
Software security aspects
1. Recap
2. Classical pure-software vulnerabilities
3. Protection domains and secure operating systems
4. Reference Monitor architectures

Advanced Operating Systems (and System Security) 
MS degree in Computer Engineering
University of Rome Tor Vergata
Lecturer: Francesco Quaglia



IT security - the very baseline

1. Systems/applications must be usable by legitimate users only

2. Access is granted on the basis of an authorization, and according to the 
rules established by some administrator (beware this term)

 As for point 1, an unusable system is a useless one

 However, in several scenarios the attacker might only tailor system 
non-usability by legitimate users (so called DOS – Denial of Service- 
attacks)



DOS basics

• Based on flooding of
1. Connections (TCP layer) and (probably) threads
2. Packets (UDP and/or application layers)
3. Requests (on application specific protocols)

• In some sense these attacks are trivial since they could be typically handled 
by trading-off operation acceptance (habilitation) vs current resource usage

• However the big issue is how to determine what to accept (and what to 
reject) in the flood  

• Rejecting all at a given point in time would lead to deny the execution of 
legitimate operations  



Overall

• Copying with DOS is not exactly a matter of how to build system software

• It is essentially a matter of how to identify “good” things in the flood (we 
need methods!)

• Clearly, the identification needs to be done on the fly in an efficient manner

• So we need anyhow mechanisms for making the software performing the 
identification task scalable

1. Multi-core exploitation
2. NUMA awareness
3. Non-blocking parallel algorithms …    



Let’s slide to the “legitimate” term 

• This term includes a lot of IT concepts, mostly related to the access to 
resources

 Data

 Code or portions of it (either user or kernel)

The very bad part since it can imply the data 
illegitimate usage scenarios



Security approaches

• They are typically 3
1. Cryptography (e.g. for data)
2. Authentication/habilitation (e.g. for code or portions of it, including 

the kernel code)
3. Security enhanced operating systems (as a general reference model 

for system software configuration and resource usage)

• Each approach targets specific security aspects

• They can/should be combined together to improve the overall security 
level of an IT system



 Side channel

 Branch miss-prediction (Spectre variants)

 Speculation along “trap” affected execution paths (Meltdown)

 Speculation on TAG-to-value (LT1 terminal)

 Hacked kernel structures (sys-call interface, VFS operations …)

Non-legitimate access to data - what we looked at so far



• Randomization (of the address space and of data-structure padding) – 
compile/runtime

• Signature inspection (avoidance of dangerous instructions for data/code 
integrity) – loadtime

• Cyphering

 For streams

 For device blocks

 For memory pages/locations

 For generic data (e.g. passwords)

The countermeasures (so far) 

This should come from 
other courses



Password cyphering

• Done via the crypt() standard function

• Works with 

 Salt

 Different one-way encryption methods

ID | Method
1   | MD5 
2a | Blowfish (on some Linux distributions) 
5   | SHA-256 (since glibc 2.7) 
6   | SHA-512 (since glibc 2.7)



Encryption library function

#include <unistd.h>
char *crypt(const char *key, const char *settings)

The original passwd

Encryption algorithm (the method) + salt

Encryption method+salt+encrypted passwd



Lets’ look at UNIX (Linux) systems

• The passwords’ database is kept within 2 distinct files
1. /etc/passwd
2. /etc/shadow

• /etc/passwd is accessible to every user and is used for running base 
commands (such as id)  - BEWARE THIS!!

• /etc/shadow is confidential to the root user, and keeps critical 
authentication data such as the encrypted passwords



Non-legitimate access to code - what we looked at so far

 Miss-speculation (for branches or traps)

 Hacked kernel structures (sys-call interface, VFS operations …)

 Hacked hardware operation mode



• The same as before, plus …

• Explicit value corrections on branches (see the syscall dispatcher) … plus

• ….. full avoidance of kernel modules insertions (which could otherwise 
subvert all the used countermeasures)!!

The countermeasures (so far) 

The big questions here is: who does the job of 
mounting a kernel module?? 
A human or a piece of code??



• If no thread is active, then no module load can ever take place

• If there is at least one thread active in the system, then the answer is clearly: 
a piece of code that can be run along that thread

• So, what if we make non-legitimate usage of a piece of code along an active 
thread??

…. the answer is easy



• It is a mean for leading a thread to make non-legitimate usage of memory 
locations, including blocks of code

• These blocks of code can already be present into the address space accessible 
by the thread

• Or we can inject them from an external source 

• Or we can compose them by fractions we take somewhere

Coming to buffer overflow



• A buffer overflow leads the content of some memory location to be 
overwritten by another value

• The newly installed value is however non-compatible with the actions that a 
thread should perform based on its control flow logic 

• Minimal damage: e.g. some segfault

• Maximal damage: the thread grubs access to any resource (coda/data in the 
system)

The technical point



• The location targeted by the memory overwrite operation is located in the 
current stack area

• As the bare minimal, this is the location that contains the return address of 
the currently executed machine routine

• So, if the machine routine shuts down its stack frame and then returns, 
control can reach any point in the address space 

Lets’ begin from the beginning



A scheme
when a call to a procedure is executed the following steps take place:

1. Parameters might be copied into the stack
2. The PC return value is then logged into the stack
3. Stack room is reserved for local variables 

void do_work(int x){
  char v[SIZE];
  int y;
   ……

} 
pc

y

v

stack
growth



• The v buffer could be used with no explicit control on its boundaries, this 
may happen when using classical standard functions like scanf/gets

• This may also occur because of a bug on pointers handling

• This limitation can be exploited in order to impose a variation of the control 
flow by overwriting PC 

• This is also called stack exploit

• Control can be returned either to the original code or to a new injected one 

• If the target code is injected, we say that the attack is based on external job – 
stack exploit with payload



A baseline example of buffer overflow

PC

void f(){
char v[128];
……
scanf(“%s”,v);
……

}

Stack area

stack pointer 
as seen by f()

area for 
the array v[]

Strings longer than
128 will overflow
the buffer v[]

Risk of destroying 
PC value



Examples of deprecated functions

scanf()

gets()

scanf_s ()

Libraries typically make 
available variants where 
parameters allow full control 
in the boundaries of memory 
buffers



Important notice

• Buffer overflows may also be linked to simple software bugs

• We may have bad usage of pointers

• Hence even if we use non-deprecated functions, we may still pass some 
wrong pointer leading to overwrite some memory location in a software 
unsafe manner   



Another example scheme

pc
y

v

TCP stream

Sever
side

Client
Side (attacker)

xor %eax, %eax
push %eax
…..
…….
movb $0xb, %al
int $0x80
pc //0x…
pc //0x…
pc //0x…



On improving the attack success probability

nop
nop
nop
…….
nop
nop
nop
xor %eax, %eax
push %eax
…..
…….
movb $0xb, %al
int $0x80
pc //0x…
pc //0x…
pc //0x…

this widens the likelihood of
actually grubbing control
and can also reduce the number 
of tries (namely PC values to 
be tried)



Buffer overflow protection methods – the canary tag

• Canary random-tags as cross checks into the stack before exploiting the return 
point upon the ret instruction

• This is the (nowadays default) –z stackprotector option in gcc



Executable vs non-executable address space portions

• x86-64 processors provide page/region protection against instruction-
fetches  

• This is the XD flag within the entries of the page tables

• Such a support was not present in 32-bit versions of x86 machines

• To enable instruction-fetches from the stack on x86-64 you can use the “-
z execstack” option of the gcc compiler



Are we finally safe?

• We cannot install code wherever we want, since flags like XD will not 
allow us to run whatever we would like from stack or data OS pages

• However, as we saw, running an exec for activating a new program is a 
matter of very few machine instructions

• These instructions cold be already present into the executable the thread is 
running so ….

• Why not doing a patch work and using them all together even if they are 
scattered into the address space??



ROP (Return Oriented Programming)

• Rather than using a single poisoned return address we use a set

• Each element in the set returns control to a code portion that will then 
return control to the subsequent element in the set

• It looks like we activated N calls to arbitrary pieces of code that in the end 
return control to each other

• These N pieces of code are typically named gadgets (a term we already 
saw while discussing of Spectre)



A ROP scheme

retq

Code area

Stack area Poisoned return 
addresses (e.g.
via buffer 
overflow) – called 
ROP chain



On the power of x86(-64) gadgets

• x86(-64) does not impose alignment of instructions in memory

• A same code zone can be used in different manners via ROP

• As an example, for the code zone 55 48 89 e5 b8 00 00 00 00 5d c3 we 
have 

– From first byte  push %rbp   mov %rsp, %rbp   mov $0x0 %rax   pop %rbp   ret

– From third byte in $0xb8,%eax   add %al,(%rax)   add %al,(%rax)   pop %rbp   ret



Return Address Protection (RAP) – x86 case

• Each function is compiled to have a preamble and a tail

• In the preamble the return address is saved in an encrypted form into RBX, 
which is prior saved into the stack

• The encryption key can be the current value of one register not used in the 
function if any 

• Before returning, the encrypted value in RBX is decrypted and compared 
with the return value, if the two are equal then we can actually return

• Still subject to attacker reads of the encrypted value and of the key if they 
must in turn be saved in memory (e.g. under high pressure on registers) 

• It can have a non-minimal cost, especially for short living functions



Shadow stacks

• Each function is compiled to have a preamble and a tail

• In the preamble the return value is saved into a shadow stack area

• In the tail the saved return value is installed onto the actual stack

• Still subject to tampering of the shadow stack area

• Still has a cost in terms of machine cycles to be executed

Stack Shadow Stack (TLS?)

Save return 
address



Other countermeasures (so far)

• Use the call/return hardware branch predictor to detect mismatches in 
between system calls

 Does not cope with asynchronous control flow change

 Requires serious patching of the functions/system-calls (via 
wrappers) to analyze the predictor state (via performance counters)

 Still subject to excessive cost



Heap overflow

• It is an alternative way of attacking the memory layout of a running 
program (still because of an overflow)

• The target can be a function pointer, which can be redirected to already 
existing code or freshly injected one

• We can directly point to code to exploit data put onto the stack

overflow

Pointer redirection

Original target

Heap buffer



Checking with the class of the target

• A possible way to protect against function pointer tampering is the check of the 
function pointer value before calling the target

• If the value belong to a class of legitimate values, then the call can be executed

• Clearly we have a limitation of the possibility to exploit the funciton pointer to 
really point to arbitrary code zones 

• We can also have a very large cost for each function pointer usage 

if pointer target not in the set S 
of legitimate values (the correct class)
the call is aborted 

Heap buffer



Additional countermeasures

• Memory sanitize (-fsanitize=memory gcc flag)

• Based on memory allocators (in data/heap or stack) providing shadow 
memory

 Each buffer has surrounding areas

 Each memory access is tracked via instrumentation

 Each (surrounding) area has a shadow tag telling if access is 
legitimate 

• Unfeasible for real operations – useful for off line analysis and training



• The buffer overflow attack can cause damages related to the level of 
privilege of the exploited application 

• If the exploited application runs with SETUID-root then the attacker can 
even be able to get full control of the system, e.g. by manipulating the 
SETUID bit of the shell program

• …. actually the system root user is indirectly doing something non 
legitimate!!

The actual damage by buffer overflows



User IDs in Unix (e.g. Linux)

• The username is only a placeholder 

• What discriminates which user is running a program is the UID

• The same is for GID 

• Any process is at any time instant associated with three different UIDs/
GIDs
 Real – this tells who you are
 Effective – this tells what you can actually do
 Saved – this tells who you can become again  



UID/GID management system calls 

• setuid()/seteuid() – these are open to EUID equal to 0 (root)

• getuid()/geteuid() – these are queries available for all users

• similar services exist for managing GID

• setuid is “non reversible” in the value of the saved UID – it overwrites all the 
three used IDs

• seteuid is reversible and does not prevent the restore of a saved UID  

• … an UID-root user can temporarily become different EUID user and then 
resume UID-root identity

• UID and EUID values are not forced to correspond to those registered in the 
/etc/passwd file



An example

UID EUID  saved-UID
-------------------------------
x 0 0
x y 0
x x 0
x 0 0

seteuid(y)

setuid(x)

setuid(0)

Line not flushed to x 
since EUID is not root

setuid changes all the three if the current euid  is root (0)

Non-privileged threads can 
only set to UID or saved-UID



Operations by su/sudo commands

• Both these commands are setuid-root

• They enable starting with the EUID-root identity

• Then subject to correct input passwd by the user, they move the real UID 
to root or the target user (in case of su)

• After moving the UID to root, sudo execs the target command



Linux capabilities

• They allow the introduction of a third type of possibility to operate, 
which is between root and non-root 

• Hence, if some thread needs to do something not allowed to non-root, 
it not necessarily needs to be a root thread

• Capabilities are also seen as an approach to build protection domains 
(a thread has grants to do something but not everything)

• To check the number of supported capabilities on Linux you can 
access the pseudofile /proc/sys/kernel/cap_last_cap

• To list the capabilities you can use “capsh --print”



A representation

Root thread 

(ID = 0)

All kernel level 
security checks are 
bypassed

Non-root thread 

(ID != 0)

All kernel level 
security checks are 
executed

Non-root thread 
with capability

(ID != 0)

Some kernel level 
security checks are 
bypassed



Capabilities masks

• a 32/64 bit mask is used to determine whether a thread has some 
capability 

• several bit-masks are used to record

– Permitted capabilities (what we can do)

– Effective capabilities (the ones that we have now)

– Inheritable capabilities (the once we leave to someone in exec)

– Bounding capabilities (limit for inherit/permitted sets)

– Ambient capabilities (what we allow to do with non-SUID programs, 
in any case limited by inheritable&permitted capabilities)



Exploitation

• Running as root allows all capabilities

• The SECBIT_KEEP_CAPS flag determines whether they are still kept 
when using setuid() 

• This flag can be configured based on the prctl() system call option

#include <sys/prctl.h>

int prctl(int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned 
long arg5)

• After we change UID, we can release some capability



Linux system calls for process capabilities

#include <sys/capability.h>

int capget(cap_user_header_t hdrp, cap_user_data_t datap);

int capset(cap_user_header_t hdrp, const cap_user_data_t datap);

typedef struct __user_cap_header_struct {
              __u32 version;
              int pid;
           } *cap_user_header_t;

typedef struct __user_cap_data_struct {
              __u32 effective;
              __u32 permitted;
              __u32 inheritable;
           } *cap_user_data_t;



Listing process capabilities

• We can do this via /proc 

• For each active process we have the /proc/PID/status pseudofile 

• We can gre lines with the “Cap” string

• The outcoming bitmasks can be decode using the shell command  
capsh --decode=VALUE



File capabilities

#include <sys/capability.h>

cap_t cap_get_file(const char *path_p);

int cap_set_file(const char *path_p, cap_t cap_p);

cap_t cap_get_fd(int fd);

int cap_set_fd(int fd, cap_t caps); 



Coming back to non-legitimate code usage

• How to prevent that non-legitimate usage occurs along threads 
running on behalf of the root-user??

• This is a matter of making the operational root of a system stand as 
something like a regular user

• So who should really administrate security in our software system? 



Secure (not only security enhanced) operating systems

• A secure operating system is different from a conventional one because 
of the different granularity according to which we can specify resource 
access rules

• This way, an attacker (even an actual user of the system) has lower 
possibility to make damages (e.g. in term of data access/manipulation) 
with respect to a conventional system

• SELinux (by the NSA) is an example of secure operating systems in the 
Linux world 

• Secure operating systems rely (not only) on the notion of protection 
domain



Protection domain (i)

DEIFNITION: a protection domain is a set of tuples 
<resource, access-mode>

• If some resource is not recorded in any tuple within the domain associated 
with users or programs (or both) then it cannot be accessed at all by that 
user/program

• Otherwise access is granted according to the access-mode specification 

• The philosophy that stands beside operating systems relying on protection 
domains is the one of always granting the minimum privilege level



• Sometimes the protection domain is associated with individual 
processes (rather than users/programs)

• Therefore it can even be changed along time (generally by reducing 
the actual privileges)

• Hence different instances of the same program may have different 
protection domains associated with them

• So privilege reduction for a given process does not compromise 
correct functioning of other process instances

Protection domain (ii)



Advantages from protection domains

• Let’s suppose an attacker grubs access to the system, e.g. via a bug that 
subverts authentication 

• His potential for damage is bounded by the actual protection domain of 
the process that has been exploited in the attack 

• As an example, if the attacker exploits the web server, the damages are 
bound by the protection domain of this server



Coming to the core - security policies

DEFINITION: a security policy is termed discretionary if ordinary 
users (including the administrator/root user) are involved in the 
definition of security attributed (e.g. protection domains)

DEFINITION: a security policy is termed mandatory if its logics 
and the actual definition of security attributes is demanded to a 
security policies’ administrator (who is not an actual user/root of the 
system)



Security policies vs secure OS

• A secure operating system does not only require to implement protection 
domains, rather it also needs mandatory security policies

• In fact, if discretionary policies were used, then domains would have no 
actual usefulness

• Conventional operating systems do not offer mandatory policies (even for 
ACLs), rather discretionary ones (such as the possibility to redefine file 
system access rules by the users, including root)



Secure operating systems administration

• In a conventional operating system the root user is allowed to gain/grant 
access to any resource 

• If an attacker grubs root permission then it can do whatever he would like 

• In a secure operating system even root undergoes protection domain rules, 
as specified by the security administration, and as setup at system startup 

security 
administrator

- compile/startup configuration of 
domains or ACL
- run-time external (policy server) 
reconfiguration  for domains or 
ACL
- no operations allowed in site

root user

-  in site 
operations 
limited by 
domain or 
ACL



Reference monitors

• They aim at enforcing protection domains for any user, even 

• Generally speaking they operate at kernel level, within secure operating 
systems (but we may have reference monitors for other layers such as 
databases)

• Typically, these modules supervise the execution of individual system 
calls allowing the job to be carried out only if parameters and system state 
match what is specified within an Access Control Database (which is 
based on protection domains)

• Close relation with the mandatory model



A classical reference monitor architecture

Passing this check is not 
a matter of being root



A usage example

• Some SETUID application can be subject to a buffer overflow attack

• If the application is not actually run by root, the dangerous system calls can 
be forbidden (such as the one that opens SETUID  to programs)

• They can be done in real-time by the reference monitor on the basis of its 
ACL

• Particularly, the treatment of user ID and effective user ID in the context of 
buffer overflow can be based on detecting their values starting from 
current



A second example

• We can discriminate whether specific services can be executed by root or 
SETUID processes depending on whether these are daemons or not 
(interactive ones)

• This can be still done in real-time by the reference monitor via the reliance 
on the ACL

• Particularly, daemons targeted by buffer overflows can be treated by 
discovering starting from current whether they have a valid terminal 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

