
Linux modules
1. Support system calls and services
2. Programming facilities
3. Kernel probing
4. Kernel audit

Advanced Operating Systems (and System Security)
MS degree in Computer Engineering
University of Rome Tor Vergata
Lecturer: Francesco Quaglia

Modules basics

• A Linux module is a software component which can be added as part of the
kernel (hence being included into the kernel memory image) when the latter is
already running

• One advantage of using modules is that the kernel does not need to be
recompiled in order to add the corresponding software facility

• Modules are also used as a baseline technology for developing new parts of the
kernel that are then integrated (once stable) in the original compiled image

• They are also used to tailor the start-up of a kernel configuration, depending on
specific needs

Steps for module insertion

• We need memory for loading in RAM both code blocks and data structures
included in the module

• We need to know where the corresponding logical buffer is located in order
to resolve internal references by the module (to either data or code)

• We need to know where in logical memory are located the kernel facilities
the module relies on

• While loading the module, actual manipulation for symbols resolution (to
addresses) needs to be carried out

A scheme

Free
room

data

code

Kernel image

Module stuff
0x00xf….

(buddy or
 vmalloc …)

get_zeroed_page() address

Internal
reference

External
reference

Who does the job??

• It depends on the kernel release

• Up to kernel 2.4 most of the job (but not all) is done at application level

 A module is a .o ELF

 Shell commands are used to reserve memory, resolve the symbols’
addresses and load the module in RAM

• From kernel 2.6 most of the job is kernel-internal

 A module is a .ko ELF

 Shell commands are used to trigger the kernel actions for memory
allocation, address resolving and module loading

System call suite up to kernel 2.4

create_module

 reserves the logical kernel buffer

 associates a name to the buffer

init_module

loads the finalized module image into the kernel buffer

calls the module setup function

delete_module

calls the module shutdown function

releases the logical kernel buffer

System call suite from kernel 2.6

create_module

 no more supported

init_module

reserves the logical kernel buffer

associates a name to the buffer

loads the non-finalized module image into the kernel buffer

calls the module setup function

delete_module

calls the module shutdown function

releases the logical kernel buffer

Common parts (i)

• A module is featured by two main functions which indicate the actions to be
executed upon loading or unloading the module

• These two functions have the following prototypes

int init_module(void) /*used for all
initialition stuff*/

{ ... }

void cleanup_module(void) /*used for a
clean shutdown*/

{ ... }

Common parts (ii)

• Within the metadata that are used to handle a module we have a so called usage-
count (or reference-count)

• If the usage-count is not set to zero, then the module is so called “locked”

• This means that we can expect that some thread will eventually need to used the
module stuff (either in process context or in interrupt context), e.g. for task
finalization purposes

• Unload in this case fails, except if explicitly forced

• If the usage-count is set to zero, the module is unlocked, and can be unloaded
with no particular care (or force command)

Common parts (iii)

• We can pass parameters to modules in both technologies

• These are not passed as actual function parameters

• Rather, they are passed as initial values of global variables appearing in
the module source code

• These variables, after being declared, need to be marked as “module
parameters” explicitly

Declaration of module parameters

• For any parameter to be provided in input we need to rely on the below macros
defined in include/linux/module.h or include/linux/moduleparm.h

 MODULE_PARM(variable, type) → (old style)

 module_param(variable, type, perm)

• These macros specify the name of the global variable to be treated as input parameter
and the corresponding data type

• The three-parameter version is used in order to expose the variable value as a pseudo-
file content (hence we need to specify permissions)

Module parameters dynamic audit

• It can be done via the /sys pseudo-file system

• It is an aside one with respect to /proc
• In /sys for each module we find pseudo-files for inspecting the state of the

module

• These include files for all the module parameters that are declared as
accessible (on the basis of the permission mask) in the pseudo file system

• We can even modify the parameters at run-time, if permissions allow it

A variant for array arguments

• module_param_array() can be used to declare the presence of parameters that
are array of values

• this macro takes in input 4 parameters

 The array-variable name

 The base type of an array element

 The address of a variable that will specify the array size

 The permission for the access to the module parameter on the pseudo file
system

• An example

module_param_array(myintarray,int,&size,0)

Loading/unloading a module

• A module can be loaded by the administrator via the shell command
insmod

• You can use it also for passing parameters (in the form
variable=value)

• This command takes the name of the object file generated by compiling
the module source code as the parameter

• The unloading of a module can be executed via the shell command rmmod

• We can also use modprobe, which by default looks for the actual
module in the directory /lib/modules/$(uname –r)

Actual execution path of insmod

Up to kernel 2.4 since kernel 2.6

insmod

create_module

Relocate module
(exploiting symtab, e.g.
exposed via
/proc/kallsyms)

init_module

1 2 3

insmod

init_module

Module suited system calls – up to 2.4

#include <linux/module.h>
caddr_t create_module(const char *name, size_t size);

DESCRIPTION
create_module attempts to create a loadable module entry and reserve the
kernel memory that will be needed to hold the module. This system call is only
open to the superuser.

RETURN VALUE
On success, returns the kernel address at which the module will reside. On
error -1 is returned and errno is set appropriately.

 #include <linux/module.h>
int init_module(const char *name, struct module *image);

DESCRIPTION
init_module loads the relocated module image into kernel space and runs the
module's init function. The module image begins with a module structure and is followed by
code and data as appropri ate. The module structure is defined as follows:
struct module {
 unsigned long size_of_struct;
 struct module *next; const char *name;
 unsigned long size; long usecount;
 unsigned long flags; unsigned int nsyms;
 unsigned int ndeps; struct module_symbol *syms;
 struct module_ref *deps; struct module_ref *refs;
 int (*init)(void); void (*cleanup)(void);
 const struct exception_table_entry *ex_table_start;
 const struct exception_table_entry *ex_table_end;
 #ifdef __alpha__
 unsigned long gp;
 #endif
 };

• In the 2.4 tool chain parameters are setup by the insmod user
program

• In fact their existence is not reflected into any module-suited system
call signature

• They cannot be changed at run-time from external module stuff
(except if we hack their memory locations)

Note on parameters

#include <linux/module.h>
int delete_module(const char *name);

DESCRIPTION
delete_module attempts to remove an unused loadable module entry. If name is
NULL, all unused modules marked auto-clean will be removed. This system call is
only open to the superuser.

RETURN VALUE
On success, zero is returned. On error, -1 is returned and errno is set appropriately.

Module suited system calls – since 2.6
SYNOPSIS
 int init_module(void *module_image, unsigned long len,
 const char *param_values);

 int finit_module(int fd, const char *param_values,
 int flags);

DESCRIPTION
 init_module() loads an ELF image into kernel space, performs any necessary sym-
 bol relocations, initializes module parameters to values provided by the call-
 er, and then runs the module's init function. This system call requires privi-
 lege.
 The module_image argument points to a buffer containing the binary image to be
 loaded; len specifies the size of that buffer. The module image should be a
 valid ELF image, built for the running kernel.

What about the missing address resolution job by insmod
in the 2.6 tool-chain?

• To make a .ko file, we start with a regular .o file.

• The modpost program creates (from the .o file) a C source file that
describes the additional sections that are required for the .ko file

• The C file is called .mod file

• The .mod file is compiled and linked with the original .o file to make a .ko
file

Module headings

#define __KERNEL__
#define MODULE
#include <linux/module.h>
#include <linux/kernel.h>
……
#include <linux/smp.h>

For inclusion of header file parts
with pre-processor
directive ifdef __KERNEL__

For inclusion of header file parts with
Pre-processor directive ifdef MODULE

SMP specific stuff

Module in-use indications (classical style)

• The kernel associates with any loaded module a counter

• Typically, this counter is used to indicate how many processes/threads/top-
bottom-halves still need to rely on the module software for finalizing some job

• If the counter is greater than zero, the unload of the module will fail (unless forcing
with –f on a kernel with CONFIG_MODULE_FORCE_UNLOAD activated)

• There are macros defined in include/linux/module.h, which are suited for
accessing/manipulating the counter

MOD_INC_USE_COUNT

MOD_DEC_USE_COUNT

MOD_IN_USE

• NOTE
While debugging the module it would be convenient to redefine the

macros MOD_INC_USE_COUNT and MOD_DEC_USE_COUNT as no-
ops, so to avoid blocking scenarios when attempting to unload the module

• NOTE
the /proc file system exposes a proper file /proc/modules which

provides information on any loaded module, including the usage counter
and the amount of memory reserved for the module

Reference counter interface in kernel 2.6 (or later)

We have the following functions:

try_module_get(struct module *module) for
incrementing the reference counter

module_put(struct module *module) for decrementing the
reference counter

CONFIG_MODULE_UNLOAD can be used to check unloadability

http://www.linuxforums.org/forum/redirect-to/?redirect=http%3A%2F%2Flxr.linux.no%2Fsource%2Finclude%2Flinux%2Fmodule.h%23L405
http://www.linuxforums.org/forum/redirect-to/?redirect=http%3A%2F%2Flxr.linux.no%2Fsource%2Finclude%2Flinux%2Fmodule.h%23L405
https://elixir.bootlin.com/linux/v4.17.19/ident/module
https://elixir.bootlin.com/linux/v4.17.19/ident/module
http://www.linuxforums.org/forum/redirect-to/?redirect=http%3A%2F%2Flxr.linux.no%2Fsource%2Finclude%2Flinux%2Fmodule.h%23L405
http://www.linuxforums.org/forum/redirect-to/?redirect=http%3A%2F%2Flxr.linux.no%2Fsource%2Fkernel%2Fmodule.c%23L793
https://elixir.bootlin.com/linux/v4.17.19/ident/module
https://elixir.bootlin.com/linux/v4.17.19/ident/module
http://www.linuxforums.org/forum/redirect-to/?redirect=http%3A%2F%2Flxr.linux.no%2Fsource%2Fkernel%2Fmodule.c%23L793

Finding a module to lock/unlock

struct module *find_module(const char *name)

This provides us with capabilities of targeting an “external”
module

The macro THIS_MODULE passed in input can be used to
identify the module that is calling the API, it clearly works also
with try_module_get/module_put

https://elixir.bootlin.com/linux/latest/ident/module
https://elixir.bootlin.com/linux/latest/ident/find_module

Kernel exported symbols

• Either the Linux kernel or its modules can export symbols

• An exported symbol (e.g., the name of a variable or the name of a function)
is made available and can be referenced by any module to be loaded

• If a module references a symbol which is not exported, then the loading of
the module will fail

• The kernel (including modules) can export symbols by relying on the macro
EXPORT_SYMBOL (symbol) which is defined in
include/linux/module.h

Exported symbols table

• There exist a table including all the symbols that are exported by the compiled
kernel

• Further, each module is associated with a per module table of exported symbols
(if any)

• All the symbols that are currently exported by the kernel (and by its modules)
are accessible via the proc file system through the file /proc/kallsyms

• This file keeps a line for each exported symbol, which has the following format

Kernel-memory-address symbol-type symbol-name

A note on exporting symbols

• The kernel can be parameterized (compiled) to export differentiated types of
symbols via standard facilities (e.g. /proc/kallsyms)

• A few examples

 CONFIG_KALLSYMS = y
CONFIG_KALLSYMS_ALL = y

 → symbol table includes all the variables (including EXPORT_SYMBOL
derived variables)

• All the previous are required for exporting variables (not located in the stack)

Actually usable exported symbols
in recent kernels

• They do not longer appear in /proc/kallsyms

• This is way, e.g. sys_close, is not actually usable while mounting
modules

• The actually exported symbols are reported in

 /lib/modules/<kernel version>/build/Module.symvers

• The /proc/kallsyms file is still useful to inspect the type of symbols
within the kernel (e.g. ‘T’ vs ‘t’)

Dynamic symbols querying and kernel patching

int kprobes register_kprobe(struct kprobe *p)

void unregister_kprobe(struct kprobe *p)

int register_kretprobe(struct kretprobe *p)

Example usage
// Get a kernel probe to access flush_tlb_all()
 memset(&kp, 0, sizeof(kp));
 kp.symbol_name = "flush_tlb_all";

…
 if (!register_kprobe(&kp)) {
 flush_tlb_all_lookup = (void *) kp.addr;

…
 unregister_kprobe(&kp);
 }

To enable kprobes: CONFIG_KPROBES=y and CONFIG_KALLSYMS=y or
CONFIG_KALLSYMS_ALL=y

http://lxr.free-electrons.com/ident?i=__kprobes
http://lxr.free-electrons.com/ident?i=register_kprobe
http://lxr.free-electrons.com/ident?i=kprobe
http://lxr.free-electrons.com/ident?i=p
http://lxr.free-electrons.com/ident?i=kprobe
http://lxr.free-electrons.com/ident?i=p
http://lxr.free-electrons.com/ident?i=register_kprobe
http://lxr.free-electrons.com/ident?i=kprobe
http://lxr.free-electrons.com/ident?i=p

struct kprobe

<linux/kprobes.h>

struct kprobe {
struct hlist_node hlist; /* Internal */
……
kprobe_opcode_t addr; /* Address of probe */
……
const char *symbol_name; /* probed function name */
kprobe_pre_handler_t pre_handler;

/* Address of pre-handler */
kprobe_post_handler_t post_handler;

/* Address of post-handler */
………

};

Kprobe mechanism

Function to be probed

Trap to a debugger module that in the end manages kprobes

Kprobes pre

Actual pre handler

Kprobes post

Patch return
address
and log original

Actual post handler

Return to logged
address

Better performing support

• The INT3 instruction requires the management of traps (similar to what
happens with INT 0x80 for accessing the kernel code)

• INT3 has been substituted via a jump

• This enables activating the probing system with significantly less clock
cycles

• The functions to be probed are (still) compiled having a (multi-byte) NOP
instruction

• The NOP instruction is (atomically) rewritten with the jump to the kernel
probe entry point

Kprobe handlers

typedef int (*kprobe_pre_handler_t)
(struct kprobe*, struct pt_regs*);

typedef void (*kprobe_post_handler_t)
(struct kprobe*, struct pt_regs*,

 unsigned long flags);

Modifiable registers status

kretprobe

struct kretprobe {
struct kprobe kp;
kretprobe_handler_t handler;
kretprobe_handler_t entry_handler;
int maxactive;
int nmissed;
……;

};

Very similar interface
as other
probe handlers

Max active number and counter
of lost activations

Probing deny

• Not all kernel functions can be probed

• A few of them are blacklisted (depending on compilation choices)

• Those that are blacklisted can be fount in the pseudofile

/sys/kernel/debug/kprobes/blacklist

• Motivations can be compiler optimizations (such as in-lining) or the fact that
these functions can be (indirectly) triggered by probe executions

Linux kernel versioning

• The include/linux/version.h file is automatically included via the inclusion of
include/linux/module.h (except for cases where the __NO_VERSION__
macro is used)

• The include/linux/version.h file entails macros that can be used for catching
information related to the actual kernel version such as:

 UTS_RELEASE, which is expanded as a string defining the version of the kernel
which is the target for the compilation of the module (e.g. “4.12.14”)

 LINUX_VERSION_CODE which is expanded to the binary representation of the
kernel version (with one byte for each number specifying the version)

 KERNEL_VERSION(major,minor,release) which is expanded to the
binary value representing the version number as defined via major, minor
and release

Kernel versioning exploitation

#if LINUX_VERSION_CODE > KERNEL_VERSION(x,y,z)
 <whatever you want to specify or include>
#else
 <whatever else you want to specify or include>
#endif

Programmer
specified outcome

Compiler defined outcome

Renaming of module startup/shutdown functions
• Starting from version 2.3.13 we have facilities for renaming the startup and shutdown

functions of a module

• These are defined in the file include/linux/init.h as:
 module_init(my_init) which generates a startup routine associated with

the symbol my_init
 module_exit(my_exit) which generates a shutdown routine associated

with the symbol my_exit

• These should be used at the bottom of the main source file for the module

• They can help on the side of debugging since we can avoid using functions with the
same name for the modules

• Further, we can develop code that can natively be integrated within the initial kernel
image or can still represent some module for specific compilation targets

The Linux kernel messaging system

• Kernel level software can provide output messages in relation to events occurring
during the execution

• The messages can be produced both during initialization and steady state operations,
hence

 Sofware modules forming the messaging system cannot rely on I/O standard
services (such as sys_write() or kernel_write())

 No standard library function can be used for output production

• Management of kernel level messages occurs via specific modules that take care of
the following tasks

 Message print onto the “console” device

 Message logging into a circular buffer kept within kernel level virtual addresses

The printk() function

• The kernel level module for producing output messages is called printk() and is
defined within the file kernel/printk.c

• This function accepts an input parameter representing a format string, which is
similar to the one used for the printf() standard library function

• The major difference is that with printk() we cannot specify floating point
values (these are unallowed in kernel toolchains)

• The format string optionally entails an indication in relation to the priority (or
criticality) level for the output message

• The message priority level can be specified via macros (expanded as strings) which
can be pre-fixed to the arguments passed in input to printk()

Message priority levels

• The macros specifying the priority levels are defined in the
include/linux/kernel.h header file

#define KERN_EMERG "<0>" /* system is unusable */
#define KERN_ALERT "<1>" /* action must be taken immediately */
#define KERN_CRIT "<2>" /* critical conditions */
#define KERN_ERR "<3>" /* error conditions */
#define KERN_WARNING "<4>" /* warning conditions */
#define KERN_NOTICE "<5>" /* normal but significant condition */
#define KERN_INFO "<6>" /* informational */
#define KERN_DEBUG "<7>" /* debug-level messages */

• One usage example
printk(KERN_WARNING “message to print”)

A few details on data format for pointers (addresses)

• Kernel level printing of addresses is an aspect to be carefully considered,
especially for security

• Current configurations of the printk service make any pointer to be
encrypted when printing using %p

• Otherwise we might diffuse memory positioning of kernel-level information
(e.g. the address of a function) too easily

• Using %p the encryption is typically deterministic with respec to the actual
pointer value to be printed

• To avoid encryption %px can be used

Function aliases (via macros)

The aliases
automatically
generate the
priority string

Message priority treatment
• There exist 4 configurable parameters which determine actual output-message

treatment

• They are associated with the following variables
console_loglevel (this is the level under which the messages are

actually logged on the console device)
default_message_loglevel (this is the priority level that gets

associated by default with any message not specifying any priority value
explicitly)

 minimum_console_loglevel (this is the minimum level for admitting
the log of messages onto the console device)

default_console_loglevel (this is the default level for messages
destined to the console device)

Inspecting the current log level settings

• Look at the special file /proc/sys/kernel/printk

• Write into this file for modifications of these parameters (if supported by
the specific kernel version/configuration)

• This is not a real stable storage file (updates need to be reissued or need to
be implemented at kernel startup)

console_loglevel

• Typically console_loglevel is associated with the value 7 (this settings
is anyhow non-mandatory)

• Hence all messages, except debug messages, need to be shown onto the
console device

• Setting this parameter to the value 8 enables printing debug messages onto
the console device

• Setting this parameter to the value 1 any message is disabled to be logged
onto the console, except emergency messages

Circular buffer management

int syslog(int type, char *bufp, int len);

• This is the system call for performing management operation onto the kernel
level circular buffer hosting output messages

• the bufp parameter points to the memory area where the bytes read from the
circular buffer needs to be logged

•len specifies how many bytes we are interested in or a flag (depending on
the value of type)

• for type we have the following options → ….

SYSLOG_ACTION_CLOSE (0) Close the log. Currently a NOP.

SYSLOG_ACTION_OPEN (1) Open the log. Currently a NOP.

SYSLOG_ACTION_READ (2) Read from the log.
The call waits until the kernel log buffer is nonempty, and then reads at most len bytes into the buffer pointed to by
bufp. The call returns the number of bytes read. Bytes read from the log disappear from the log buffer: the information
can be read only once. This is the function executed by the kernel when a user program reads /proc/kmsg.

SYSLOG_ACTION_READ_ALL (3) Read all messages remaining in the ring buffer, placing them in the buffer pointed to
by bufp. The call reads the last len bytes from the log buffer (nondestructively), but will not read more than was written
into the buffer since the last "clear ring buffer" command (see command 5 below)). The call returns the number of
bytes read.

SYSLOG_ACTION_READ_CLEAR (4) Read and clear all messages remaining in the ring buffer. The call does precisely
the same as for a type of 3, but also executes the "clear ring buffer" command.

SYSLOG_ACTION_CLEAR (5) The call executes just the "clear ring buffer" command. The bufp and len arguments are
ignored. This command does not really clear the ring buffer. Rather, it sets a kernel bookkeeping variable that
determines the results returned by commands 3 (SYSLOG_ACTION_READ_ALL) and 4
(SYSLOG_ACTION_READ_CLEAR). This command has no effect on commands 2 (SYSLOG_ACTION_READ) and 9
(SYSLOG_ACTION_SIZE_UNREAD).

SYSLOG_ACTION_CONSOLE_OFF (6) The command saves the current value of console_loglevel and then sets
console_loglevel to minimum_console_loglevel, so that no messages are printed to the console. Before Linux 2.6.32, the
command simply sets console_loglevel to minimum_console_loglevel. See the discussion of /proc/sys/kernel/printk,
below. The bufp and len arguments are ignored.

SYSLOG_ACTION_CONSOLE_ON (7) If a previous SYSLOG_ACTION_CONSOLE_OFF command has been performed,
this command restores console_loglevel to the value that was saved by that command. Before Linux 2.6.32, this
command simply sets console_loglevel to default_console_loglevel. See the discussion of /proc/sys/kernel/printk,
below. The bufp and len arguments are ignored.

SYSLOG_ACTION_CONSOLE_LEVEL (8) The call sets console_loglevel to the value given in len, which must be an
integer between 1 and 8 (inclusive). The kernel silently enforces a minimum value of minimum_console_loglevel for len.
See the log level section for details. The bufp argument is ignored.

SYSLOG_ACTION_SIZE_UNREAD (9) (since Linux 2.4.10) The call returns the number of bytes currently available to be
read from the kernel log buffer via command 2 (SYSLOG_ACTION_READ). The bufp and len arguments are ignored.

SYSLOG_ACTION_SIZE_BUFFER (10) (since Linux 2.6.6) This command returns the total size of the kernel log buffer.
The bufp and len arguments are ignored.

Updates of console_loglevel

console_loglevel can be set (to a value in the range 1-
8) by the call syslog() (8,dummy,value)

The calls syslog() (type,dummy,dummy) with type equal to 6
or 7, set it to 1 (kernel panics only) or 7 (all except
debugging messages), respectively

Messaging management demon

klogd - Kernel Log Daemon

SYNOPSIS
klogd [-c n] [-d] [-f fname] [-iI] [-n] [-o] [-p] [-s] [-k

fname] [-v] [-x] [-2]

DESCRIPTION
 klogd is a system daemon which intercepts and logs Linux kernel

messages

Circular buffer features

• The circular buffer keeping the kernel output messages has size that varies
over time

originally 4096 bytes,
Since kernel version 1.3.54, we had up to 8192 bytes,
Since kernel version 2.1.113, we had up to 16384
 bytes … much more in more recent versions

• A unique buffer is used for any message, independently of the message
priority level

• The buffer content can be accessed by also relying on the shell command
“dmesg”

Actual management of messages

• In order to enable the delivery of messages with exactly-once semantic, message
printing onto the console is executed synchronously (recall that standard library
functions only enable at-most-once semantic, just due to asynchronous
management)

• Hence the printk() function does not return control until the message is
delivered to any active console-device driver

• The driver, in its turn does not return control until the message is actually sent to
the (physical) console device

• NOTE: this may impact performance

As an example, the delivery of a message on a serial console device working
at 9600 bit per second, slows down system speed by 1 millisecond per char

The panic() function

• The panic() function is defined in kernel/panic.c

• This function prints the specified message onto the console device (by
relying on printk())

• The string “Kernel panic:” is prefixed to the message

• Further, this function halts the machine, hence leading to stopping the
execution of the kernel

	PowerPoint Presentation
	Modules basics
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Common parts (i)
	Common parts (ii)
	Common parts (iii)
	Declaration of module parameters
	Module parameters dynamic audit
	A variant for array arguments
	Loading/unloading a module
	Actual execution path of insmod
	Module suited system calls – up to 2.4
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Module headings
	Module in-use indications (classical style)
	Slide 24
	Slide 25
	Slide 26
	Kernel exported symbols
	Exported symbols table
	A note on exporting symbols
	Actually usable exported symbols in recent kernels
	Dynamic symbols querying and kernel patching
	struct kprobe
	Kprobe mechanism
	Slide 34
	Kprobe handlers
	kretprobe
	Probing deny
	LINUX kernel versioning
	Kernel versioning exploitation
	Renaming of module startup/shutdown functions
	The LINUX kernel messaging system
	The printk()function
	Message priority levels
	Slide 44
	Function aliases
	Message priority treatment
	Inspecting the current log level settings
	console_loglevel
	Circular buffer management: syslog()
	Slide 50
	Slide 51
	Updates of console_loglevel
	Messaging management demon
	Circular buffer features
	Actual management of messages
	The panic() function

