
Trap/interrupt architecture
1. Architectural hints
2. Relations with software and its layering
3. Bindind to the Linux kernel internals

Advanced Operating Systems
MS degree in Computer Engineering
University of Rome Tor Vergata
Lecturer: Francesco Quaglia

Single-core traditional concepts
• Traditional single-core machines only relied on

Traps (synchronous events wrt software execution)

 Interrupts from external devices (asynchronous events)

• The classical way of handling the event has been based on running
operating system code on the unique CPU in the system (single CPU
systems) upon event acceptance

• This has been enough (in terms of consistency) even for concurrent (multi-
thread) applications given that the state of the hardware was time-shared
across threads

Some more insights

CPUSingle CPU-core
chipset

Time-shared threads

They share the same identical
view on the state of the hardware,
they use exactly the same hardware
for carrying out their job

interrupt

Interrupt handling
Change in the
state of the
hardware

The change is visible to
any other thread upon its
reschedule on CPU

An example with traps (e.g. syscalls)

Application
code Processor state (e.g. TLB state) is A

munmap()
Syscall
(actually a trap)

Kernel
code

Processor state (e.g. TLB state) is
moved to B

from this point any time-shared thread sees the correct
final state as determined by trap handling

Moving to multi-core systems

Application
code

CPU-0 state
(e.g. TLB state)
is A

munmap()
syscall
(actually a trap)

Kernel
code

CPU-0 state
(e.g. TLB state)
is moved to B

This thread does not see state B – what if the TLB on CPU-1
caches the same page table (the same state portion) as the
one of CPU-0??

Thread X
running on
CPU-1

Core issues

• If the system state is distributed/replicated within the hardware architecture
we need mechanisms for allowing state changes by traps/interrupts to be
propagated

• As an example, a trap on CPU-0 needs to be propagated to CPU-1 etc.

• In some cases this is addressed by pure firmware protocols (such as when the
event is bound to deterministic handling)

• Otherwise we need mechanisms to propagate and handle the event at the
operating system (software) level

The IPI (Inter Processor Interrupt) support
• IPI is a third type of event (beyond traps and classical interrupts) that may

trigger the execution of specific operating system software on any CPU

• An IPI is a synchronous event at the sender CPU and an asynchronous one
at the recipient CPU

• On the other hand, IPI is typically used to put in place cross CPU activities (e.g.
request/reply protocols) allowing, e.g., a specific CPU to trigger a change in the
state of another one

• Or to trigger a change on the hardware portion only observable by the other
CPU

Priorities
• IPIs are generated via firmware support, but are finally processed at software

level (it becomes an OS matter)

• Classically, at least two priority levels are admitted

 High

 Low

• High priority leads to immediate processing of the IPI at the recipient (a single
IPI is accepted and stands out at any point in time)

• Low priority generally leads to queue the requests and process them via
sequentialization

Actual support in x86 machines
• In x86 processors, the basic firmware support for interrupts is the so called APIC

(Advanced Programmable Interrupt Controller)

• This offers a local instance to any CPU (called LAPIC – Local APIC)

• As an example, LAPIC offers a “CPU-local” programmable timer (for time
tracking and time-sharing purposes) …. the LAPIC-T we already met

• It also offers pseudo-registers to be used for posting IPI requests in the system

• IPI requests travel along an ad-hoc APIC bus

The architectural scheme

Nomenclature
• IRQ is the actual code associated with the interrupt request (depending on

hardware configuration)

• INT is the “interrupt line” as seen by the OS-kernel software

• In the essence INT = F(IRQ)

• The evaluation of the function F is typically hardware specific

• As it will be clear in a few slides, on x86 processors INT = IRQ+32

• This means that the first 32 INT lines are reserved for something else – these are
the predefined traps of the hardware architecture

I/O APIC insights
• I/O APIC tracks how many CPUs are in the current chipset

• It can selectively direct interrupts to the different CPUs

• It uses so called local APIC-ID as an identifier of the CPU

• Fixed/physical operations
 it sends interrupts from certain device to some single, predefined CPU
 Thi occurs, e.g., when sarting Linux with the noapic pci=nomsi command

(all external devices go to the PIC - CPU0)

• Logical/low priority operations
 it can deliver interrupts from certain device to multiple CPUs in a round robin

fashion

The Linux interface for APIC

• /proc/interrupt tells the actual accounting of the interrupt delivery to
the different CPUs

• /proc/irq/<IRQ#>/smp_affinity tells what is the affinity of
interrupts to CPUs in the logical/low priority operating mode

• The actual setup of the I/O APIC working mode is hard-coded into kernel boot
rules and is generally observable via the dmesg buffer

Linux core data structures - the IDT

• It is a table of entries that are used to describe the entry point (the GATE) for
the handling of any interrupt

• x86 machines have IDTs formed by 256 entries (the max amount of IRQ
vectors we can generate with the I/O APIC architecture)

• The actual size and structure of the entries depends on the type of machine
we are working with (say 32 vs 64 bit machines)

• Here is a high level view of the actual usage of the entries …..

Vector range Use

0-19 (0x0-0x13) Nonmaskable interrupts and exceptions

20-31 (0x14-0x1f) Intel-reserved

32-127 (0x20-0x7f) External interrupts (IRQs)

128 (0x80) Programmed exception for system calls
(segmented style)

129-238 (0x81-0xee) External interrupts (IRQs)

239 (0xef) Local APIC timer interrupt

240-250 (0xf0-0xfa) Reserved by Linux for future use

251-255 (0xfb-0xff) Inter-processor interrupts

Linux IDT bindings
Back here in
a while

The mixture changes with kernel releases (e.g. 255 is spurious)

What we already saw - idtr
• The idtr register (interrupt descriptor table register) keeps on each CPU-core

 the IDT virtual address (expressed as up to 6 bytes – 48bit – linear
address)

 The number of entries currently present in the IDT (expressed as 2
bytes – up to 256)

• This is a packed structure that we can manipulate with the LIDT (Load IDT)
and SIDT (Store IDT) x86 machine instructions

x86 protected mode

• The elements of the IDT are made up by 32-bit data structures

• In more detail, the data stucture is of type struct desc_struct

• It is defined in include/asm-i386/desc.h as

struct desc_struct {

unsigned long a,b;

}

Structure of the x86 protected mode IDT entry

difference

Recap on relations with the GDT
• The segment identifier/selector allows accessing the entry of the GDT where

we can find the base value for the target segment

• NOTE

 As we already know, there are 4 valid data/code segments, all mapped
to base 0x0

 This is done in order to make Linux portable on architectures
offering no segmentation support (i.e. only offering paging)

 This is one reason why
 Protection meta-data are also kept within page table entries

 Setting up the offset for a GATE requires a displacement referring to 0x0, which
can be denoted to the linker by the & operator

Long mode IDT entry structure

Fully new

Accessing the gate address - long mode

#define HML_TO_ADDR(h,m,l) \
 ((unsigned long) (l) | ((unsigned long) (m) << 16) | \
 ((unsigned long) (h) << 32))

………
gate_desc *gate_ptr;

gate_ptr = ……;

HML_TO_ADDR(gate_ptr->offset_high, gate_ptr->offset_middle,
gate_ptr->offset_low);

x86 long mode fully new concepts - IST
• The Interrupt Stack Table (IST) is available as an alternative to handle stack

switch upon traps/interrupts

• This mechanism unconditionally switches stacks when it is enabled on
each individual interrupt-vector basis using a field in the IDT entry

• This means that some interrupt vectors can selectively use the IST mechanism

• IST provides a method for specific interrupts (such as NMI, double-fault, and
machine-check) to always execute on a known good stack …. which is also
visible when accessing the kernel

• The IST mechanism provides up to seven IST pointers in the TSS

A scheme
TSS

.

.

.

Different
per-CPU
stack
areas

IST table

IDT entry IST selector

These are typically the primary stacks (possibly of different size) for
processing a given trap/interrupts
Software will then switch to the classical kernel level stack of the running
task if nothing prevents it (e.g. a double fault)

Macros for setting IDT entries - x86 protected mode
 within the arch/i386/kernel/traps.c file we can find the declaration of

the following macros that can be used for setting up one entry of the IDT

 set_trap_gate(displacement,&symbol_name)
 set_intr_gate(displacement,&symbol_name)
 set_system_gate(displacement,&symbol_name)

•displacement indicates the target entry of the IDT

•&simbol_name identifies the segment displacement (starting from 0x0) which
determines the address of the software module to be invoked for handling the
trap or the interrupt

Main differences among the modules
• The set_trap_gate() function initializes one IDT entry such in away to

define the value 0 as the privilege level admitted for accessing the GATE via
software

• Therefore we cannot rely on the INT assembly instruction unless we are
already executing in kernel mode

• The set_intr_gate() function looks similar, however the handler
activation relies on interrupt masking

• set_system_gate() is similar to set_trap_gate() however it
defines the value 3 as the level of privilege admitted for accessing the GATE

i386/kernel-2.4 examples

Handler managing division errors
set_trap_gate(0,÷_error)

Handler for non-maskable interrupts
set_intr_gate(2,&nmi)

Handler used for dispatching system calls
set_system_gate(SYSCALL_VECTOR,&system_call)

Variants for x86 long mode - kernel 3
CODE SNIPPET FROM desc.h
409 /*
410 * This routine sets up an interrupt gate at directory privilege level 3.
411 */
412 static inline void set_system_intr_gate(unsigned int n, void *addr)
413 {
414 BUG_ON((unsigned)n > 0xFF);
415 _set_gate(n, GATE_INTERRUPT, addr, 0x3, 0, __KERNEL_CS);
416 }
417
418 static inline void set_system_trap_gate(unsigned int n, void *addr)
419 {
420 BUG_ON((unsigned)n > 0xFF);
421 _set_gate(n, GATE_TRAP, addr, 0x3, 0, __KERNEL_CS);
422 }
423
424 static inline void set_trap_gate(unsigned int n, void *addr)
425 {
426 BUG_ON((unsigned)n > 0xFF);
427 _set_gate(n, GATE_TRAP, addr, 0, 0, __KERNEL_CS);
428 }

Variants for x86 long mode - kernel 4/5

static inline void native_write_idt_entry(gate_desc *idt,

int entry, const gate_desc *gate) {

 memcpy(&idt[entry], gate, sizeof(*gate));

}

#define write_ldt_entry(dt, entry, desc) \
native_write_idt_entry(dt, entry, desc)

https://elixir.bootlin.com/linux/v4.20.17/C/ident/native_write_idt_entry
https://elixir.bootlin.com/linux/v4.20.17/C/ident/gate_desc
https://elixir.bootlin.com/linux/v4.20.17/C/ident/idt
https://elixir.bootlin.com/linux/v4.20.17/C/ident/gate_desc
https://elixir.bootlin.com/linux/v4.20.17/C/ident/gate
https://elixir.bootlin.com/linux/v4.20.17/C/ident/idt
https://elixir.bootlin.com/linux/v4.20.17/C/ident/gate
https://elixir.bootlin.com/linux/v4.20.17/C/ident/gate
https://elixir.bootlin.com/linux/v4.20.17/C/ident/write_ldt_entry
https://elixir.bootlin.com/linux/v4.20.17/C/ident/dt
https://elixir.bootlin.com/linux/v4.20.17/C/ident/dt

Reserved vs available IDT entries (i)
• The entries from 0 to 31 are reserved for handlers that are used to manage specific

(predefined) events/conditions (such as divide by 0 or page fault) or are already
planned for future use … these are mostly traps

• This is based on hardware design/requirements

• All the other entries are available for system programming purposes

• As an example, the entry at displacement 0x80 has been traditionally used for
kernel level access via system calls

• We note that for some of the reserved entries, microcode tasks generate a so
called error-code to be passed to the handler ……

Reserved vs available IDT entries (ii)

• If needed, the handler needs to be structured such in a way to be aware of the
production of the error-code

• Particularly, beyond exploiting the error-code value, it needs to remove it
from, e.g., the stack right before returning from trap/interrupt (IRET)

• Non-reserved entries area managed by the microcode with no generation of
any error-code value

Recap on actions of trap/interrupt handlers
IDT

Trap

The registered
handler

What to do?

CPU snapshot generation on the
stack? YES

Management of the
presence/absence of error code?
YES

Additional stack change? YES/
NO

Control passage to a second
level handler? Typically YES
(for sure if we are running a non
top/bottom half task)

In modern kernels we also have the
need for handling kernel isolation on
page tables

Modular handler management
• The interrupt handlers are managed via an additional dispatcher

• Initially, each handler

– Manages the actual access to kernel code (e.g. calling the PTI manager)

– Logs a dummy-value into the target stack in case no error-code is generated in
relation to the specific trap/interrupt – otherwise logs the generated one

– Runs the CPU snapshot logger

• Then it passes control to the actual C-style interrupt handler

The actual scheme
trap/interrupt

handler

dispatcher

jump

call

ret

rti

Logs the CPU context onto
the stack

CALLs some entry level module (e.g. for PTI)

Logs the pointer/VECTOR_INDEX for the handler
(and sometimes also the dummy value) onto final target stack

Actual
handler

Depending on the kernel
version these can be packed
in a single code block

x86-64 early trap/interrupt stack layout details

Coming from where?

Examples (dated)
ENTRY(overflow)

pushl $0
pushl $ SYMBOL_NAME(do_overflow)
jmp error_code

ENTRY(general_protection)
pushl $ SYMBOL_NAME(do_general_protection)
jmp error_code

ENTRY(page_fault)
pushl $ SYMBOL_NAME(do_page_fault)
jmp error_code

No error code by firmware

Error code already posted
firmware

The error_code block - still i386 case
• The assembler code block called error_code is in charge of logging the

CPU context into the stack

• This is done by aligning the stack content with the following data structure
defined in include/asm-i386/ptrace.h
struct pt_regs {

long ebx; long ecx;
long edx; long esi;
long edi; long ebp;
long eax; int xds; int xes;
long orig_eax; long eip; int xcs;
long eflags; long esp; int xss;

}

• The actual handler can take as input a pt_regs* pointer and, if needed, an
unsigned long representing the error-code

struct pt_regs for x86 long mode
struct pt_regs {

unsigned long r15; … unsigned long r12;
unsigned long bp;
unsigned long bx; /* arguments: non interrupts/non tracing syscalls only save up

to here*/
unsigned long r11; … unsigned long r8;
unsigned long ax;
unsigned long cx;
unsigned long dx;
unsigned long si;
unsigned long di;
unsigned long orig_ax; /* end of arguments */ /* cpu exception frame or undefined

*/
unsigned long ip;
unsigned long cs;
unsigned long flags;
unsigned long sp;
unsigned long ss; /* top of stack page */

}

The page fault handler - main features

asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
unsigned long write, unsigned long address);

void do_page_fault(struct pt_regs *regs, unsigned long error_code);

Newer higher level interface compared to the below shown classical one

bit 0 == 0 means no page found, 1 means protection fault
bit 1 == 0 means read, 1 means write
bit 2 == 0 means kernel, 1 means user-mode

Back to IPI
• Immediate handling is allowed for the case in which there are no data structures

that are shared across CPU-cores that need to be accessed for the handling
(kind of stateless scenarios)

• An example is the system-halt (e.g. upon panic)

• Other classical usages of IPI are

 Execution of a same function across all the CPU-cores (like the
initialization of per-CPU variables)

 Change of the state of hardware components across multiple CPU-cores in
the system (e.g. the TLB state)

 Ask some CPU to preempt the current thread

Actual IPI usage in Linux - a few examples
CALL_FUNCTION_VECTOR
Sent to all CPUs but the sender, forcing those CPUs to run a function passed by
the sender. The corresponding interrupt handler is named
call_function_interrupt(). Usually this interrupt is sent to all CPUs except
the CPU executing the calling function by means of the smp_call_function()
facility function.

RESCHEDULE_VECTOR
When a CPU receives this type of interrupt, the corresponding handler limits
itself to acknowledge the interrupt.

INVALIDATE_TLB_VECTOR
Sent to all CPUs but the sender, forcing them to invalidate their TLB.

Actual IPI API in the APIC driver
send_IPI_all()

Sends an IPI to all CPUs (including the sender)

send_IPI_allbutself()
Sends an IPI to all CPUs except the sender

send_IPI_self()
Sends an IPI to the sender CPU

send_IPI_mask()
Sends an IPI to a group of CPUs specified by a bit mask

Sequentialization of IPI management
• The sequentializing approach is used in case the IPI requires managing a

shared data structure across the threads

• This is the typical case of an IPI that requires specific parameters for
correct management

• These parameters are in fact passed into predetermined memory locations
accessible to all the CPU-cores, whose position in memory is
predetermined

• The classical case is the one of smp-call-function, whose function pointer
and parameter are both passed into a global table

The scheme

CPU-0

Shared data structure

Get
spinlock

Post data

Trigger IPI

handle IPI possibly accessing
shared data

CPU-1

207 int smp_call_function(void (*_func)(void *info), void *_info, int wait)
208 {
………
215 /* Can deadlock when called with interrupts disabled */
216 WARN_ON(irqs_disabled());
217
218 spin_lock_bh(&call_lock);
219 atomic_set(&scf_started, 0);
220 atomic_set(&scf_finished, 0);
221 func = _func;
222 info = _info;
223
224 for_each_online_cpu(i)
225 os_write_file(cpu_data[i].ipi_pipe[1], "C", 1);
226
227 while (atomic_read(&scf_started) != cpus)
228 barrier();
229
230 if (wait)
231 while (atomic_read(&scf_finished) != cpus)
232 barrier();
233
234 spin_unlock_bh(&call_lock);
235 return 0;

Beware this!!

IPI additional effects

• As noted before, one IPI used by Linux is the reschedule one

• This may lead to preemption of the task running on the CPU targeted by
the IPI

• This may have effects on both

 Correctness/consistency

 Performance

Consistency aspects

• What about running a piece of code which is CPU-specific and
preemption occurs??

• One example

struct _the_struct v[NR_CPUS];
v[smp_processor_id()] = some_value;

/* task is preempted here... */

something = v[smp_processor_id()];

We may be targeting different entries

Performance aspects

• smp_call_function() tipcally runs with interrupts allowed … just
remember the deadlock issue!!

• But we cannot risk to have some smp_call_function() runner
getting context switched off the CPU

• Otherwise the release of the smp_call_function() resources (e.g.
the spinlock) might be delayed

• …. and we might even deadlock anyhow!!

How to run with interrupts but no actual preemption

• We use per-thread atomic counters (we already saw)

• If the counter is not zero then no preemption will take place (although we
can be targeted by interrupts)

• The check is clearly done via software upon attempting to process the
preemption interrupt

• Beware managing the preemption counter explicitly if required!!

Preemption enabling/disabling API recall

preempt_enable() // decrement the preempt counter

preempt_disable() // increment the preempt counter

preempt_enable_no_resched() decrement, but do not
immediately preempt

preempt_check_resched() // if needed, reschedule

preempt_count() return the preempt counter

put_cpu() /get_cpu() //decrase/increase the counter
(enable/disable preemption)

Variants of each other

Preemption vs SMP function calls
int smp_call_function(void (*func) (void *info), void *info, int wait)
{

 preempt_disable();

 smp_call_function_many(cpu_online_mask, func, info, wait);

 preempt_enable();

 return 0;

}

Internal structure with
preemption awareness

Be careful
• IPI is an extremely powerful technology

• However you need to consider scalability aspects

• This leads to conclude that IPI schemes involving large counts of CPU-
cores need to be used only when mandatorily needed

• The classical example is when patching the kernel on line, e.g. upon
mounting a module

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

