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Single-core traditional concepts
• Traditional single-core machines only relied on 

Traps (synchronous events wrt software execution)

 Interrupts from external devices (asynchronous events)

• The classical way of handling the event has been based on running 
operating system code on the unique CPU in the system (single CPU 
systems) upon event acceptance

• This has been enough (in terms of consistency) even for concurrent (multi-
thread) applications given that the state of the hardware was time-shared 
across threads



Some more insights

CPUSingle CPU-core
chipset

Time-shared threads

They share the same identical 
view on the state of the hardware,
they use exactly the same hardware 
for carrying out their job

interrupt

Interrupt handling
Change in the 
state of the 
hardware

The change is visible to 
any other thread upon its 
reschedule on CPU 



An example with traps (e.g. syscalls)

Application
code Processor state (e.g. TLB state) is A

munmap() 
Syscall 
(actually a trap)

Kernel
code

Processor state (e.g. TLB state) is 
moved to B

from this point any time-shared thread sees the correct
final state as determined by trap handling



Moving to multi-core systems

Application
code

CPU-0 state 
(e.g. TLB state) 
is A

munmap() 
syscall 
(actually a trap)

Kernel
code

CPU-0 state 
(e.g. TLB state) 
is moved to B

This thread does not see state B – what if the TLB on CPU-1 
caches the same page table (the same state portion) as the 
one of CPU-0??

Thread X
running on 
CPU-1



Core issues

• If the system state is distributed/replicated within the hardware architecture 
we need mechanisms for allowing state changes by traps/interrupts to be 
propagated

• As an example, a trap on CPU-0 needs to be propagated to CPU-1 etc.

• In some cases this is addressed by pure firmware protocols (such as when the 
event is bound to deterministic handling)

• Otherwise we need mechanisms to propagate and handle the event at the 
operating system (software) level



The IPI (Inter Processor Interrupt) support
• IPI is a third type of event (beyond traps and classical interrupts) that may 

trigger the execution of specific operating system software on any CPU

• An IPI is a synchronous event at the sender CPU and an asynchronous one 
at the recipient CPU

• On the other hand, IPI is typically used to put in place cross CPU activities (e.g. 
request/reply protocols) allowing, e.g., a specific CPU to trigger a change in the 
state of another one 

• Or to trigger a change on the hardware portion only observable by the other 
CPU



Priorities
• IPIs are generated via firmware support, but are finally processed at software 

level (it becomes an OS matter)

• Classically, at least two priority levels are admitted 

 High

 Low

• High priority leads to immediate processing of the IPI at the recipient (a single 
IPI is accepted and stands out at any point in time)

• Low priority generally leads to queue the requests and process them via 
sequentialization



Actual support in x86 machines 
• In x86 processors, the basic firmware support for interrupts is the so called APIC 

(Advanced Programmable Interrupt Controller)

• This offers a local instance to any CPU (called LAPIC – Local APIC)

• As an example, LAPIC offers a “CPU-local” programmable timer (for time 
tracking and time-sharing purposes) …. the LAPIC-T we already met

• It also offers pseudo-registers to be used for posting IPI requests in the system

• IPI requests travel along an ad-hoc APIC bus



The architectural scheme



Nomenclature
• IRQ is the actual code associated with the interrupt request (depending on 

hardware configuration)

• INT is the “interrupt line” as seen by the OS-kernel software

• In the essence INT = F(IRQ)

• The evaluation of the function F is typically hardware specific

• As it will be clear in a few slides, on x86 processors INT = IRQ+32

• This means that the first 32 INT lines are reserved for something else – these are 
the predefined traps of the hardware architecture 



I/O APIC insights
• I/O APIC tracks how many CPUs are in the current chipset

• It can selectively direct interrupts to the different CPUs

• It uses so called local APIC-ID as an identifier of the CPU

• Fixed/physical operations 
 it sends interrupts from certain device to some single, predefined CPU
 Thi occurs, e.g., when sarting Linux with the noapic pci=nomsi command 

(all external devices go to the PIC - CPU0) 

• Logical/low priority operations
 it can deliver interrupts from certain device to multiple CPUs in a round robin 

fashion



The Linux interface for APIC

• /proc/interrupt tells the actual accounting of the interrupt delivery to 
the different CPUs

• /proc/irq/<IRQ#>/smp_affinity tells what is the affinity of 
interrupts to CPUs in the logical/low priority operating mode

• The actual setup of the I/O APIC working mode is hard-coded into kernel boot 
rules and is generally observable via the dmesg buffer



Linux core data structures - the IDT

• It is a table of entries that are used to describe the entry point (the GATE) for 
the handling of any interrupt

• x86 machines have IDTs formed by 256 entries (the max amount of IRQ 
vectors we can generate with the I/O APIC architecture)  

• The actual size and structure of the entries depends on the type of machine 
we are working with (say 32 vs 64 bit machines)

• Here is a high level view of the actual usage of the entries …..



Vector range Use

0-19 (0x0-0x13) Nonmaskable interrupts and exceptions

20-31 (0x14-0x1f) Intel-reserved

32-127 (0x20-0x7f) External interrupts (IRQs)

128 (0x80) Programmed exception for system calls 
(segmented style) 

129-238 (0x81-0xee) External interrupts (IRQs)

239 (0xef) Local APIC timer interrupt

240-250 (0xf0-0xfa) Reserved by Linux for future use

251-255 (0xfb-0xff) Inter-processor interrupts

Linux IDT bindings
Back here in 
a while

The mixture changes with kernel releases (e.g. 255 is spurious)



What we already saw - idtr
• The  idtr register (interrupt descriptor table register) keeps on each CPU-core

 the IDT virtual address (expressed as up to 6 bytes – 48bit – linear 
address)

 The number of entries currently present in the IDT (expressed as 2 
bytes – up to 256) 

• This is a packed structure that we can manipulate with the LIDT (Load IDT) 
and SIDT (Store IDT) x86 machine instructions



x86 protected mode

• The elements of the IDT are made up by 32-bit data structures

• In more detail, the data stucture is of type struct desc_struct 

• It is defined  in include/asm-i386/desc.h as

struct desc_struct {

unsigned long a,b;

}



Structure of the x86 protected mode IDT entry

difference





Recap on relations with the GDT
• The segment identifier/selector allows accessing the entry of the GDT where 

we can find the base value for the target segment

• NOTE 

 As we already know, there are 4 valid data/code segments, all mapped 
to base 0x0

 This is done in order to make Linux portable on architectures 
offering no segmentation support (i.e. only offering paging)

 This is one reason why
 Protection meta-data are also kept within page table entries

 Setting up the offset for a GATE requires a displacement referring to 0x0, which 
can be denoted to the linker by the & operator



Long mode IDT entry structure

Fully new



Accessing the gate address - long mode

#define HML_TO_ADDR(h,m,l)   \   
   ((unsigned long) (l) | ((unsigned long) (m) << 16) | \
   ((unsigned long) (h) << 32))

………
gate_desc *gate_ptr;

gate_ptr = ……;

HML_TO_ADDR(gate_ptr->offset_high, gate_ptr->offset_middle,
gate_ptr->offset_low);



x86 long mode fully new concepts - IST
• The Interrupt Stack Table (IST) is available as an alternative to handle stack 

switch upon traps/interrupts

• This mechanism unconditionally switches stacks when it is enabled on 
each individual interrupt-vector basis using a field in the IDT entry

• This means that some interrupt vectors can selectively use the IST mechanism

• IST provides a method for specific interrupts (such as NMI, double-fault, and 
machine-check) to always execute on a known good stack …. which is also 
visible when accessing the kernel

• The IST mechanism provides up to seven IST pointers in the TSS 



A scheme
TSS

.

.

.

Different 
per-CPU 
stack
areas 

IST table

IDT entry IST selector

These are typically the primary stacks (possibly of different size) for 
processing a given trap/interrupts
Software will then switch to the classical kernel level stack of the running 
task if nothing prevents it (e.g. a double fault) 



Macros for setting IDT entries - x86 protected mode
  within the arch/i386/kernel/traps.c file we can find the declaration of 

the following macros that can be used for setting up one entry of the IDT

 set_trap_gate(displacement,&symbol_name)
 set_intr_gate(displacement,&symbol_name)
 set_system_gate(displacement,&symbol_name)

•displacement indicates the target entry of the IDT

•&simbol_name identifies the segment displacement (starting from 0x0) which 
determines the address of the software module to be invoked  for handling the 
trap or the interrupt



Main differences among the modules
• The set_trap_gate() function initializes one IDT entry such in away to 

define the value 0 as the privilege level admitted for accessing the GATE via 
software

• Therefore we cannot rely on the INT assembly instruction  unless we are 
already executing in kernel mode

• The set_intr_gate() function looks similar, however the handler 
activation relies on interrupt masking 

• set_system_gate() is similar to  set_trap_gate() however it 
defines the value 3 as the level of privilege admitted for accessing the GATE



i386/kernel-2.4 examples

Handler managing division errors
set_trap_gate(0,&divide_error)

Handler for non-maskable interrupts
set_intr_gate(2,&nmi)

Handler used for dispatching system calls
set_system_gate(SYSCALL_VECTOR,&system_call)



Variants for x86 long mode - kernel 3
CODE SNIPPET FROM desc.h
409 /*
410  * This routine sets up an interrupt gate at directory privilege level 3.
411  */
412 static inline void set_system_intr_gate(unsigned int n, void *addr)
413 {
414         BUG_ON((unsigned)n > 0xFF);
415         _set_gate(n, GATE_INTERRUPT, addr, 0x3, 0, __KERNEL_CS);
416 }
417 
418 static inline void set_system_trap_gate(unsigned int n, void *addr)
419 {
420         BUG_ON((unsigned)n > 0xFF);
421         _set_gate(n, GATE_TRAP, addr, 0x3, 0, __KERNEL_CS);
422 }
423 
424 static inline void set_trap_gate(unsigned int n, void *addr)
425 {
426         BUG_ON((unsigned)n > 0xFF);
427         _set_gate(n, GATE_TRAP, addr, 0, 0, __KERNEL_CS);
428 }



Variants for x86 long mode - kernel 4/5

static inline void native_write_idt_entry(gate_desc *idt, 

int entry, const gate_desc *gate) { 

    memcpy(&idt[entry], gate, sizeof(*gate)); 

} 

#define write_ldt_entry(dt, entry, desc) \ 
native_write_idt_entry(dt, entry, desc) 

https://elixir.bootlin.com/linux/v4.20.17/C/ident/native_write_idt_entry
https://elixir.bootlin.com/linux/v4.20.17/C/ident/gate_desc
https://elixir.bootlin.com/linux/v4.20.17/C/ident/idt
https://elixir.bootlin.com/linux/v4.20.17/C/ident/gate_desc
https://elixir.bootlin.com/linux/v4.20.17/C/ident/gate
https://elixir.bootlin.com/linux/v4.20.17/C/ident/idt
https://elixir.bootlin.com/linux/v4.20.17/C/ident/gate
https://elixir.bootlin.com/linux/v4.20.17/C/ident/gate
https://elixir.bootlin.com/linux/v4.20.17/C/ident/write_ldt_entry
https://elixir.bootlin.com/linux/v4.20.17/C/ident/dt
https://elixir.bootlin.com/linux/v4.20.17/C/ident/dt


Reserved vs available IDT entries (i)
• The entries from 0 to 31 are reserved for handlers that are used to manage specific 

(predefined) events/conditions (such as divide by 0 or page fault) or are already 
planned for future use … these are mostly traps

• This is based on hardware design/requirements 

• All the other entries are available for system programming purposes

• As an example, the entry at displacement 0x80 has been traditionally used for 
kernel level access via system calls

• We note that for some of the reserved entries, microcode tasks generate a so 
called error-code to be passed to the handler ……



Reserved vs available IDT entries (ii)

• If needed, the handler needs to be structured such in a way to be aware of the 
production of the error-code

• Particularly, beyond exploiting the error-code value, it needs to remove it 
from, e.g., the stack right before returning from trap/interrupt (IRET)

• Non-reserved entries area managed by the microcode with no generation of 
any error-code value



Recap on actions of trap/interrupt handlers
IDT

Trap

The registered 
handler

What to do?

CPU snapshot generation on the 
stack? YES

Management of the 
presence/absence of error code? 
YES

Additional stack change? YES/
NO

Control passage to a second 
level handler? Typically YES 
(for sure if we are running a non 
top/bottom half task)

  

In modern kernels we also have the 
need for handling kernel isolation on 
page tables



Modular handler management
• The interrupt handlers are managed via an additional dispatcher

• Initially, each handler 

– Manages the actual access to kernel code (e.g. calling the PTI manager)

– Logs a dummy-value into the target stack in case no error-code is generated in 
relation to the specific trap/interrupt – otherwise logs the generated one

– Runs the CPU snapshot logger

• Then it passes control to the actual C-style interrupt handler  



The actual scheme
trap/interrupt

handler

dispatcher

jump

call

ret

rti

Logs the CPU context onto
the stack

CALLs some entry level module (e.g. for PTI)

Logs the pointer/VECTOR_INDEX for the handler 
(and sometimes also the dummy value) onto final target stack

Actual 
handler

Depending on the kernel 
version these can be packed 
in a single code block



x86-64 early trap/interrupt stack layout details

Coming from where?



Examples (dated)
ENTRY(overflow)

pushl $0
pushl $ SYMBOL_NAME(do_overflow)
jmp error_code

ENTRY(general_protection)
pushl $ SYMBOL_NAME(do_general_protection)
jmp error_code

ENTRY(page_fault)
pushl $ SYMBOL_NAME(do_page_fault)
jmp error_code

No error code by firmware

Error code already posted 
firmware



The error_code block - still i386 case
• The assembler code block called error_code is in charge of logging the 

CPU context into the stack

• This is done by aligning the stack content with the following data structure 
defined in include/asm-i386/ptrace.h
struct pt_regs {

long ebx; long ecx;
long edx; long esi;
long edi; long ebp;
long eax; int  xds; int  xes;
long orig_eax; long eip; int  xcs; 
long eflags; long esp; int  xss;

}

• The actual handler can take as input a pt_regs* pointer and, if needed, an 
unsigned long representing the error-code



struct pt_regs for x86 long mode
struct pt_regs { 

unsigned long r15;  …  unsigned long r12; 
unsigned long bp; 
unsigned long bx; /* arguments: non interrupts/non tracing syscalls only save up 

to here*/ 
unsigned long r11;  … unsigned long r8; 
unsigned long ax; 
unsigned long cx; 
unsigned long dx; 
unsigned long si; 
unsigned long di; 
unsigned long orig_ax; /* end of arguments */ /* cpu exception frame or undefined 

*/ 
unsigned long ip; 
unsigned long cs; 
unsigned long flags; 
unsigned long sp; 
unsigned long ss; /* top of stack page */ 

}



The page fault handler - main features

asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
unsigned long write, unsigned long address); 

void do_page_fault(struct pt_regs *regs, unsigned long error_code);

Newer higher level interface compared to the below shown classical one

bit 0 == 0 means no page found, 1 means protection fault
bit 1 == 0 means read, 1 means write
bit 2 == 0 means kernel, 1 means user-mode



Back to IPI
• Immediate handling is allowed for the case in which there are no data structures 

that are shared across CPU-cores that need to be accessed for the handling 
(kind of stateless scenarios)

• An example is the system-halt (e.g. upon panic)

• Other classical usages of IPI are

 Execution of a same function across all the CPU-cores (like the 
initialization of per-CPU variables)

 Change of the state of hardware components across multiple CPU-cores in 
the system (e.g. the TLB state)

 Ask some CPU to preempt the current thread



Actual IPI usage in Linux - a few examples
CALL_FUNCTION_VECTOR
Sent to all CPUs but the sender, forcing those CPUs to run a function passed by 
the sender. The corresponding interrupt handler is named 
call_function_interrupt( ). Usually this interrupt is sent to all CPUs except 
the CPU executing the calling function by means of the smp_call_function( ) 
facility function. 

RESCHEDULE_VECTOR
When a CPU receives this type of interrupt, the corresponding handler limits 
itself to acknowledge the interrupt. 

INVALIDATE_TLB_VECTOR
Sent to all CPUs but the sender, forcing them to invalidate their TLB.



Actual IPI API in the APIC driver
send_IPI_all( ) 

Sends an IPI to all CPUs (including the sender)

send_IPI_allbutself( ) 
Sends an IPI to all CPUs except the sender

send_IPI_self( ) 
Sends an IPI to the sender CPU

send_IPI_mask( ) 
Sends an IPI to a group of CPUs specified by a bit mask



Sequentialization of IPI management
• The sequentializing approach is used in case the IPI requires managing a 

shared data structure across the threads

• This is the typical case of an IPI that requires specific parameters for 
correct management

• These parameters are in fact passed into predetermined memory locations 
accessible to all the CPU-cores, whose position in memory is 
predetermined

• The classical case is the one of smp-call-function, whose function pointer 
and parameter are both passed into a global table



The scheme

CPU-0

Shared data structure

Get 
spinlock

Post data

Trigger IPI

handle IPI possibly accessing
shared data

CPU-1



207 int smp_call_function(void (*_func)(void *info), void *_info, int wait)
208 {
………
215         /* Can deadlock when called with interrupts disabled */
216         WARN_ON(irqs_disabled());
217 
218         spin_lock_bh(&call_lock);
219         atomic_set(&scf_started, 0);
220         atomic_set(&scf_finished, 0);
221         func = _func;
222         info = _info;
223 
224         for_each_online_cpu(i)
225                 os_write_file(cpu_data[i].ipi_pipe[1], "C", 1);
226 
227         while (atomic_read(&scf_started) != cpus)
228                 barrier();
229 
230         if (wait)
231                 while (atomic_read(&scf_finished) != cpus)
232                         barrier();
233 
234         spin_unlock_bh(&call_lock);
235         return 0;

Beware this!!



IPI additional effects

• As noted before, one IPI used by Linux is the reschedule one

• This may lead to preemption of the task running on the CPU targeted by 
the IPI

• This may have effects on both

 Correctness/consistency

 Performance



Consistency aspects

• What about running a piece of code which is CPU-specific and 
preemption occurs??

• One example

struct _the_struct v[NR_CPUS]; 
v[smp_processor_id()] = some_value; 

/* task is preempted here... */ 

something = v[smp_processor_id()];

We may be targeting different entries



Performance aspects

• smp_call_function() tipcally runs with interrupts allowed … just 
remember the deadlock issue!!

• But we cannot risk to have some smp_call_function() runner 
getting context switched off the CPU

• Otherwise the release of the smp_call_function() resources (e.g. 
the spinlock) might be delayed 

• …. and we might even deadlock anyhow!! 



How to run with interrupts but no actual preemption

• We use per-thread atomic counters (we already saw)

• If the counter is not zero then no preemption will take place (although we 
can be targeted by interrupts)

• The check is clearly done via software upon attempting to process the 
preemption interrupt

• Beware managing the preemption counter explicitly if required!!



Preemption enabling/disabling API recall

preempt_enable() // decrement the preempt counter 

preempt_disable() // increment the preempt counter 

preempt_enable_no_resched() decrement, but do not 
immediately preempt 

preempt_check_resched() // if needed, reschedule 

preempt_count() return the preempt counter 

put_cpu() /get_cpu()  //decrase/increase the counter 
(enable/disable preemption)

Variants of each other



Preemption vs SMP function calls
int smp_call_function(void (*func) (void *info), void *info, int wait) 
{ 

    preempt_disable(); 

    smp_call_function_many(cpu_online_mask, func, info, wait );  

    preempt_enable(); 

    return 0; 

}

Internal structure with 
preemption awareness



Be careful
• IPI is an extremely powerful technology

• However you need to consider scalability aspects

• This leads to conclude that IPI schemes involving large counts of CPU-
cores need to be used only when mandatorily needed

• The classical example is when patching the kernel on line, e.g. upon 
mounting a module 
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