
Kernel programming basics
• Addressing schemes and software protection models
• Hardware/software protection support
• Kernel access GATEs
• Per-CPU/per-thread memory
• System call dispatching
• x86/Linux case study

Advanced Operating Systems
MS degree in Computer Engineering
University of Rome Tor Vergata
Lecturer: Francesco Quaglia

Linear addressing

Whatever memory slice available
for software execution (physical vs logical)

Linear address (<offset>)

Segmentation

Segment A

Segment B

Segment C

Address space (a linear one)

address = <seg.id,offset> (es. <A,0x10)

Combining segments in a linear address space

Segment A

Segment B

Segment C
Address specification = <seg.id,offset> (es. <B,offset>)

Need to know where B is
located in the linear address
space (this is the “base” of B)

Then the linear address is
<base+offset>

Virtual memory

Kernel mode (code + data/stack)

user mode (code + data/stack)

Linear addressing + mapping to actual storage (if existing)

RAM

Segmentation based addresses

• Code relies on addresses formed by <segment number, offset>

• If segment numbers are not specified by the machine instruction, some default
segment is used for each target datum (instruction or operand)

• Modern processors (system processors) are equipped such in a way to support
segmentation efficiently, in combination with linear addressing and virtual
memory (say paging)

• The whole architecture is therefore requested to handle a complex address
mapping scheme such as

 segmented addr  linear addr  paged addr  physical addr

Segmentation with paging

Segment number offset

HW supported
translation

PDE page offsetPTE

• both are logical
addresses

• the offset value may
differ

2-level paging example
Determination of the
linear address relying on
<base,offset>

A very base x86 example

mov (%rax), %rbx

push %rbx

When running this piece of code
our x86 processor is implicitly
using 3 different segments of
memory!!

To have an exact idea of what is going on along program flow (in terms
of reflection on the hardware usage) we need to know such
segmentation related details

“System” processors vs segmentation

• “system” processors (those oriented to host operating system software)
rely on hardware components that allow fast and transparent access
to segmentation information (e.g. segment specific information)

• These are
 CPU registers
 main memory tables (directly pointed by registers)

The concept of segment selector

• In general, when a memory address is expressed, the target segment is identified via
a segment selector register (or simply segment register)

• Hence the access is based on segment-selector identifiers

• Through the content of the segment selector we get information on what segment ID
needs to be involved in the access

• This also means that using a same selector may lead to access to different segment
IDs (hence to different bases)

Address = <segment-selector ID, offset>

Segment selector register
Target segment ID

x86 memory access – real mode

 Offers backward compatibility towards 286!!

 a 16-bit segment register (there where four!) keeps the target segment ID

 16-bit (general) registers keep the segment offset

 Targeted addresses are physical, and are computed as

 PhysicalAddress = Segment * 16 + Offset

 Around 1MB (2^20B) of memory is allowed

 Minimal support for separating chunks of memory in the addressing
scheme

 No segment specific protection information!!

 Not suited for modern software systems!!!

x86 memory access – 80386 protected mode

 a 16-bit segment register keeps the target segment ID (using 13 bits)

 32-bit (general) registers keep the segment offset

 The base of the segment in linear addressing is kept into a table in
memory

 Targeted addresses are linear and are computed as

 address = TABLE[segment].base + offset

 Up to 4GB of linear (either physical or logical) memory is allowed

 3-bit for control (protection) are kept in the segment register …. much
better for OS software!!!

x86 memory access modes – long mode (x86-64)

 a 16-bit segment register keeps the target segment ID (using 13 bits)

 64-bit (general) registers keep the segment offset (limited to 48-bit
global addressing in canonical form)

 The base of the segment in linear addressing is kept into a table in
memory

 Targeted addresses are linear and are computed as

 address = TABLE[segment].base + offset

 Up to 2^48 B (256 TB) of linear memory is allowed

 3-bit for control (protection) are kept in the segment register

x86 segment tables
• The are two table types keeping segments information

– Global Descriptor Table (GDT)
– Local Descriptor Table (LDT)

• Typically GDT and LDT are kept in main memory, and are directly accessible
via pointers maintained by CPU registers

• GDT determines the mapping of linear addresses at least for kernel mode
(namely kernel level segments) – global stuff

• LDT determines the mapping of linear addresses for user mode (namely user
level segments), if not done via GDT – local stuff

• These addresses are then used to access physical memory via page tables (if
paging is activated)

GDT organization

generic
entry

Segment base within
linear addressing

FLAGS

To be composed with
segment-offset upon access

Segment protection and
usage rules

Segmentation vs paging

• Segmentation and paging typically have different targets

• Segmentation is a classical means for protecting code and data

• This protection mechanism is generally based on coarse grain schemes (in fact,
segments may have very large sizes, covering up to the whole address space of
the application)

• Paging (possibly coupled with virtual memory techniques) is generally employed
as a means for improving physical-memory management efficiency

• Such “efficiency oriented” mechanism is based on a fine-grain approach,
namely it relies on the size of the page frame for the specific hardware
architecture (e.g. 4KB or 2/4MB for x86 architectures)

 Segmentation vs multi-cores/multi-threading

• … we know that paging schemes are still able to enforce protection of memory
(via control bits in page-table entries)

• So we may think that segmentation is somehow useless in modern software
systems

• This is a wrong concept, since as we will show segmentation still plays a central
role in multi-core architectures

• It also plays a central role in multi-thread programming

• …… in 1985 paging was already there in the hardware but Intel further extended
the segmentation support (e.g. in the 80386 processor)

• …. although the segmentation logic has been significantly revised in x86-64
processors

Segmentation based protection model (i)
• Each segment is associated with a given protection level (or privilege level)

• Each routine having protection level h can invoke any other routine having protection
level h, within any segment (via intra-segment and cross-segment jumps)

• Routines having protection level h can invoke routines having protection level
different from h via cross-segment jumps

• Cross-segment jumps always allow jumping from protection level h to protection
level h+i

• Each segment having protection level h is associated with a set of access points,
called GATEs, each one identified as <seg.id,offset>

• Any GATE is associated with a maximum level max=h+j starting from which the
GATE can be passed through

Segmentation based protection model (ii)

• If level(S)=h and max(GATE(S))=h+i then segment S entails a GATE
for accessing level h for modules associated with protection level up to
h+i

• Cross-segment jumps deny the access to the destination if the source
operates at protection level greater than the maximum one associated
with the gate

• Overall, cross-segment jumps deny the access to the destination anytime
we do not use a GATE as the destination entry for the jump

Protection levels and jumps - the ring model

Level 0

Level 1

Level 2

Always admitted
Admitted depending on the max origin level associated with
the target GATE

User routine

Kernel routine A

Kernel routine B

<S1, offset1>
(S1: level 0 – offset1: max = 0)

<S1, offset2>
(S1: level 0 – offset2: max = 3)

S2 (level 2)

Admitted cross-segment
jumps

Non-admitted
cross-segment
jump

An example

Objectives of protection levels

• Denial of uncontrolled access to kernel level modules

• Kernel level access is controlled via specific “entry points” (the GATEs),
which are explicitly used as destinations for jumps (more generally control
flow variations) originated while running at worse protection levels

• In conventional operating systems, the entry points are typically associated
with:

 interrupt handlers (asynchronous invocations)

 software traps (synchronous invocations)

Ring scheme for x86 machines

x86 address composition with segmentation

• An address does not specify the segment ID directly

• It can specify a segment-selector register

• This register keeps information on the actual segment to which we are
accessing

• An example:

 <segment-selector-register,displacement>

x86 details on the segmentation support

CS: code segment register
SS: stack segment register
DS: data segment register
ES: data segment register
FS: data segment register
GS: data segment register

CS (Code Segment Register) points to the current segment. The 2 lsb identify the
CPL (Current Privilege Level) for the CPU (from 0 to 3).

SS (Stack Segment Register) points to the segment for the current stack.
DS (Data Segment Register) points to the segment containing static and global data.

For CS RPL is called
CPL
This register is only
writable by control flow
variation instructionsadded in

80386

Back to the very early x86 example

mov (%rax), %rbx

push %rbx

Here we are seamlessly (say
implicitly) using CS, and DS for the
first instruction and CS and SS for the
second instruction

ES is an additional (to DS) implicit segment for specific

classes of machine instructions, e.g. string-targeted ones like

stos and movs

x86 GDT entries (segment descriptors)

Access byte content:
Pr - Present bit. This must be 1 for all valid selectors.
Privl - Privilege, 2 bits. Contains the ring level (0 to 3)
Ex - Executable bit (1 if code in this segment can be executed)
…….

Flags:
Gr - Granularity bit. If 0 the limit is in 1 B blocks (byte granularity),
 if 1 the limit is in 4 KB blocks (page granularity)
….

This directly supports
protected mode

Accessing GDT entries

• Given that a segment descriptor is 8 bytes in size, its relative address
within GDT is computed by multiplying the 13 bits of the index field of
segment selector by 8

• E.g, in case GDT is located at address 0x00020000 (value that is kept

by the gdtr register) and the index value within segment selector is set
to the value 2, the address associated with the segment descriptor is
0x00020000 + (2*8), namely 0x00020010

This is not only a pointer but actually a packed struct
describing positioning and size of the GDT

Long mode descriptors

ignored bits

x86 long mode provides 2 (the table size) + 8 (the table address) bytes

Long mode GDTR extensions

Example code

#include <stdio.h>

struct desc_ptr {
 unsigned short size;
 unsigned long address;
} __attribute__((packed)) ;

#define store_gdt(ptr) asm volatile("sgdt %0":"=m"(*ptr))

int main (int argc, char**argv){
 struct desc_ptr gdtptr;
 char v[10];//another way to see 10 bytes packed in memory

 store_gdt(&gdtptr);
 store_gdt(v);

 printf("comparison is %d\n",memcmp(v,&gdtptr,10));
 printf("GDTR is at %x - size is %d\n",gdtptr.address, gdtptr.size);
 printf("GDTR is at %x - size is %d\n",((struct desc_ptr*)v)->address,
 ((struct desc_ptr*)v)->size);

}

Access scheme

Caching of descriptors
(1 cache register per segment
 selector – non-programmable)

Cache line filled upon selector
update

Making explicit usage of segments while coding

#include <stdio.h>

#define load(ptr,var) asm volatile("mov %%ds:(%0), %%rax":"=a" (var):"a" (ptr))
#define store(val,ptr) asm volatile(" mov %0, %%ds:(%1)“\

 ::"a" (val), "b" (ptr):)

int main (int argc, char**argv){

 unsigned long x = 16;

 unsigned long y;

 load(&x,y);
 printf("variable y has value %u\n",y);

 store(y+1,&x);
 printf("variable x has value %u\n",x);

}

explicit reference
to the data segment
register (DS)

Code/data segments for Linux

Can we read/write/execute?
Is the segment present?

x86-64 directly forces base to 0x0 for
the corresponding segment registers

An example of Linux GDT on x86

Beware
these

The x86-64 revision

• Registers keeping track of segment IDs (also known as selectors) are not all
managed the same way by firmware on board of the processor

• For some registers keeping segment IDs (hence for the corresponding
segments in the GDT table) a fixed base of 0x0 is enforced for the segments

• Protection bits in the segment table entries associated with those segments
IDs still work

• For a few registers keeping segment IDs the classical rule relying on
arbitrary base values for the segments is adopted

x86-64 selector management details

CS

SS

DS

ES

FS

GS

Base = 0x0

Privilege level is still there
and working

Arbitrary Base

x86 segment selectors update rules

• CS plays a central role, since it keeps the CPL (Current Privilege
level)

• CS is only updatable via control flow variations

• All the other segment registers can be updated if the segment
descriptor they would point to after the update has DPL  CPL

• Clearly, with CPL = 0 we can update everything (ring 0 has no
limit)

TSS – Task State Segment

• The set of linear addresses associated with TSS is a subset of the
 linear address space destined to kernel data segment

• each TSS (one per CPU-core) is kept within a specific memory region

• the Base field within the n-th processor TSS register points to the n-th
TSS entry (transparently via the TSS segment)

• DPL = 0, since the TSS segment cannot be accessed in user mode

x86 TSS structure

Although it could be ideally used for
hardware based context switches, it is
not in Linux/x86

It is essentially used for privilege
level switches (e.g. access to kernel
mode), based on stack differentiation

x86-64 TSS variant

room for 64-bit
stack pointers has been created
sacrificing general registers
snapshots

Loading the TSS register

• x86 ISA (Instruction Set Architecture) offers the instruction LTR

• This is privileged and must be executed at CPL = 0

• The TSS descriptor must be filled with a source operand

• The source can be a general-purpose register or a memory
location

• Its value (16 bits) keeps the index of the TSS descriptor into the
GDT

GDT replication

• By the discussion on TSS we might have already observed that different
CPU-cores in a multi-core/multi-processor system may need to fill a given
entry of the GDT with different values

• To achieve this goal the GDT is actually replicated in common operating
systems, with one copy for each CPU-core

• Then each copy slightly diverges in a few entries

• The main (combined) motivations are

 performance

 transparency of data access separation

Actual architectural scheme

RAM memory

CPU-core 0 CPU-core 1

gdtr
gdtr

The two tables may differ in a few entries!!

Replication benefits - per-CPU seamless memory accesses

RAM memory

CPU-core 0 CPU-core 1

gdtr
gdtr

GS segment = X GS segment = X

Base is B Base is B’

Same displacement within segment X seamlessly leads the two CPU-cores to
access different linear addresses

Per-CPU memory

• No need for a CPU to call, e.g. CPUID (… devastating for the speculative
pipeline …) to determine what memory portion is explicitly dedicated to it

• Fast access via GS segment displacing for per-CPU common operations
such as

 Statistics update (no need for LOCKED CMPXCHG)

 Fast control operations

Per-CPU memory setup in Linux

• Based on some per-CPU reserved zone in the linear addressing scheme

• The reserved zone is displaced by relying on the GS segment register

• Based on macros that select a displacement in the GS segment

• Based on macros that implement memory access relying on the selected
displacement

An example

DEFINE_PER_CPU(int, x);

int z;

z = this_cpu_read(x);

The above statement results in a single instruction:

 mov ax, gs:[x]

To operate with no special define we can also get the actual address of the
per-CPU data and work normally:

 y = this_cpu_ptr(&x)

TLS – Thread Local Storage

• It is based on setting up different segments associated with FS and GS
selectors

• Each time a thread is CPU-dispatched, kernel software restores its
corresponding segment descriptors into TLS#1, TLS#2 and TLS#3 within
the GDT

• We have system calls allowing us to change the segment descriptors to be
posted on TLS entries

Segment management system calls (i)

Segment management system calls (ii)

x86-64 control registers

• CR0-CR3 or CR0-CR4 (on more modern x86 CPUs)

– CR0 is the baseline one

– CR1 is reserved

– CR2 keeps the linear address in case of a fault

– CR3 is the page-table pointer

CR0 structure vs long mode

Long mode uses a combination of this and
the EFER (Extended Feature Enable Register)
MSR (model specific register)

Interrupts/traps vs kernel access

• Interrupts are asynchronous events that are not correlated with the current
CPU-core execution flow

• Interrupts are generated by external devices, and can be masked (vs non-
masked)

• Traps, also known as exceptions, are synchronous events, strictly coupled
with the current CPU-core execution (e.g. division by zero)

• Multiple executions of the same program, under the same input, may (but not
necessarily do) give rise to the same exceptions

• Traps are (actually have been historically) used as the mechanism for on
demand access to kernel mode (via system calls)

Management of trap/interrupt events

• The kernel keeps a trap/interrupt table

• Each table entry keeps a GATE descriptor, which provides information on the
address associated with the GATE (e.g. <seg.id,offset>) and the GATE protection
level

• The content of the trap/interrupt table is exploited to determine whether the access
to the GATE can be enabled

• The check relies on the current content of CPU registers, the segment registers,
which specify the current privilege level (CPL)

• In principle, it may occur that a given GATE is described within multiple entries
of the trap/interrupt table (aliasing), possibly with different protection
specifications

Summary of x86 control flow variations
• intra-segment: standard jump instruction (e.g. JMP <displacement> on x86

architectures)
 firmware only verifies whether the displacement is within the current segment

boundary
• cross-segment: long jump instructions (e.g. LJMP <seg.id>, <displacement> on x86

architectures)
Firmware verifies whether jump is enabled on the basis of privilege levels (no

CPL improvement is admitted)
Then, firmware checks whether the displacement is within the segment

boundaries
• cross-segment via GATEs: trap instructions (e.g. INT <table displacement> on x86

architectures)
Firmware checks whether jumping is admitted depending on the privilege level

associated with the target GATE as specified within the trap/interrupt table

An overview

Seg 0 – level = 0

Seg 1 – level  0

Seg i – level  n

Not always admitted
(requires consulting the
 Trap/interrupt table
 +
Segment Tables)

Always admitted
(requires anyway consulting
 the segment Tables)

Move across
segments

GATE details for the x86 architecture (i)

• The trap/interrupt table is called Interrupt Descriptor Table (IDT)

• Any entry keeps

 The ID of the target segment and the segment displacement

 the max level starting from which the access to the GATE is granted

• IDT is accessible via the idtr register which is a packed structure keeping
the linear address of the IDT and the size (number of entries, each made up by
8 or 16 bytes, depending on whether extended 64-bit mode is active)

• The register is loadable via the LIDT machine instruction

GATE details for the x86 architecture (ii)

• We know the current privilege level is kept within CS

• If protection information enables jumping, the segment ID within IDT is used
to access GDT in order to check whether jumping is within the segment
boundaries

• If check succeeds the current privilege level gets updated

• The new value is taken from the corresponding entry of GDT (this value
corresponds to the privilege level of the target segment)

• The GATE description also tells whether the activated code is interruptible or
not

Conventional operating systems

• For Linux/Windows systems, the GATE for on-demand access (via software traps) to
the kernel is unique

• For i386 machines the corresponding software traps are
 INT 0x80 for LINUX (with backward compatibility in x86-64)
 INT 0x2E for Windows

• Any other GATE is reserved for the management of run-time errors (e.g. divide by
zero exceptions) and interrupts

• They are not usable for on-demand access via software (clearly except if you hack
the kernel)

• The software module associated with the on-demand access GATE implements a
dispatcher that is able to trigger the activation of the specific system call targeted
by the application

Data structures for system call dispatching

• There exists a “system call table” that keeps, in any entry, the address of a specific
system call

• Such an address becomes the target for a subroutine activation by the dispatcher

• To access the correct entry, the dispatcher gets in input the number (the numerical
code – the index) of the target system call (typically this input is provided within a
CPU register)

• The code is used to identify the target entry within the system call table

• Then the dispatcher invokes the system call routine (as a “jump sub-routine” – CALL
instruction on x86)

• The actual system call, once executed, provides its output (return) value within a CPU
register

The trap-based dispatching scheme

User level
define input and
access GATE (trap)

dispatcher

Kernel level

System call table

System call
code

system call
activation

return from
trap

retrieve system call
return value

retrieve the reference to
the system call code

User space return

Trap vs interruptible execution

• Differently from interrupts, trap management is typically configured so as not
to entail/enable automatically resetting the interruptible-state for the CPU-core

• Any critical code portion associated with the management of the trap within
the kernel requires explicit set of the interruptible-state bit, and the reset after
job is complete (e.g. via CLI e STI instructions in x86 processors)

• For SMP/multi-core machines this may not suffice for guaranteeing
correctness (e.g. atomicity) while handling the trap

• To address this issue, spinlock mechanisms are adopted, which are base on
atomic test-end-set code portions (e.g., generated via the x86 LOCK prefix
on standard compilation tool chains)

Test-and-set support

• Modern instruction sets offer a single instruction to atomically test-and-
set memory, this is the CAS (Compare And Swap) intruction

• On x86 machines the actual CAS is called CMPXCHG (Compare And
Exchange)

• ... but we already discussed of this while dealing with memory
consistency!!

System call software components

• User side: software module (a) providing the input parameters to the
GATE (and to the actual system call) (b) activating the GATE and (c)
recovering the system call return value

• kernel side:
 dispatcher
system call table
 actual system call code

• Addition of a new system call means working on both sides

• Typically, this happens with no intervention on the dispatcher in all the
cases where the system call format is compliant with those predefined
for the target operating system

System call indexing in Linux
 We originally had the so called UNISTD_32 indexing scheme

 This is still supported in modern kernel versions (e.g. 4.x and 5.x)

 Now we have the UNISTD_64 indexing

 Given that the system call indexes are used/needed at user space, we can exploit them for
user code programming via the /usr/include/asm directory (or
/usr/include/x86_64-linux-gnu/asm)

 The two indexing schemes are stated in

 unistd_32.h
 unistd_64.h

 Two indexing schemes imply two different system call tables at kernel level, which coexist
with each other (and of course two dispatchers)

UNISTD_32 listing
#ifndef _ASM_X86_UNISTD_32_H
#define _ASM_X86_UNISTD_32_H 1

#define __NR_restart_syscall 0
#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3
#define __NR_write 4
#define __NR_open 5
#define __NR_close 6
#define __NR_waitpid 7
#define __NR_creat 8
#define __NR_link 9
#define __NR_unlink 10
#define __NR_execve 11
#define __NR_chdir 12
#define __NR_time 13
#define __NR_mknod 14
#define __NR_chmod 15
#define __NR_lchown 16
……

UNISTD_64 listing

#ifndef _ASM_X86_UNISTD_64_H
#define _ASM_X86_UNISTD_64_H 1

#define __NR_read 0
#define __NR_write 1
#define __NR_open 2
#define __NR_close 3
#define __NR_stat 4
#define __NR_fstat 5
#define __NR_lstat 6
#define __NR_poll 7
#define __NR_lseek 8
#define __NR_mmap 9
#define __NR_mprotect 10
#define __NR_munmap 11
#define __NR_brk 12
#define __NR_rt_sigaction 13
#define __NR_rt_sigprocmask 14
……

User level tasks for accessing the GATE

1. Specification of the input parameters via CPU registers (note that
these include the actual system call parameters and the dispatcher ones)

2. ASM instructions triggering the GATE (e.g. traps)

3. Recovery of the return value of the systems call (upon returning from
the trap associated with GATE activation)

Predefined system call formats

• These are specified in header files that enable using GATE access functions in C

• These header files define the standard formats for the user level module
triggering access to the system GATE (namely the module that activates the
system call dispatcher), each for a different value of the number of system call
parameters (from 0 to 6)

• Essentially these header files contain ASM vs C directives and architecture
specific compilation directives

• They represent a meeting point between standard C programming and machine
specific ASM language (in relation to the GATE access functionality)

Code block for a standard system call with no parameter
(e.g. fork()) – classical UNISTD_32 define style

#define _syscall0(type,name) \

type name(void) \

{ \

long __res; \

__asm__ volatile ("int $0x80" \

: "=a" (__res) \

: "0" (__NR_##name)); \

__syscall_return(type,__res); \

}

Assembler instructions

Tasks preceding the assembler
code block

Tasks to be done after the
execution of the assembler
code block

Managing the return value and errno

/* user-visible error numbers are in the range -1 - -124:

 see <asm-i386/errno.h> */

#define __syscall_return(type, res) \

do { \

if ((unsigned long)(res) >= (unsigned long)(-125)) { \

errno = -(res); \

res = -1; \

} \

return (type) (res); \

} while (0)
Case of res within the
interval [–1, -124]

Note - why the do/while(0) construct?

It is a C construct that allows to

• #define a multi-statement operation

• put a semicolon after and

• still use within an if statement

Code block for a standard system call with one
parameter (e.g. close()) – classical UNISTD_32 style

#define _syscall1(type,name,type1,arg1) \
type name(type1 arg1) \
{ \
long __res; \
__asm__ volatile ("int $0x80" \

: "=a" (__res) \
: "0" (__NR_##name),"b" ((long)(arg1))); \

__syscall_return(type,__res); \
}

2 registers used for the input

Code block for a system call with six parameters –
classical UNISTD_32 style

#define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
 type5,arg5,type6,arg6) \

type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,type6 arg6) \
{ \
long __res; \
__asm__ volatile ("push %%ebp ; movl %%eax,%%ebp ; movl %1,%%eax ; int $0x80 ; pop %%ebp" \

: "=a" (__res) \
: "i" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \
 "d" ((long)(arg3)),"S" ((long)(arg4)),"D" ((long)(arg5)), \
 "0" ((long)(arg6))); \

__syscall_return(type,__res); \
}

We use 4 general purpose registers (eax,ebx,ecx,edx) plus the additional
registers ESI e EDI, and the ebp register (base pointer for the current stack
frame, which is saved before overwriting) and a local integer variable “i”

UNISTD_32 calling conventions for system calls
/*
 * 0(%esp) - %ebx ARGS
 * 4(%esp) - %ecx
 * 8(%esp) - %edx
 * C(%esp) - %esi
 * 10(%esp) - %edi
 * 14(%esp) - %ebp END ARGS
 * 18(%esp) - %eax
 * 1C(%esp) - %ds
 * 20(%esp) - %es
 * 24(%esp) - orig_eax
 * 28(%esp) - %eip
 * 2C(%esp) - %cs
 * 30(%esp) - %eflags
 * 34(%esp) - %oldesp
 * 38(%esp) - %oldss
*/

Ring and baseline CPU
state information
(firmware saved onto
the system stack)

The stack layout representation
complies with the traditional
stack based passage of
parameters

UNISTD_64 calling conventions for system calls

/*
 * Register setup:
 * rax system call number
 * rdi arg0
 * rcx return address for syscall/sysret, C arg3
 * rsi arg1
 * rdx arg2
 * r10 arg3 (--> moved to rcx for C)
 * r8 arg4
 * r9 arg5
 * r11 eflags for syscall/sysret, temporary for C
 * r12-r15,rbp,rbx saved by C code, not touched.
 *
 * Interrupts are off on entry.
 * Only called from user space.
 */

System V AMD64 ABI additional details

• If the callee wishes to use registers RBX, RBP, and R12–R15,
it must restore their original values before returning control to
the caller

• All other registers must be saved by the caller if it wishes to
preserve their values

Details on passing parameters

• Once gained control, the dispatcher will take a complete snapshot of
CPU registers

• The snapshot is taken within the system level stack

• Then the dispatcher will invoke the system call as a subroutine call
(e.g. via a CALL instruction in x86 architectures)

• The actual system call will retrieve the parameters according to the
proper ABI

• The taken snapshot can be modified upon the system call return (e.g. for
delivering the return value)

registers

System stack
upon triggering
dispatcher

Stack pointer

Base pointer

Stack pointer PC

Base pointer

Stack pointerPHASE 1 PHASE 2

PHASE 3

Dispatcher execution
system call
execution

An example

Sys call NR

Sys call NR Sys call NR

UNISTD_32 stack alignment
struct pt_regs {

unsigned long bx;
unsigned long cx;
unsigned long dx;
unsigned long si;
unsigned long di;
unsigned long bp;
unsigned long ax;
unsigned short ds;
unsigned short __dsh;
unsigned short es;
unsigned short __esh;
unsigned short fs;
unsigned short __fsh;
unsigned short gs;
unsigned short __gsh;
unsigned long orig_ax;
unsigned long ip;
unsigned short cs;
unsigned short __csh;
unsigned long flags;
unsigned long sp;
unsigned short ss;
unsigned short __ssh;

}

Firmware saved

Software saved
(no distinction between
 caller/callee save)

https://elixir.bootlin.com/linux/v4.18.12/ident/pt_regs
https://elixir.bootlin.com/linux/v4.18.12/ident/bx
https://elixir.bootlin.com/linux/v4.18.12/ident/cx
https://elixir.bootlin.com/linux/v4.18.12/ident/dx
https://elixir.bootlin.com/linux/v4.18.12/ident/si
https://elixir.bootlin.com/linux/v4.18.12/ident/di
https://elixir.bootlin.com/linux/v4.18.12/ident/ax
https://elixir.bootlin.com/linux/v4.18.12/ident/ds
https://elixir.bootlin.com/linux/v4.18.12/ident/es
https://elixir.bootlin.com/linux/v4.18.12/ident/fs
https://elixir.bootlin.com/linux/v4.18.12/ident/gs
https://elixir.bootlin.com/linux/v4.18.12/ident/ip
https://elixir.bootlin.com/linux/v4.18.12/ident/cs
https://elixir.bootlin.com/linux/v4.18.12/ident/sp
https://elixir.bootlin.com/linux/v4.18.12/ident/ss

UNISTD_64 stack alignment

struct pt_regs {
 /* * C ABI says these regs are callee-preserved. They aren't saved on kernel entry * unless syscall needs a

complete, fully filled "struct pt_regs". */
unsigned long r15; unsigned long r14; unsigned long r13; unsigned long r12; unsigned long bp;

unsigned long bx;
/* These regs are callee-clobbered. Always saved on kernel entry. */

unsigned long r11;
unsigned long r10;
unsigned long r9;
unsigned long r8;
unsigned long ax;
unsigned long cx;
unsigned long dx;
unsigned long si; unsigned long di;

/* * On syscall entry, this is syscall#. On CPU exception, this is error code. * On hw interrupt, it's IRQ number: */
unsigned long orig_ax;

/* Return frame for iretq */
unsigned long ip;
unsigned long cs;
unsigned long flags;
unsigned long sp;
unsigned long ss;
/* top of stack page */

};

Firmware
managed

Simple examples for adding system calls to the user API

Provide a C file which
1) contains the definition of the numerical codes for the new system calls

2) contains (or includes) the macro-definition for creating the actual
 standard module associated with the new system calls (e.g.
 _syscall0() for UNISTD_32)

#include <unistd.h>
#define _NR_my_first_sys_call 254
#define _NR_my_second_sys_call 255

_syscall0(int,my_first_sys_call);
_syscall1(int,my_second_sys_call,int,arg);

Simple overriding of the fork() UNISTD_32 system call

#include <unistd.h>

#define __NR_my_fork 2 //same numerical code as the original

#define _new_syscall0(name) \

int name(void) \

{ \

 asm("int $0x80" : : "a" (__NR_##name)); \

 return 0; \

} \

_new_syscall0(my_fork)

int main(int a, char** b){

 my_fork();

 pause(); // there will be two processes pausing !!

}

“int 0x80” system call path performance implications

• One memory access to the IDT

• One memory access to the GDT to retrieve the kernel CS segment

• One memory access to the GDT (namely the TSS) to retrieve the kernel
level stack pointer

• A lot of clock cycles waiting for data coming from memory (just to control
the execution flow)

• Asymmetric delays in asymmetric hardware (e.g. NUMA)

• Unreliable outcome for time-interval measures using system calls, see
gettimeofday() (and rdtsc)

The x86 revolution (starting with Pentium3)

• CS value for kernel code cached into an apposite MSR (Model Specific
Register)

• Kernel entry point offset (the target EIP/RIP) kept into an apposite MSR

• Kernel level stack/data base kept into an apposite MSR

• Entering kernel code is as easy as flushing the MSRs values onto the
corresponding original registers (e.g. CS, DS, SS …. recall that the
corresponding bases are defaulted to 0x0)

• No memory access for activating the system call dispatcher

• This is the fast system call path!!

A few details on MSR vs RIP on x86-64

• RIP is loaded from the IA32_LSTAR_MSR register

• This is done after saving the return address for user mode into the RCX register

• NOTE

– the stack pointer is not saved when performing this type of access to kernel
level software

– Any stack switch is in charge of kernel software

Fast system call path additional details

SYSENTER instruction for 32 bits - SYSCALL instruction for 64 bits

• CS register set to

– the value of SYSENTER_CS_MSR for 32 bits

– another bitmask taken from IA32_STAR_MSR for 64 bits

• EIP register set to

– the value of SYSENTER_EIP_MSR for 32 bits

– IA32_LSTAR_MSR for 64 bits
 SS register set to

– the sum of 8 plus the value in SYSENTER_CS_MSR for 32 bits

– another bitmask taken from IA32_STAR_MSR for 64 bits
 ESP/RSP register set to

– the value of SYSENTER_ESP_MSR for 32 bits
– nothing is done for 64 bits

Fast system call path additional details

SYSEXIT instruction for 32 bits - SYSRET instruction for 64 bits

• CS register set to
– the sum of 16 plus the value in SYSENTER_CS_MSR for 32 bits
– a bitmask from IA32_STAR for 64 bits

• EIP register set to
– the value contained in the EDX register for 32 bits
– RCX for 64 bits

• SS register set to
– the sum of 24 plus the value in SYSENTER_CS_MSR for 32 bits
– a bitmask from IA32_STAR for 64 bits

• ESP register set to
– the value contained in the ECX register for 32 bits
– nothing for 34 bits

Overall considerations
• Slow path

 Still based on int 0x80

 Still accessing IDT/GDT

 The kernel level system call dispatcher accesses the UNISTD_32 system call
table

• Fast path

 Base on the syscall instruction (no IDT/GDT access)

 The kernel level dispatcher (different from the previous one) accesses the
UNISTD_64 system call table

MSR and their setup for sysenter in Linux

/arch/x86/include/asm/msr-index.h (kernel 5)
#define MSR_IA32_SYSENTER_CS 0x174
#define MSR_IA32_SYSENTER_ESP 0x175
#define MSR_IA32_SYSENTER_EIP 0x176

/arch/x86/kernel/cpu/common.c (kernel 5)
void enable_sep_cpu(void)→

wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long
(cpu_entry_stack(cpu) + 1), 0);
wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);

rdmsr and wrmsr are the actual machine instructions for reading/writing
the registers

MSR and their setup for syscall in Linux

/arch/x86/include/asm/msr-index.h (kernel 5)
#define MSR_LSTAR 0xc0000082

/* long mode SYSCALL target */

/arch/x86/kernel/cpu/common.c (kernel 5)
void syscall_init(void) →
 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);

The syscall() construct - since Pentium3/kernel 2.6

• syscall() is implemented within glibc (in stdlib.h)

• It allows triggering a trap to the kernel for the execution of a generic system call

• The first argument is the system call number

• The other parameters are the input for the system call code

• The actual ASM code implementation of syscall() is targeted and optimized for
the specific architecture

• Specifically, the implementation (including the kernel level counterpart) relies on
ASM instructions such as sysenter/sysexit or syscall/sysret, which
have been made available starting from Pentium3 processors

An example

#include <stdlib.h>

#define __NR_my_first_sys_call 333
#define __NR_my_second_sys_call 334

int my_first_sys_call(){
 return syscall(__NR_my_first_sys_call);
}

int my_second_sys_call(int arg1){
 return syscall(__NR_my_second_sys_call, arg1);
}

int main(){
 int x;

 my_first_sys_call();
 my_second_sys_call(x);
}

Virtual Dynamic Shared Object (VDSO)

• Kernel also setups system call entry/exit points for user processes

• Kernel creates a single page (or a few) in memory and attaches it to all
processes' address space when they are loaded into memory

• This page contains the actual implementation of the system call entry/exit
mechanism

• Kernel calls this page virtual dynamic shared object (VDSO)

• Originally exploited for making the fast system call path available (in relation
to a few services)

VDSO and the address space

text

data bss

heap

stack

VDSO

User accessible memory

Environmental software is
allowed to know where
VDSO is located

Kernel posts
code here

SYNOPSIS
#include <sys/auxv.h>

void *vdso = (uintptr_t) getauxval(AT_SYSINFO_EHDR);

DESCRIPTION

The "vDSO" (virtual dynamic shared object) is a small shared library that the
kernel automatically maps into the address space of all user-space
applications. Applications usually do not need to concern themselves with
these details as the vDSO is most commonly called by the C library. This way
you can code in the normal way using standard functions and the C library will
take care of using any functionality that is available via the vDSO.

Application exposed facilities

The actual VDSO - getcpu example

Performance effects

• The VDSO exploits flat (linear) addressing proper of operating system
memory managers in order to bypass segmentation and the related
operations

• It therefore reduces the number of accessed to memory in order to
support the change to kernel mode

• Studies show that the reduction of clock cycles for system calls can be of
the order of 75%

• This is in the end typical for any usage of the fast system call path

The current picture

• VDSO is now used to replace the old facilities supported via the vsyscall
section, say support for specific system calls (e.g. query system calls such as
gettimeofday())

• VDSO is randomized (in terms of positioning into the address space) so
security gets increased

• The system call mechanism in the wide, which relies on
sysenter/syscall and sysexit/sysret, is in charge of the
dynamic linker (ld-linux.so)

The system call table

• It is an array of function pointers

• However, we cannot easily resize the array and recompile the kernel

• This is because that table (like many other kernel level data structures) is
positioned at compile time in specific zones of virtual addresses

• Simple enlarging on the table with no other modification of the kernel compilation
layout will lead to data structures’ overlap

• Such strict compilation rules depend on the fact that hardware setup for running
the kernel may require CPU registers to be populated with compile time defined
values

• The before described fast system call path is a clear example!!

System call table hacking - entry reusage
• In older versions of the kernel the system call table was oversized

• The addition of system calls in the kernel software could be based on the free entries

• In current (or more recent) kernel versions no oversize is put in place

• This is because the less “free” zones of data structures exist, the less the likelihood that
they can be exploited against security

• But we are lucky because a few entries, although reserved, are not actually used to
point to actual kernel level functions

• In the essence this is the scenario of kernel services that were planned (with given
indexing) but not actually implemented

• All these entries point to the so called “sys_ni_syscall” kernel module, which
simply returns upon its invocation

x86 system call table details

• For kernel 2.4 and i386 machines the system call table is defined in
arch/i386/kernel/entry.S

• For kernel 2.6.xx the table is posted on the file
arch/x86/kernel/syscall_table32.S

• For kernel 4.15.xx and UNISTD_64 the table pointer is defined in /arch/x86/
entry/syscall_64.c

• The .S files contain pre-processor ASM directives

• Any table entry keeps a symbolic reference to the kernel level name of a system
call (typically, the kernel level name resembles the one used at application level)

• The above files (or other .S) also contains the code block for the dispatcher
associated with the kernel access GATE

Table structure – classical UNISTD_32 style

ENTRY(sys_call_table)
.long SYMBOL_NAME(sys_ni_syscall) /* 0 - old "setup()" system call*/
.long SYMBOL_NAME(sys_exit)
.long SYMBOL_NAME(sys_fork)
.long SYMBOL_NAME(sys_read)
.long SYMBOL_NAME(sys_write)
.long SYMBOL_NAME(sys_open) /* 5 */
.long SYMBOL_NAME(sys_close)
……
.long SYMBOL_NAME(sys_sendfile64)
.long SYMBOL_NAME(sys_ni_syscall) /* 240 reserved for futex */
………

 .long SYMBOL_NAME(sys_ni_syscall) /* 252 sys_set_tid_address */

.rept NR_syscalls-(.-sys_call_table)/4
.long SYMBOL_NAME(sys_ni_syscall)

.endr

New symbols need to be inserted here

Definition of system call symbols

• For the previous example, the actual system call specification will be

.long SYMBOL_NAME(sys_my_first_sys_call)

.long SYMBOL_NAME(sys_my_second_sys_call)

• The actual code for the system calls (generally based exclusively on C with
compilation directives for the specific architecture) can be included within new
modules added to the kernel or within already exiting modules

• The actual code can rely on the kernel global data structures and on functions
already available within the kernel, except for the case where they are explicitly
masked (e.g. masking with static declarations external to the file containing
the system call)

Definition of the system call table – UNISTD_64 style

asmlinkage const sys_call_ptr_t sys_call_table[__NR_syscall_max+1] = {
 [0 ... __NR_syscall_max] = &sys_ni_syscall,
 #include <asm/syscalls_64.h>

};

• The kernel level source file that defines the system call table is arch/
x86/entry/syscall_64.c

asmlinkage const sys_call_ptr_t sys_call_table[__NR_syscall_max+1] = {
[0 ... __NR_syscall_max] = &sys_ni_syscall,
[0] = sys_read,
[1] = sys_write,
[2] = sys_open,
...
...
... };

After the “include” expansion

Classical compilation directives for kernel side
systems calls

• Specific directives are used to make the system call code compliant with the dispatching
rules

• Compliance is assessed on the basis of how the input parameters are
passed/retrieved

• The input parameters passage by convention historically took place via the kernel stack

• The corresponding compilation directive is asmlinkage

• Hence for the previous examples we will have the following system call definitions

 asmlinkage long sys_my_first_sys_call() { return 0;}
 asmlinkage long sys_my_second_sys_call(int x) {

return ((x>0)?x:-x);}

The ni_sys_call module

asmlinkage long sys_ni_syscall(void) {

return -ENOSYS;

}

The actual dispatcher (trap driven activation –
UNISTD_32/kernel 2.4)

ENTRY(system_call)
pushl %eax # save orig_eax
SAVE_ALL
GET_CURRENT(%ebx)
testb $0x02,tsk_ptrace(%ebx) # PT_TRACESYS
jne tracesys
cmpl $(NR_syscalls),%eax
jae badsys
call *SYMBOL_NAME(sys_call_table)(,%eax,4)
movl %eax,EAX(%esp) # save the return value

ENTRY(ret_from_sys_call)
cli # need_resched and signals atomic test
cmpl $0,need_resched(%ebx)
jne reschedule
cmpl $0,sigpending(%ebx)
jne signal_return

restore_all:
RESTORE_ALL

Manipulating
the CPU
snapshot in
the stack

Beware this!!!

The actual dispatcher (syscall driven activation –
UNISTD_64/kernel 2.4)

ENTRY(system_call)
swapgs
movq %rsp,PDAREF(pda_oldrsp)
movq PDAREF(pda_kernelstack),%rsp
sti
SAVE_ARGS 8,1
movq %rax,ORIG_RAX-ARGOFFSET(%rsp)
movq %rcx,RIP-ARGOFFSET(%rsp)
GET_CURRENT(%rcx)
testl $PT_TRACESYS,tsk_ptrace(%rcx)
jne tracesys
cmpq $__NR_syscall_max,%rax
ja badsys
movq %r10,%rcx
call *sys_call_table(,%rax,8) # XXX: rip relative
movq %rax,RAX-ARGOFFSET(%rsp)
.globl ret_from_sys_call

ret_from_sys_call:
sysret_with_reschedule:

GET_CURRENT(%rcx)
cli
cmpq $0,tsk_need_resched(%rcx)
jne sysret_reschedule
cmpl $0,tsk_sigpending(%rcx)
……...

#define PDAREF(field) %gs:field

Part of the stack switch
work originally done
via firmware is moved
to software

Beware this!!!

User vs kernel GS segment

… moving to kernel 4.xx or later

Snippet taken from https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S

Here we pass control to
a C-stub, not to the
actual system call

Snippet taken from https://github.com/torvalds/linux/blob/master/arch/x86/entry/common.c

Wrong-speculation
cannot rely on arbitrary
sys-call indexes!!!!

Also, from kernel 4.17
the system call table entry
no longer points to the
actual system call code,
rather to another wrapper
that masks from the stack
non-useful values

Details on stack masking with system calls

Syscall table
(array of pointers)

This wrapper takes parameters from the stack
and adds entropy to the stack layout

Security
encapsulator

True system call code

This can be generated automatically
using a specific kernel level macro

call

Mostly an inline in
actual implementations

Some details

• For more security-oriented implementations we have

 More strict checks and manipulation of the user provided information before
any action is taken

 A more layered architecture for better decoupling user/kernel information
flows

• The latter point has reflection on programming aspects since for, e.g., Kernel 4.17
the kernel-side creation of a new system call should be based on kernel level
macros for implementing a stub-based execution of the native system-call code

• These macros are SYSCALL_DEFINE0, SYSCALL_DEFINE1,
SYSCALL_DEFINE2, SYSCALL_DEFINE3 ……

Actual usage/effect of kernel-side sys-call macros

• The SYSCALL_DEFINE2 example (still representative of other macros)

SYSCALL_DEFINE2(name, param1type, param1name, param2type, param2name){

actual body implementing the kernel side system call

}

The macro creates a function
sys_name (aliased by SyS_name) or __x86_sys_name from kernel 4.17

In 4.17 this function passes only the requested values (i.e. param1name and
param2name) to the actual function related to the above specified body - such
an inline function has now name __se_sys_name or __do_sys_name in
more recent kernels

Overall

• The wrapper systemcall code gets named __x64_sys_name

• The actual system call function is an inline with name __do_sys_name

• The following macro can b used to define syscalls with any number of
parameters to be received

__SYSCALL_DEFINEx (num_params, name, param type, param name, …)

You can add as many as the actual
number of parameters

Finally … PTI (Page Table Isolation)

Switch to the kernel
view of memory

The swapgs attack

 It is based on making some piece of kernel-level code run
speculatively under branch miss-prediction

 This code uses displacement based on GS to do some read
operation to memory

 At the end, cache side channel can be exploited to detect the
speculatively accessed value

 The big issue is that the GS base on x86 processors is ever taken
by the MSR value IA32_GS_BASE (which is accessible to the
user code via WRGSBASE)

An example

The percpu_offset can be set to speculatively move any (%reg)
memory location into the cache

if (coming from user space)
 swapgs
mov %gs:<percpu_offset>, %reg
mov (%reg), %reg1

Another example

The offset could be set to speculatively move some memory value of
the GS kernel-segment to this (%reg) memory location making
side channel possible

if (going to user space)
 swapgs
mov %gs:<offset>, (%reg)

A scheme

IA32_GS_BASE

IA32_KERNEL_GS_BASE

Swap (or not) the two on branch miss-prediction in kernel mode

Use this attacker defined
base to give rise to side
effects at user accessible
cache lines

swapgs common countermeasures

 Override any user level IA32_GS_BASE load while running in kernel mode

This requires wide kernel side patching

 Exploit the SMAP (Supervisory Mode Access Prevention) by the hardware

This prevents that any user-level page is accessible while running in
kernel mode

We will come back to this when checking with memory management

Kernel software organization in Linux

• About the 80-90% of the actual code for system calls is embedded
within a few main portions of the kernel archive

• These are contained in the following directories

 kernel (process and used management)

 mm (basic memory management)

 ipc (interprocess communication management)

 fs (virtual file system management)

 net (network management)

Kernel compiling
• You can exploit make

• It executes a set of tasks (compilation, assembly and linking tasks) which are specified via a
Makefile

• This file can specify differentiated actions to be done (possibly exhibiting dependencies)
which are described within a field called target

• Each action can be specified by the following syntax:

action-name: [dependency-name]*{new-line}

{tab} action-body

• Further, we can define variables via the syntax:

variable-name = value

• Any variable can be accessed via the syntax:

 $(variable-name)

make config (or menuconfig)

make

make modules

make modules_install (ROOT)

make install (ROOT)

mkinitrd (or mkinitramfs) –o initrd.img-<vers> <vers>

update-grub

OR

grub(2)-mkconfig -o /boot/grub/grub.cfg (ROOT)

Standard compilation steps - current tyle

About ‘config’

• The possibilities
– allyesconfig (likelihood of conflicting modules)

– allnoconfig (likelohood of non-sufficient services in the kernel image)

– Answer to the individual questions you may be asked for

– Retrieve a good configuration file (depending on your
machine/settings) on the web

– Reuse the configuration files(s) you find in the /boot directory of your
root file system (likely works when recompiling the same kernel
version you already have)

Role of initrd

• It is a RAM disk

• It can be (temporary) mounted as the root file system and
programs can be run from it

• A different root file system can be then mounted from a different
device

• The previous root (from initrd) can then be moved to a directory
and can be subsequently unmounted

• With initrd system startup can occur in two phases

– the kernel initially comes up with a minimum set of compiled-in
drivers

– additional modules are loaded from initrd

make config (or menuconfig)

make

make modules

make modules_install (ROOT) (writes into /lib/modules)

make install (ROOT) (writes into /boot: the kernel image, the system
map and the config file)

update-grub

OR

grub(2)-mkconfig -o /boot/grub/grub.cfg (ROOT)

Step effects

“Extended” Kernel compilation - current style

• Makefile updates

1. setting of the EXTRAVERSION variable (non-mandatory)

2. use obj- directive to add a file or a directory into the
compilation tree

 3. the addition is within already available makefiles (or new ones)

Kernel anatomy - the system map

• It contains the symbols and the corresponding virtual memory reference (as
determined at compile/link time – beware randomization) for:

Kernel functions (steady state ones)

Kernel data structures

• Each symbol is also associated with a tag that defines the ‘storage class’ as
determined by the compiling process

• As an example, 'T' usually denotes a global (non-static but not necessarily
exported) function, 't' a function local to the compilation unit (i.e. static), 'D'
global data, 'd' data local to the compilation unit. 'R' and 'r' same as 'D'/'d'
but for read-only data

System map applications

• Kernel debugging

• Kernel run-time hacking

• The system map is also (partially) reported by the (pseudo) file
/proc/kallsysm

• The latter is exploited for run-time kernel ‘hacking’ via the modules’
technology

Just an example

2.6.5-7.282-smp #1 SMP ……. i386 GNU/Linux

c03a8a00 D sys_call_table

2.6.32-5-amd64 #1 SMP ……… x86_64 GNU/Linux

ffffffff81308240 R sys_call_table

Read/write data

Read-only data

 Looking at the kernel startup - basic terminology

• firmware: a program coded on a ROM device, which can be executed
when powering a processor on

• bootsector: predefined device (e.g. disk) sector keeping executable code
for system startup

• bootloader: the actual executable code loaded and launched right before
giving control to the target operating system

this code is partially kept within the bootsector, and partially kept into
other sectors

It can be used to parameterize the actual operating system boot

Startup tasks

• The firmware gets executed, which loads in memory and launches the
bootsector content

• The loaded bootsector code gets launched, which may load other
bootloader portions

• The bootloader ultimately loads the actual operating system kernel and
gives it control

• The kernel performs its own startup actions, which may entail architecture
setup, data structures and software setup, and process activations

• To emulate a steady state unique scenario, at least one process is derived
from the boot thread (namely the IDLE PROCESS)

Traditional firmware on x86

• It is called BIOS (Basic I/O System)

• Interactive mode can be activated via proper interrupts (e.g. the F1 key)

• Interactive mode can be used to parameterize firmware execution (the
parameterization is typically kept via CMOS rewritable memory devices
powered by apposite temporary power suppliers)

• The BIOS parameterization can determine the order for searching the boot
sector on different devices

• A device boot sector will be searched for only if the device is registered in
the BIOS list

Bios bootsector

• The first device sector keeps the so called master boot record (MBR)

• This sector keeps executable code and a 4-entry tables, each one
identifying a different device partition (in terms of its positioning on the
device)

• The first sector in each partition can operate as the partition boot sector
(BS)

• In case the partition is extended, then it can additionally keep up to 4 sub-
partitions (hence the partition boot sector can be structured to keep an
additional partitioning table)

• Each sub-partition can keep its own boot sector

RAM image of the MBR

Grub (if you use it) or others

An example scheme with Bios

Boot sector

Boot
partition

Extended partition boot sector

Partition table

Boot code

Partition 1 Partition 3 (extended)

Nowadays huge limitation:
the maximum size of
manageable disks is 2TB

UEFI – Unified Extended Firmware Interface

• It is the new standard for basic system support (e.g. boot management)

• It removes several limitations of BIOS:

• We can (theoretically) handle disks up to 9 zettabytes

• It has a more advanced visual interface

• It is able to run EFI executables, rather than simply loading and
launching the MBR code

• It offers interfaces to the OS for being configured (rather than being
exclusively configurable by triggering its interface with Fn keys at
machine startup)

UEFI device partitioning

 Based on GPT (GUID Partition Table)

 GUID = Globally Unique Identifier ….. Theoretically all over the world
(if the GPT has in its turn a unique identifier)

 Theoretically unbounded number of partitions kept in this table – No
longer we need extended partitions for enlarging the partitions’ set

 GPT are replicated so that if a copy is corrupted then another one will
work – this breaks the single point of failure represented by MBR and its
partition table

Bios/UEFI tasks upon booting the OS kernel (i)

• The bootloader/EFI-loader, e.g., GRUB, loads in memory the initial image
of the operating system kernel

• This includes a ``machine setup code’’ that needs to run before the actual
kernel code takes control

• This happens since a kernel configuration needs given setup in the
hardware upon being launched

• The machine setup code ultimately passes control to the initial kernel
image

Bios/UEFI tasks upon booting the OS kernel (ii)

• In Linux, this kernel image executes starting from the
start_kernel() in init/main.c

• This kernel image is way different, both in size and structure, from the
one that will operate at steady state

• Just to name one reason, boot is typically highly configurable!

About Linux boot on multi-core/HT machines

• The start_kernel() function is executed along a single CPU-core (the
master)

• All the other cores (the slaves) only keep waiting that the master has finished

• The kernel internal function smp_processor_id() can be used for
retrieving the ID of the current core

• This function is based on ASM instructions implementing a hardware specific ID
detection protocol

• This function operates correctly either at kernel boot or at steady state

The actual support for CPU-core identification

Actual kernel startup scheme in Linux

……….

Core-0 Core-1 Core-2 Core-(n-1)

code in
head.S
(or variants)

start_kernel

SYNC

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149

