardware

• From Meldown we already know that a page table entry plays a central role in 
hardware side effects with speculative execution

• The page table entry provides the physical address of some “non-accessible” byte, 
which is still accessible in speculative mode

• This byte can flow into speculative incarnations of registers and can be used for 
cache side effects

• ….. but, what about a page table entry with “presence bit” not set???  

• ….. is there any speculative action that is still performed by the hardware with 
the content of that page table entry?



The L1 Terminal Fault (L1TF) attack

• It is based on the exploitation of data cached into L1

• More in detail:

 A page table entry with presence bit set to 0 propagates the value of the target 
physical memory location (the TAG) upon loads if that memory location is 
already cached into L1

 If we use the value of that memory location as an index (Meltdown style) we can 
grub it via side effects on cache latency

• Overall, we can be able to indirectly read the content of any physical memory 
location if the same location has already been read, e.g., in the context of  another 
process on the same CPU-core  

• Affected CPUs: AMD, Intel ATOM, Intel Xeon PHI …



The scheme

Page table

Virtual address “invalid” physical address

L1 

Tag present

Speculatively 
propagate to CPU



L1TF big issues

• To exploit L1TF we must drive page table entries 

• A kernel typically does not allow it (in fact kernel mitigation of this attack 
simply relies on having “invalid” page table entries set to proper values that 
do not map cacheable data)

• But what about a guest kernel?

• It can attack physical memory of the underlying host

• So it can also attack memory of co-located guests/VMs

• It is as simple as hacking the guest level page tables, on which an attacker that 
drives the guest may have full control 



Attacking the host physical memory

Change this to whatever 
physical address and 
make the entry invalid



Linux core map
• It is an array of mem_map_t (also known as struct page) structures defined in 
include/linux/mm.h

• The actual type definition is as follows (or similar along kernel advancement):

typedef struct page {

struct list_head list; /* ->mapping has some page lists. */

……

atomic_t count; /* Usage count, see below. */

……

unsigned long flags; /* atomic flags, some possibly
   updated asynchronously */

……
} mem_map_t;



Linux free list data structures 

• Free lists information is kept within the pg_data_t data structure defined in 
include/linux/mmzone.h, and whose actual instance is contig_page_data, 
which is declared in mm/numa.c

typedef struct pglist_data {
struct zone node_zones[MAX_NR_ZONES];
……
int nr_zones; //actually used zones
……
struct page *node_mem_map;
……

} pg_data_t;



struct zone {
……

free_area_t free_area[MAX_ORDER];
……

spinlock_t lock;
……

struct page *zone_mem_map;

……

}

Up to 11 in recent 
kernel versions
(it was typically 5 
before)

Where we do pick free memory
 blocks in a buddy allocator

Describing a memory zone



Buddy system features

frame Order 0

Order 0

Order 1 Order 2

Size 20 Size 21 Size 22



Buddy allocation vs core map vs free list

Order 0 free frames

Order 0 free frames

Order 1 free frame

Order 1 free frame

free_area[0]

free_area[1]

references based on 
struct list_head

Recall that spinlocks are used to manage this data structure 

mem_map (the core map array)



A higher level view 



A scheme (picture from: Understanding the Linux 
Virtual Memory Manager – Mel Gorman) 



Jumping to NUMA aware Linux kernels (e.g. 
starting from kernel 2.6)

• The concept of multiple NUMA zones is represented by a struct 
pglist_data even if the architecture is Uniform Memory Access (UMA)

• This struct is always referenced by its typedef pg_data_t 

• Every node in the system is kept on a NULL terminated list called 
pgdat_list, and each node is linked to the next with the field 
pg_data_t→node_next

• For UMA architectures like PC desktops, only one static pg_data_t 
structure is used



A scheme

mem_map
pglist_data

pg_data_t record

struct page *node_mem_map

From kernel 
2.6.17 we have 
an array of entries
called 
node_data[]

One buddy
allocator
per each 
node



Allocation contexts - more generally, kernel level 
execution contexts

• Process context
– Allocation is caused by a system call or a trap

• Not satisfiable  wait is experienced along the current execution trace 
• Priority based schemes 

• Interrupt
– Allocation requested by an interrupt handler

• Not satisfiable  no-wait is experienced along the current execution 
trace

• Priority independent schemes



Buddy-system API
• After booting, the memory management system can be accessed via proper APIs, which 

drive operations on the aforementioned data structures

• The prototypes are in   #include <linux/malloc.h>

• The very base allocation APIs are (bare minimal – page aligned allocation)

 unsigned long get_zeroed_page(int flags) 
  removes a frame from the free list, sets the content to zero and returns the virtual 

address

 unsigned long __get_free_page(int flags) 
  removes a frame from the free list and returns the virtual address
 unsigned long __get_free_pages(int flags, unsigned long 

order) 
    removes a block of contiguous frames with given order from the free list and returns 

the virtual address of the first frame



 void free_page(unsigned long addr) 
  puts a frame into the free list again, having a given initial virtual address

 void free_pages(unsigned long addr, unsigned long 
order) 

  puts a block of frames of given order into the free list again 
     Note!!!!!!! Wrong order may give rise to kernel corruption in several 

kernel configurations

flags - used contexts

GFP_ATOMIC  the call cannot lead to sleep (this is for interrupt contexts)

GFP_USER - GFP_BUFFER - GFP_KERNEL  the call can lead to sleep



Buddy allocation vs direct mapping

• All the buddy-system API functions return virtual addresses of directly mapped 
pages

• We can therefore directly discover the position in memory of the corresponding 
frames

• Also, memory contiguity is guaranteed for both virtual and physical addresses

• Additonal flags could be used for memory allocation in specific zobbes (e.g. the 
ZONE_DMA flag) 



Binding actual allocation to NUMA nodes

The real core of the Linux page allocator is the function

struct page *alloc_pages_node(int nid, unsigned int flags, unsigned int 
order);

Hence the actual allocation chain is:

__get_free_pages

mempolicy data
Node ID

alloc_pages_node (per NUMA node allocation)



Mem-policy details
• Generally speaking, mem-policies determine what NUMA node needs to be involved 

in a specific allocation operation which is thread specific

• Starting from kernel 2.6.18, the determination of mem-policies can be configured by 
the application code via system calls

Synopsis

#include <numaif.h> 

int set_mempolicy(int mode, unsigned long *nodemask, 
unsigned long maxnode); 

 sets the NUMA memory policy of the calling process, which consists of a policy mode 
and zero or more nodes, to the values specified by the mode, nodemask and maxnode 
arguments. The mode argument must specify one of MPOL_DEFAULT, 
MPOL_BIND, MPOL_INTERLEAVE or MPOL_PREFERRED  



… another example

Synopsis
#include <numaif.h> 
int mbind(void *addr, unsigned long len, int mode, 
unsigned long *nodemask, unsigned long maxnode, unsigned 
flags); 

sets the NUMA memory policy, which consists of a policy mode and zero or more 
nodes, for the memory range starting with addr and continuing for len bytes. The 
memory policy defines from which node memory is allocated. 



… finally you can also move pages around

Synopsis
#include <numaif.h> 
long move_pages(int pid, unsigned long count, void 
**pages, const int *nodes, int *status, int flags);

moves the specified pages of the process pid to the memory nodes specified by 
nodes. The result of the move is reflected in status. The flags indicate constraints on 
the pages to be moved. 



The case of frequent allocation/deallocation of 
target-specific data structures

• Here we are talking about allocation/deallocation operations of data structures 
1. that are used for a target-specific objective (e.g. in terms of data structures to be 

hosted) 
2. which are requested/released frequently

• The problem is that getting the actual buffers (pages) from the buddy system will lead 
to contention and consequent synchronization costs  (does not scale)

• In fact the (per NUMA node) buddy system operates with spinlock synchronized 
critical sections

• Kernel design copes with this issue by using pre-reserved buffers with lightweight 
allocation/release logic



… a classical example

• The allocation and deletion of page tables, at any level, is a very frequent operation, 
so it is important the operation is as quick as possible

• Hence the pages used for the page tables are cached in a number of different lists 
called quicklists

• For 3/4 levels paging,  PGDs, PMDs/PUDs and PTEs have two sets of functions 
each for the allocation and freeing of page tables. 

• The allocation functions are pgd_alloc(), pmd_alloc(), pud_alloc() and 
pte_alloc(), respectively the free functions are, predictably enough, called 
pgd_free(), pmd_free, pud_free() and pte_free()

• Broadly speaking, these APIs implement caching



Actual quicklists

• Defined in include/linux/quicklist.h

• They are implemented as a list of per-processing -unit page lists

• There is no need for synchronization

• If allocation fails, they revert to

                 __get_free_page()

• In very latest versions of the Linux kernel, pre-reserving is done at the buddy 
allocator API



Quicklist API and algorithm

Beware these!!



Very recent quicklist vs buddy-system layering

• In more recent kernel versions the quicklist is one if the components of the 
buddy system 

• It is used internally to this system, in particular for handling 4KB size 
allocation operations

• This allows using quicklists transparently by relying on the same API used 
for the buddy

• Quicklists operating at other levels are still available for kernel 
programming



SLAB (or SLUB) allocator - a cache of ‘small’ size buffers

• The main APIs are

 void *kmalloc(size_t size, int flags) 
     allocation of contiguous memory of a given size  - it returns the virtual address

 void kfree(void *obj) 
     frees memory allocated via kmalloc()

• Main features
 Cache aligned delivery of memory chunks (performance optimal access of data within 

the same chunk)
 Multiple caches associated with different allocation sizes
 Fast allocation/deallocation support

• Clearly, we can also perform node-specific requests via
 void *kmalloc_node(size_t size, int flags, int node) 

kzalloc() for 
zeroed buffers



Details on cached allocation

• Slab is based on pre-allocating pages from the buddy system 

• The areas in these pages are then managed in a transparent manner by the slab system

• Cached-allocator instances for chunks of a given size can be created dynamically – this 
allows separation of memory usage for different services at kernel level

• The creation of a new cached allocator is only “virtual” (the real allocations can take place 
from another “equivalent allocator” (working with chunks of the same size)  

• Any new cached allocator with “memory initialization” is never fused to existing ones

• A cached-allocator can be released when all its managed chunks have already been 
released 

• You can check the existing allocators using  /proc/slabinfo



Cached allocation low level API - baseline

struct kmem_cache *kmem_cache_create(char *name, 
size_t size,

                                  size_t align, 
unsigned long flags,

                                      void (*ctl)(void *))

int kmem_cache_destroy(struct kmem_cache *cache)

void *kmem_cache_alloc(struct kmem_cache_t *cache, int prio)

void kmem_cache_free(struct kmem_cache_t *cache, void *ptr)

This is the memory 
initialization function



SLAB coloring 

• A slab allocator is also assigned a color → this is a numerical code

• It is used to determine the position of the “first chunk” to be delivered into 
the slab

• Recall that the slab is a set of contiguous memory pages

• This allows mapping the first object of two different slabs for a same size on 
different cache lines with some (hopefully non-minimal) probability

• Clearly, the set of different colors is limited 



Coloring details 

• Suppose DSIZE is the dsize of metadata for a cached allocator

• Suppose it delivers chunks aligned to ALN

• Then assigning the color COL means that the first chunk of the slab is at the 
following offset from the beginning of the cached allocator → DSIZE + 
ALN * COL

• Essentially slab coloring means that the initial slab free areas are moved 
more or less close to the end of the used cached allocator areas 



• Classically employed while adding large size data structures to the kernel in a 
stable way

• We can go beyond the size-limit of the specific buddy system implementation 

• This is the case when, e.g., mounting external modules

• This time we are not guaranteed to get directly mapped pages

• The main APIs are:
void * vmalloc(unsigned long size);

    allocates memory of a given size, which can be non-contiguous physically, and 
returns the virtual address (the corresponding frames are anyhow reserved)

void vfree(void * addr)

    frees the above mentioned memory

What about (very) large size allocations



kmalloc vs vmalloc - an overall reference picture

• Allocation size:
 128 KB for kmalloc (cache aligned)
 64/128 MB for vmalloc

• Physical contiguousness
 Yes for kmalloc
 No for vmalloc

• Effects on TLB
 None for kmalloc
 Global for vmalloc (transparent to vmalloc users)



vmalloc operations (i)

• Based in remapping a range of contiguous pages in (non contiguous) physical 
memory

Kernel level
pages Page

frames Directly 
mapped 

Non-
directly 
mapped 

Suppose we need 3 
contiguous virtual 
pages

Busy frame
Free frame



vmalloc operations (ii)

Clearly with vmalloc we typically remap much larger 
blocks of pages

Kernel level
pages Page

frames Directly 
mapped 

Non-
directly 
mapped 

We remap the three pages within 
the page table (also moving the 
green frames to red)

Busy frame
Free frame



Kernel-page remapping vs hardware state

• Kernel-page mapping has a “global nature”

• Any core can use the same mapping, supported by the same page tables

• When running vmalloc/vfree services on a specific core, all the 
other cores need to observe the updated mapping

• Cached mappings within TLBs need therefore to be updated via proper 
operations 



TLB implicit vs explicit operations

• The level of automation in the management process of TLB entries depends 
on the specific hardware architecture

• Kernel hooks have to exist for explicit management of TLB operations 
(these are compile-time mapped to null operations in case of fully 
automated TLB management)

• For x86 processors automation is only partial

• Specifically, automatic TLB flushes occur upon updates of the CR3 register 
(e.g. page table changes) 

• Changes inside the current page table are not automatically reflected within 
the TLB  



Types of TLB relevant events

• Scale classification

 Global: dealing with virtual addresses accessible by every CPU/core 
in real-time-concurrency

 Local: dealing with virtual addresses accessible in time-sharing 
concurrency

• Typology classification

 Virtual to physical address remapping

 Virtual address access rule modification (read only vs write access)

• Typical management, TLB implicit renewal via flush operations 



TLB flush costs
• Direct costs

  The latency of the firmware level protocol for TLB entries invalidation 
(selective vs non-selective)

  plus, the latency for cross-CPU coordination in case of global TLB flushes

• Indirect costs

TLB renewal latency by the MMU firmware upon misses in the translation 
process of virtual to physical addresses 

This cost depends on the amount of entries to be refilled

Tradeoff vs TLB API and software complexity inside the kernel (selective vs 
non-selective flush/renewal)



void flush_tlb_all(void) 

• This flushes the entire TLB on all processors running in the system, 
which makes it the most expensive TLB flush operation  

• After it completes, all modifications to the page tables will be visible 
globally 

• This is required after the kernel page tables, which are global in nature, 
have been modified

• Examples are vmalloc()/vfree() operations

Linux global TLB flush



• x86 does not offer  pure hardware support for flushing all the TLBs on 
board of the architecture

• It offers a baseline mechanism to let CPU-cores coordinate

• A software layer is used to drive what to do while coordinating (namely 
TLB invalidation)

• We will come back to this issue when analyzing actual interrupt 
achitectures on multi-core machines

Linux global TLB flush vs x86



The x86 timeline of vmalloc

• Acquire memory from the buddy allocator
• Update kernel page table

Cross CPU-core
coordination for 
TLB invalidation
(via CR3 rewriting)

Invocation (on some generic CPU-core)

return



void flush_tlb_mm(struct mm_struct *mm)

• This flushes all TLB entries related to the userspace portion for the 
requested mm context

• This is only called when an operation has been performed that affects the 
entire address space 

• e.g., after all the address mapping has been duplicated with 
dup_mmap() for fork or after all memory mappings have been deleted 
with exit_mmap()

• Interaction with COW protection

Linux partial TLB flush



void flush_tlb_range(struct mm_struct *mm, unsigned 
long start, unsigned long end) 

• This flushes all entries within the requested user space range for the mm 
context

• This is used after a region has been moved (e.g. mremap()) or when 
changing permissions (e.g. mprotect())  

• This API is provided for architectures that can remove ranges of TLB 
entries quickly rather than iterating with flush_tlb_page()



void flush_tlb_page(struct vm_area_struct *vma, 
unsigned long addr)

• This API is responsible for flushing a single page from the TLB

• The two most common uses of it are for flushing the TLB after a 
page has been faulted in or has been paged out

 Interactions with page table access firmware



x86 partial TLB invalidation



void flush_tlb_pgtables(struct mm_struct *mm, 
unsigned long start, unsigned long end)

 This API is called when the page tables are being torn down and freed 

 Some platforms cache the lowest level of the page table, i.e., the actual 
page frame storing entries, which needs to be flushed when the pages 
are being deleted (e.g. Sparc64)

 This is called when a region is being unmapped and the page directory 
entries are being reclaimed



void update_mmu_cache(struct vm_area_struct *vma, 
unsigned long addr, pte_t pte)

 This API is only called after a page fault completes 

 It tells that a new translation now exists at pte for the virtual address 
addr

 Each architecture decides how this information should be used

 In some case it is used for preloading TLB entries (e.g. like in ARM 
Cortex processors)
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