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Tasks vs processes/threads
● Types of traces

- User mode process/thread

- Kernel mode process/thread

- Interrupt management

● Non-determinism

- Due to nesting of user/kernel mode traces and interrupt management traces

● Performance

- Non-determinism may give rise to inefficiency whenever the evolution of the traces 

is tightly coupled (like on SMP and multi-core machines)

- Timing expectations for critical sections can be altered 



Design methodologies

Temporal reconciliation

– Interrupt management traces get nested into (mapped onto) 
process/thread traces according to temporal shift (work 
deferring)

– This mapping can lead to aggregating the management of 
the events within the system (many-to-one aggregation)

– Priority based scheduling mechanisms are required in 
order not to induce starvation, or to correctly manage 
different levels of criticality



An example timeline with work deferring

Wall-clock-time

Interrupt requests

Convenient 

reconciliation 

point

Actual processing 

of the requests

grub lock release lock

Critical section



Reconciliation points

Guarantees

– “Eventually”

Conventional support

– Returning from syscall

• This involves application-level technology

– Context-switch

• This involves idle-process technology

– Reconciliation in process-context

• This involves kernel-thread technology



The historical concept - top/bottom 
half programming (i)

• The management of tasks associated with the interrupts typically occurs via a two- 

level logic → top half and bottom half

• The top-half level takes care of executing a minimal amount of work which is needed 

to allow later finalization of the whole interrupt management

• The top-half code portion is typically (but not manadatorily) handled according 

to a non-interruptible scheme

• The finalization of the work takes place via the bottom-half level

• The top-half takes care of scheduling the bottom-half task, e.g., by queuing a record 

into a proper data structure



• The difference between top-half and bottom-half comes out because of

✓ the need to manage events in a timely manner

✓ while avoiding to keep locked resources right upon the event occurrence

• Otherwise, we may incur the risk of delaying critical actions (e.g. spinlock- 

release) interrupted due to the event occurrence

• At worst we might even incur deadlocks when a slow interrupt management is hit 

by the activation of another one that needs the same resources

The historical concept - top/bottom 
half programming (ii)



One example - sockets

no top/bottom half

interrupt from network device

packet 

extraction

IP level 

TCP/UDP

level

VFS

level

additional delay 

for, e.g., an 

active

spin-lock

top/bottom half

interrupt from network device

packet 

extraction

Task 

queuing

additional delay 

for, e.g., an 

active

spin-lock



The historical architectural concept - bottom-half queues

top 

half

Task data 

structures

interrupt
iret

bottom 

half

Per task information (parameters 

and reference to the code portion)

Here we pass through 

trap/interrupt-handler 

dispatching

the trigger can be 

of various nature

time



Historical evolution in Linux

Linux kernel version

2.5

Task queues
Softirqs 

Tasklets 

Work queues

Improved orientation to SMP/multi-core and automation

(concepts that are relevant to every operating system kernel so we can take 

the Linux instances as archetypal solutions)



Let’s start from task queues

• task-queues are queuing structures, which can be associated with variable names

• Linux (ref. kernel 2.2) already declares a given amount of predefined task- 

queues, having the following names

➢tq_immediate

(tasks to be executed upon timer-interrupt or syscall return)

➢tq_timer

(tasks to be executed upon timer-interrupt)

➢tq_schedule

(tasks to be executed in process context)



Task queues data structures

• Additional task queues can be declared using the macro 

DECLARE_TASK_QUEUE(queuename) which is defined in 

include/linux/tqueue.h – this macro also initializes the task-queue as 

empty

• The structure of a task is defined in include/linux/tqueue.h

struct tq_struct {

struct tq_struct *next; /*linked list of active bh's*/ 

int sync; /* must be initialized to zero */

void (*routine)(void *); /* function to call */ 

void *data; /* argument to function */

}

These are the task specific fields



Task management API

• The queuing function has prototype int queue_task(struct tq_struct

*task, task_queue *list), where list is the address of the target task- 

queue structure

• This function is used to only register the task, not to execute it

• The task-execution function for all the tasks currently kept by a task queue is void 

run_task_queue(task_queue *list)

• When invoked, unlinking and actual execution of the tasks take place

• For the tq_schedule task-queue there exists a proper queuing function offered by the 

kernel with prototype int schedule_task(struct tq_struct *task)

• The return value of any queuing function is non-zero if the task is not already 

registered within the queue (the check is done by exploiting the sync field, which gets 

set to 1 when the task is queued)



Task management details

• Non-predefined task-queues need to be flushed via an explicit call to the 

function run_task_queue(…)

• Pre-defined task-queues are automatically handled (flushed) by the kernel

• Anyway, pre-defined queues can be used for inserting tasks that may differ 

from those natively inserted by the standard kernel image



Timely flushing of the bottom halves requires

– Invokation by the scheduler

– Invokation upon entering and/or exiting system calls

The Linux kernel (up to 2.5) invokes do_bottom_half()

– within schedule()

– from ret_from_sys_call()

Bottom-half occurrences with task queues



Be careful - the bottom half execution context

• Even though bottom-half tasks can be executed in process 

context, the actual context for the thread while running them 

should look like “interrupt”

• No blocking service invocation in any bottom half function!!



Limitations of task queues - the actual timeline

Wall-clock-time

Interrupt requests

The scheduler is 

invoked to pass control 

to T

Bottom half 

processing

A very high priority thread T 

becomes ready

Thread T 

execution

Thread T is delayed by the whole time required 

to process all the standing bottom halves!!!



Limitations of task queues - more general aspects

• Nesting of bottom halves on a single thread leads to

✓

✓

✓

✓ The impossibility to exploit multiple CPU-cores for interrupt 

(bottom half) management

The impossibility to optimize locality of operations and data 

accesses

Unsuitability for heavy interrupt load 

Unsuitability for scaled up hardware parallelism



Parallelism vs interrupts vs device drivers

•

•

•

“Interrupts” can also be raised by software

This is the scenario of drivers for logical (not physical) devices

Interrupt drivers may be requested to handle a load that may grow with the 

number of running threads (larger than the number of devices!?!)

Clearly, the actual workload can be a function of the number of available CPU- 

cores

Overall, we need:

•

•
✓

✓
✓

More scalability and locality 

More flexibility

Reactiveness and predictability



SoftIRQ architectures

•

•

•

•

The top half is further reduced

It does not necessarily queue the bottom half, so it can be even more responsive 

Bottom halves can therefore be already present somewhere

They can be seen as actual interrupt handlers triggered via software (by the top 

half)

The queuing concept is still there for on demand usage, if required (e.g. for 

programmability of new bottom halves)

Queues of tasks are not queues of bottom halves, they are queues of bottom 

half input data

•

•



The architectural scheme

Trap/interrupt table

Incoming 

interrupt

Top half

SoftIRQ table

Raise a

FLAG alarming 

the bottom half

and thread awake 

(if needed)

Bottom half

Synchronous 

execution upon

interrupt acceptance
Asynchronous execution 

via a specific thread

This handler 

can do arbitrary

or per-CPU work



Linux SoftIRQs - kernels later than 2.5

• The SoftIRQ table is an array of NR_SOFTIRQS entries, each of which is set to 

identify a struct softirq_action

The entries are associated with different types/priorities of handlers, the set is:•

enum { HI_SOFTIRQ=0,

TIMER_SOFTIRQ,

NET_TX_SOFTIRQ,

NET_RX_SOFTIRQ,

BLOCK_SOFTIRQ,

BLOCK_IOPOLL_SOFTIRQ,

TASKLET_SOFTIRQ,

SCHED_SOFTIRQ,

HRTIMER_SOFTIRQ,

RCU_SOFTIRQ,

NR_SOFTIRQS }

High priority 

queued stuff

Stuff to do on timers or 

reschedules

Normal priority 

queued stuff



Who does the SoftIRQ work?

• The ksoftirq daemon (multiple threads with CPU affinity)

• This is typically listed as ksoftirq[n] where ‘n’ is the CPU-core it is affine with

• Once awaken, the threads look at the SoftIRQ table to inspect if some entry is flagged

• In the positive case the thread runs the SoftIRQ handler

• We can also build masks for avoiding the redirect and the processing of specific 

interrupts within SoftIRQ

• So we can create affinity between SoftIRQs and CPU-cores

• On the other hand, affinity can be based on groups of CPU-core IDs so we can 

distribute the SoftIRQ load across the CPU-cores



An example on interrupt affinity management

• Currently Linux tells us its current affinity of an interrupt line towards the CPUs via 

the pseudofile

/proc/irq/$IRQ_NUMBER/smp_affinity

• These pseudofiles can be reconfigured so as to setup

– new affinity for (in generic) interrupts

– and (then) the affinity for the interrupts handled via SoftIRQ

• …… additional details will be coming when we will discuss the 

architectural organization of the interrupt system ….



Overall advantages from SoftIRQs

•

•

Multithread execution of bottom half tasks

Bottom half execution not synchronous with respect to specific threads 

(e.g. upon rescheduling a very high priority thread)

Binding of task execution to CPU-cores if required (e.g. locality on 

NUMA machines)

Ability to still queue tasks to be done (see the HI_SOFTIRQ and

TASKLET_SOFTIRQ types)

•

•



Actual management of queued tasks - normal and 
high priority tasklets

SoftIRQ table

HI_SOFTIRQ

TASKLET_SOFTIRQ

Normal priority

void tasklet_action(struct softirq_action *a)

Access to per-CPU 

queues of tasks

High priority



Tasklet representation and API (i)
• The tasklet is a data structure used for keeping track of a specific task, related to the 

execution of a specific function internal to the kernel

• The function can accept a single pointer as the parameter, namely an unsigned 

long, and must return void

• Tasklets can be instantiated by exploiting the following macros defined in include

include/linux/interrupt.h:

➢DECLARE_TASKLET(tasklet, function, data)

➢DECLARE_TASKLET_DISABLED(tasklet, function, data)

• name is the taskled identifier, function is the name of the function associated with 

the tasklet and data is the parameter to be passed to the function

• If instantiation is disabled, then the task will not be executed until explicitly enabled



• tasklet enabling/disabling functions are

tasklet_enable(struct tasklet_struct *tasklet) 

tasklet_disable(struct tasklet_struct *tasklet) 

tasklet_disable_nosynch(struct tasklet_struct *tasklet)

the functions scheduling the tasklet are

void tasklet_schedule(struct tasklet_struct *tasklet) 

void tasklet_hi_schedule(struct tasklet_struct *tasklet) 

void tasklet_hi_schedule_first(struct tasklet_struct

*tasklet)

•

Tasklet representation and API (ii)



The tasklet init function

void tasklet_init(struct tasklet_struct *t,

void (*func) (unsigned long), unsigned long data) { 

t->next = NULL;

t->state = 0;

atomic_set(&t->count, 0);

t->func = func;

t->data = data;

}

This enables/disables 

the tasklet



• A tasklet that is already queued and is not active still stands in the pending 

tasklet list, up to its enabling and then processing

• This is clearly important when we implement, e.g., device drivers with 

tasklets in Linux modules and we want to unmount the module for any reason

• In other words we must be very careful that queue linkage is not broken upon 

the unmount

Important note



• Tasklets related tasks are performed via specific kernel threads (CPU- 

affinity can work here when logging the tasklet)

If the tasklet has already been scheduled on a different CPU-core, it will not 

be moved to another CPU-core if it is still pending (generic softirqs can 

instead be processed by different CPU-cores)

Tasklets have schedule level similar to the one of tq_schedule

The main difference is that the thread actual context should be an

“interrupt-context” – thus with no-sleep phases within the tasklet (an issue 

already pointed to)

•

•

•

Tasklets’ recap



• Kernel 2.5.41 fully replaced the task queue with the work queue

• Users (e.g. drivers) of tq_immediate should normally switch to tasklets

• Users of tq_timer should use timers directly (we will see this in a while)

• If these interfaces are inappropriate, the schedule_work() interface can be 

used

• This interface queues the work to the kernel “events” (multithreaded) daemon, 

which executes it in process context

Finally - work queues



• Interrupts are enabled while the work queues are being run (except if the 

same work to be done disables them)

• Functions called from a work queue may call blocking operations, but this 

is discouraged as it prevents other users from running (an issue already 

pointed to)

• The above point is anyhow tackled by more recent variants of work queues 

as we shall see

… work queues continued



schedule_work(struct work_struct *work) 
schedule_work_on(int  cpu,

struct work_struct *work)

Work queues basic interface - default queues

INIT_WORK(&var_name, function-pointer,

Additional APIs can be used to create custom 

work queues and to manage them

&data);



struct workqueue_struct *create_workqueue(const char *name);

struct workqueue_struct *create_singlethread_workqueue(const 

char *name);

Both create a workqueue_struct (with one entry per processor)

The second provides the support for flushing the queue via a single worker thread (and no 

affinity of jobs)

void destroy_workqueue(struct workqueue_struct *queue);

This eliminates the queue



Actual scheme



int queue_work(struct workqueue_struct *queue, 

struct work_struct *work);

int queue_delayed_work(struct workqueue_struct *queue, 

struct work_struct *work, unsigned long delay);

Both queue a job - the second with timing information

int cancel_delayed_work(struct work_struct *work);

This cancels a pending job

void flush_workqueue(struct workqueue_struct *queue);

This runs any job



➔ Proliferation of kernel threads - The original version of workqueues 

could, on a large system, run the kernel out of process IDs before user space 

ever gets a chance to run

➔ Deadlocks - Workqueues could also be subject to deadlocks if resource 

usage is not handled very carefully

➔ Unnecessary context switches - Workqueue threads contend with each 

other for the CPU, causing more context switches than are really necessary

Work queue issues



Interface and functionality evolution

Due to its development history, there currently are two sets of interfaces to create 

workqueues.

● Older: create[_singlethread|_freezable]_workqueue()

● Newer: alloc[_ordered]_workqueue()



Concurrency managed work queues

• Uses per-CPU unified worker pools shared by all work queues to provide flexible 

levels of concurrency on demand without wasting a lot of resources

Automatically regulates the worker pool and level of concurrency so that the users 

don't need to worry about such details

•

API

mappings
Per CPU concurrency + 

rescue workers setup



Managing dynamic memory with (not only) 
work queues



Interrupts vs passage of time vs CPU-scheduling

• The unsuitability of processing interrupts immediately (upon their asynchronous 

arrival) still stands there for TIMER interrupts

• Although we have historically abstracted a context switch off the CPU caused by the 

time-quantum expiration as an asynchronous event, it is not actually true

•What changes asynchronously is the condition that tells to the kernel software if we 

need to synchronously (at some point along execution in kernel mode) call the CPU 

scheduler

• Overall, timing vs CPU reschedules are still managed according to a top/bottom half 

scheme

•NOTE => this is not true for preemption not linked to time passage, as we shall 

see



A scheme for timer interrupts vs CPU reschedules

ticks

Top half execution at each tick

Residual ticks 

become 0

User mode return

Schedule is invoked right before 

the return to user mode (if not 

before while being in kernel mode)

Thread 

execution

We can still do stuff here 

(e.g. posting bottom halves, 

tracking time passage)



Could we be still effective disabling the timer 
interrupt on demand?

• Clearly no!!

• If we disable (timer) interrupts while running a kernel block of code that 

absolutely needs not to be preempted by the timer we loose the possibility to 

schedule bottom halves along time passage

•We also loose the possibility to control timings and more generally events at fine 

grain, which is fundamental on a multi-core system

•A CPU-core can in fact at fine grain interact with the others

• Switching off timer interrupts was an old style approach for atomicity of kernel 

actions on single-core/single-HT CPUs



A note on kernel mode execution vs busy waiting

• By the top/bottom half approach to handle timer-based reschedules, pure busy 

waiting on unguaranteed timeliness of changes of the corresponding condition is 

unsuitable in kernel mode

while (!condition) ; //this may lead to be trapped into 

this block of code unlimited time

• A case is when the condition can only be fired by a time-shared thread

• This problem is there also for CONFIG_PREEMPT=y kernels (since we can anyhow 

disable preemption along any thread at any point in time, hence before that while())



What hardware timers do we have on 
board right now?

• Let’s check with the x86 case (just limited to a few main components)

✓

✓

✓ Time Stamp Counter (TSC) – It counts the number of CPU clocks 
(accessible via the rdtsc instruction)

Local APIC TIMER (LAPIC-T) – It can be programmed to send one shot 

or periodic interrupts, it is usually exploited for milliseconds timing and 

time-sharing

High Precision Event Timer (HPET) - It is a suite of timers that can be 

programmed to send one shot or periodic interrupts, it is usually exploited 

for nanoseconds timing



Linux timer (LAPIC-T) interrupts - the top half

• The top half executes the following actions

➢Flags the task-queue tq_timer as ready for flushing (old style)

➢Increments the global variable volatile unsigned long jiffies 

(declared in kernel/timer.c), which takes into account the number of 

ticks elapsed since interrupts’ enabling

➢Does some minimal time-passage related work

➢It checks whether the CPU scheduler needs to be activated, and in the 

positive case flags the need_resched/TIF_NEED_RESCHED variable/bit 

via the TCB (Thread Control Block) of the current thread

•NOTE AGAIN: time passage is not the unique means for preempting threads in 

Linux, as we shall see



•Upon finalizing any kernel level work (e.g. a system call) the 
need_resched/TIF_NEED_RESCHED variable/bit of the current 

process gets checked (recall this may have been set by the top-half of the 

timer interrupt)

• In case of positive check, the actual scheduler module gets activated

• It corresponds to the schedule() function, defined in 

kernel/sched.c (or /kernel/sched/core.c in more recent 

versions)

Effects of raising need_resched/TIF_NEED_RESCHED



Timer-interrupt top-half module - old style

void do_timer(struct pt_regs *regs)

{

(*(unsigned long *)&jiffies)++; 

#ifndef CONFIG_SMP

/* SMP process accounting uses 

the local APIC timer */

update_process_times(user_mode(regs));

#endif 

mark_bh(TIMER_BH);

if (TQ_ACTIVE(tq_timer)) 

mark_bh(TQUEUE_BH);

}



Timer-interrupt bottom-half module - task queue 
based old style

void timer_bh(void)

{

update_times(); 

run_timer_list();

}

This runs any time-related action



931 v i sible  void irq_entry smp_apic_timer_interrupt(struct pt_regs *regs)
932 {
933 struct pt_regs *old_regs = set_irq_regs(regs);
934
935 /*
936 * NOTE! We'd better ACK the i rq  immediately,
937 * because timer handling can be slow.
938 *
939 * update_process_times() expects us to have done irq_enter().
940 * Besides, i f  we don't timer interrupts ignore the global
941 * interrupt lock,  which i s  the WrongThing (tm) to do.
942 */

943 entering_ack_irq();
944 local_apic_timer_interrupt();
945 exit ing_irq();
946
947 set_irq_regs(old_regs);
948 }

SoftIRQ based newer versions - the top half - 
kernel 3 example

1)  just flag the current thread 

for reschedule (if needed)

2) Raise the flag of
TIMER_SOFTIRQ



High Resolution (HR) Timers

They arrive at aperiodic (fine grain ) 

points along time

HR-ticks

We can still do minimal stuff here such as
1) raising the HRTIMER_SOFTIRQ

2) programming the next HR timer interrupt 

based on a log of requests

3) Raise a preemption request

Thread 

execution



Do we ever see HR-timers in our user programs?

• What about usleep()?

1) The calling thread traps to kernel

2) The kernel puts a HR-timer request into the log (and possibly reprograms 

the HR-timer component)

3) The scheduler is called to pass control to someone else

4) Upon expiration of the HR-timer for this request along the execution of 

another thread, this will be possibly unscheduled (as soon as possible) to 

resume the sleeping one



The HR-timers kernel interface

ktime_t kt;

kt = ktime_set(long secs, long nanosecs)

void hrtimer_init( struct hrtimer *timer, 

clockid_t which_clock, enum hrtimer_mode mode)

Specify 1) function 

pointer and 2) data Specify timing base 

(relative/absolute)

Specify the clocking 

mechanism 

(CLOCK_MONOTONIC vs 

CLOCK_REALTIME)

int hrtimer_start(struct hrtimer *timer, ktime_t time, 

enum hrtimer_mode mode)

The function will fire one or more times 

depending on its return value 

(HRTIMER_RESTART/HRTIMER_NORESTART)



The HR-timers cancellation

Waits if the target 

function is already 

running

int hrtimer_cancel(struct hrtimer *timer);

int hrtimer_try_to_cancel(struct hrtimer *timer)

Does not wait if the target 

function is already running



What is a preemption request?

Some 

interrupt

We raise some flag into per-thread 

management data

We can check 

the flag

at given points of 

code execution 

and possibly call 

the CPU scheduler

printk () 

ret_from_sys_call()

…….

…….

and many others

THREAD RUNNING



Can we save ourselves from preemptions?

• YES, we use per-thread preemption counters

• If the counter is not zero, then the preemption checking block of code will not 

lead to scheduler activation

• How do we exploit these counters transparently?

✓ A set of specific API functions can be used

✓ Lets’ check with them



The API

preempt_enable() //decrement the preempt counter

preempt_disable() //increment the preempt counter

preempt_enable_no_resched() //decrement, but do not immediately 

preempt

preempt_check_resched() //if needed, reschedule 

preempt_count() //return the preempt counter



Preemption vs per-CPU variables

• Do you remember the get/put_cpu_var() API?

• They do a disable/enable of preemption upon entering/exiting, meaning that 

no other thread can use the same per-CPU variables in the meanwhile

• … and we are safe against functions that do the preemption check!!

• Clearly, if the current threads explicitly calls a blocking service before 

“putting” a per CPU variable, then the above property is no longer guaranteed



The role of TCBs (aka PCBs) in common 
operating systems

• A TCB is a data structure mostly keeping information related to

✓ Schedulability and execution flow control (scheduler specific 

information)

✓ Linkage with subsystems external to the scheduling one (via linkage to 

metadata)

✓ Multiple TCBs can link to the same external metadata (as for multiple 

threads within a same process)



An example

If and how the CPU scheduling logic 

should handle this thread

How the kernel should manage memory 

and its accesses by this thread (just to name,

do you remember the mem-policy concept?)
…

How the kernel should manage VFS 

services on behalf of this threadstruct … {

…

…

}

TCB



The scheduling part - CPU-dispatchability

• The TCB tells at any time whether the thread can be CPU-dispatched

• But what it the real meaning of “CPU-dispatchability”??

• Its meaning is that the scheduler logic (so the corresponding block of code) 

can decide to pick the CPU-snapshot kept by the TCB and install it on CPU

• CPU-dispatchability is not decided by the scheduler logic, rather by other 

entities (e.g. an interrupt handler)

• So the scheduler logic is simply a selector of currently CPU-dispatchable 

threads



The scheduling part - run/wait queues

• A thread is CPU-dispatchable only if its TCB is included into a specific data 

structure (generally, but not always, a list)

• This is typically refereed to as the runqueue

• The scheduler logic selects threads based on ``scans’’ of the runqueue

• All the non CPU-dispatchable threads are kept on aside data structures (again 

lists) which are not looked at by the scheduling logic

• These are typically referred to as waitqueues



A scheme

Runqueue 

head pointer

Waitqueue A 

head pointer

Waitqueue B 

head pointer

The scheduler logic only 

looks at these TCBs



Scheduler logic vs blocking services

• Clearly the scheduler logic is run on a CPU-core within the context of some 

generic thread A

• When we end executing the logic the CPU-core can have switched to the 

context of another thread B

• Clearly, when thread A is running a blocking service in kernel mode it will 

synchronously invoke the scheduler logic, but its TCB is currently present on 

the runqueue

• How to exclude the TCB of thread A from the scheduler selection process?



Sleep/wait kernel services

• A blocking service typically relies on well structured kernel level sleep/wait 

services 

• These services exploit TCB information to drive, in combination with the scheduler 

logic, the actual behavior of the service-invoking thread

• Possible outcomes of the invocation of these services:

✓ The TCB of the invoking thread is removed from the runqueue by the scheduler 

logic before the actual selection of the next thread to run is performed

✓ The TCB of the invoking thread still stands on the runqueue during the selection 

of the next thread to be run



Where does the TCB of a thread invoking a 
sleep/wait service stand?

• No way, it stands onto some waitqueue

• Well structuring of sleep/wait services is in fact based on an API where we need to 

pass the ID of some waitqueue in input

• Overall timeline of a sleep/wait service:

1. Link the TCB of the invoking thread on some waitqueue

2. Flag the thread as “sleep”

3. Call the scheduler logic (will really sleep?)

4. Unlink the TCB of the invocking thread from the wait waitque



The timeline

sleep/wait API invokation by thread T

Change status within 

TCB to “sleep”

Scheduler logic invokation

Can really sleep?

Change status 

within TCB to “run”

Run scheduler logic Run scheduler logic

Unlink TCB 

from runqueue

Thread T will not show up on CPU Thread T may still show up on CPU



Additional features

• Unlinkage from the waitqueue

✓ Done by the same thread that was linked upon being rescheduled

• Relinkage to the runqueue

✓ Done by other threads when running whatever piece of kernel code 

such as

➢

➢

Synchronously invoked services (e.g. sys_kill) 

Top/botton halves



Actual context switch

• It involves saving into the TCB the CPU context of the thread that is switched off the 

CPU

• It involves restoring from the TCB the CPU context of the CPU-dispatched thread

• One core point in changing the CPU context is related to the core kernel level

``private’’ memory area each thread has

• This is the kernel level stack

• In most kernel implementations we say that we switch the context when we install a 

value on the stack pointer



Linux thread control blocks

• The structure of Linux process control blocks is defined in

include/linux/sched.h as struct task_struct

• The main fields (ref 2.6 kernel) are

➢ volatile long state

➢ struct mm_struct *mm

➢ pid_t pid

➢ pid_t pgrp

➢ struct fs_struct *fs

➢ struct files_struct *files

➢ struct signal_struct *sig

➢ volatile long need_resched

➢ struct thread_struct thread /* CPU-specific state of this task – TSS */

➢ long counter

➢ long nice

➢ unsigned long policy /*CPU scheduling info*/

synchronous and 

asynchronous 

modifications



More modern kernel versions

• A few info is compacted into bitmasks
✓ e.g. need_resched has become the TIF_NEED_RESCHED bit 

into a bit-mask

• The compacted info can be easily accessed via specific macros/APIs

• More field have been added to reflect new capabilities, e.g., in the Posix 

specification or Linux internals

• The main fields are still there, such as
•

•

•

•

state 

pid

tgid (the group ID)

…



TCB allocation - the case before kernel 2.6

• TCBs are allocated dynamically, whenever requested

• The memory area for the TCB is reserved within the top portion of the kernel level 

stack of the associated process

• This occurs also for the IDLE PROCESS, hence the kernel stack for this process 
has base at the address &init_task+8192, where init_task is the TCB 

of the IDLE PROCESS

TCB

Stack proper 

area

THREAD_SIZE 

(typically 8KB located 

onto 2 buddy frames)



• A single memory allocation request is enough for making per-thread core memory 
areas available (see _get_free_pages())

• However, TCB size and stack size need to be scaled up in a correlated manner

• The latter is a limitation when considering that buddy allocation entails buffers 

with sizes that are powers of 2 times the size of one page

• The growth of the TCB size may lead to

✓

✓

Buffer overflow risks, if the stack size is not rescaled 

Memory fragmentation, if the stack size is rescaled

Implications from the encapsulation of TCB 
into the stack-area



Actual declaration of the kernel level 
stack data structure

Kernel 2.4.37 example

522 union task_union {

523 struct task_struct task;

524 unsigned long stack[INIT_TASK_SIZE/sizeof(long)];

525 };



TCB allocation - since kernel 2.6 up to 4.8
• The memory area for the TCB is reserved outside the top portion of the kernel level 

stack of the associated process

• At the top portion we find a so called thread_info data structure

• This is used as an indirection data structure for getting the memory position of the 

actual TCB

• This allows for improved memory usage with large TCBs

thread_info

TCB

Stack proper 

area

2 memory 

(or more)

buddy aligned 

frames



Actual declaration of the kernel level 
thread_info data structure

*task;

*exec_domain; 

flags;

/* main task structure */

/* execution domain */

/* low level flags */

status; 

cpu;

/* thread synchronous flags */

/* current CPU */

saved_preempt_count; 

addr_limit;

*sysenter_return; 

sig_on_uaccess_error:1;

27 struct task_struct

28 struct exec_domain

29 u32

30 u32

31 u32

32 int

33 mm_segment_t

34 struct restart_block restart_block;

35 void user

36 unsigned int

37 unsigned int uaccess_err:1; /* uaccess failed */

38 };

Kernel 3.19 example

26 struct thread_info {



Kernel 4 thread size on x86-64 (kernel 5 is similar)

#define THREAD_SIZE_ORDER 2

#define THREAD_SIZE (PAGE_SIZE << THREAD_SIZE_ORDER)

Defined in arch/x86/include/asm/page_64_types.h for x86-64

Here we get 16KB

https://elixir.bootlin.com/linux/v3.19.8/ident/THREAD_SIZE_ORDER
https://elixir.bootlin.com/linux/v3.19.8/ident/THREAD_SIZE
https://elixir.bootlin.com/linux/v3.19.8/ident/PAGE_SIZE
https://elixir.bootlin.com/linux/v3.19.8/ident/THREAD_SIZE_ORDER
https://elixir.bootlin.com/linux/v3.19.8/source/arch/x86/include/asm/page_64_types.h


The current MACRO

• The macro current is used to return the memory address of the TCB of 

the currently running process/thread (namely the pointer to the 

corresponding struct task_struct)

• This macro performs computation based on the value of the stack pointer 

(up to kernel 4.8), by exploiting that the stack is aligned to the couple (or 

higher order) of pages/frames in memory

• This also means that a change of the kernel stack implies a change in the 

outcome from this macro (and hence in the address of the TCB of the 

running thread)



Actual computation by current

Old style

Masking of the stack pointer value 

so to discard the less significant 

bits that are used to displace into 

the stack

New style

Masking of the stack pointer value 

so to discard the less significant 

bits that are used to displace into 

the stack

Indirection to the task filed of

thread_info



… the very new style of current

• It is a pointer located onto per-CPU memory

• The pointer is updated when a CPU-reschedule is carried out

• …. finally no longer buddy blocks aligned stacks!!!

struct task_struct;

DECLARE_PER_CPU(struct task_struct *,current_task);

Static always_inline struct task_struct

*get_current (void) {

return this_cpu_read_stable (current_task);

}

#define current get_current()



More flexibility and isolation - virtually mapped stacks

• Typically we only need logical memory contiguousness for a stack area

• On the other hand stack overflow is a serious problem for kernel corruption, 

especially under attack scenarios

• One approach is to rely on vmalloc() for creating a stack allocator

• The advantage is that surrounding pages to the stack area can be set as unmapped

• How do we cope with computation of the address of the TCB under arbitrary 

positioning of the kernel stack has been already seen thanks to per-CPU-memory 

(from kernel 4.9)



A look at the run queue - 2.4 style

• In kernel/sched.c we find the following initialization of an array of pointers to

task_struct

struct task_struct * init_tasks[NR_CPUS] = {&init_task,}

• Starting from the TCB of the IDLE PROCESS we can find a list of PCBs associated 

with ready-to-run processes/threads

• The addresses of the first and the last TCBs within the list are also kept via the static 

variable runqueue_head of type struct list_head{struct list_head

*prev,*next;}

• The TCB list gets scanned by the schedule() function whenever we need to 

determine the next process/thread to be dispatched



Wait queues - 2.4 style

• TCBs can be arranged into lists called wait-queues

• TCBs currently kept within any wait-queue are not scanned by the scheduler module

• We can declare a wait-queue by relying on the macro 

DECLARE_WAIT_QUEUE_HEAD(queue) which is defined in 

include/linux/wait.h

• The following main functions defined in kernel/sched.c allow queuing and de- 

queuing operations into/from wait queues

➢void interruptible_sleep_on(wait_queue_head_t *q)

The TCB is no more scanned by the scheduler until it is dequeued or a signal kills the 

process/thread

➢void sleep_on(wait_queue_head_t *q)

Like the above semantic, but signals are don’t care events



➢ void interruptible_sleep_on_timeout(wait_queue_head_t *q, long 
timeout)

Dequeuing will occur by timeout or by signaling

➢void sleep_on_timeout(wait_queue_head_t *q, long timeout)

Dequeuing will only occur by timeout

➢void wake_up(wait_queue_head_t *q)

Reinstalls onto the ready-to-run queue all the TCBs currently kept by the wait queue q

➢void wake_up_interruptible(wait_queue_head_t *q)

Reinstalls onto the ready-to-run queue the TCBs currently kept by the wait queue q, which 

were queued as “interruptible”

➢wake_up_process(struct task_struct * p)

Reinstalls onto the ready-to-run queue the process whose PCB s pointed by p

Non selective

(too) Selective



Thread states

• The state field within the TCB keeps track of the current state of the 

process/thread

• The most relevant values are defined as follows in
include/linux/sched.h

➢#define TASK_RUNNING 0

➢#define TASK_INTERRUPTIBLE 1

➢#define TASK_UNINTERRUPTIBLE 2

➢#define TASK_ZOMBIE 4

• All the TCBs recorded within the run-queue keep the value TASK_RUNNING

• The two values TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE

discriminate the wakeup conditions from any wait-queue



Wait vs run queues

• wait queues APIs also manage the TCB unlinking from the wait queue upon 

returning from the schedule operation

#define SLEEP_ON_HEAD \

wq_write_lock_irqsave(&q->lock,flags); \

add_wait_queue(q, &wait); \ 

wq_write_unlock(&q->lock);

#define SLEEP_ON_TAIL 

wq_write_lock_irq(&q->lock);

remove_wait_queue(q, &wait);

\

\

\

wq_write_unlock_irqrestore(&q->lock,flags);

void interruptible_sleep_on(wait_queue_head_t *q){

SLEEP_ON_VAR

current->state = TASK_INTERRUPTIBLE;

SLEEP_ON_HEAD

schedule(); 

SLEEP_ON_TAIL

}



TCB linkage dynamics

Wait queue 

linkage

Run queue 

linkage

Links here are removed by

schedule()if conditions are met

task_struct

This linkage is set/removed 

by the wait-queue API



Thundering herd effect



The new style - wait event queues

•

•

•

They allow to drive thread awake via conditions

The conditions for a same queue can be different for different threads

This allows for selective awakes depending on what condition is actually 

fired

The scheme is based on polling the conditions upon awake, and on 

consequent re-sleep

•



Conditional waits – one example



Wider (although non-exhaustive) API

wait_event( wq, condition )

wait_event_timeout( wq, condition, timeout ) 

wait_event_freezable( wq, condition ) 

wait_event_command( wq, condition, pre-command,

post-command)

wait_on_bit( unsigned long * word, int bit, 

unsigned mode)

wait_on_bit_timeout( unsigned long * word, int bit, 

unsigned mode, unsigned long timeout)

wake_up_bit( void* word, int bit)



Macro based expansion

#define 

({

wait_event(wq_head, condition, state, exclusive, ret, cmd) \

\

\

\

\

label  out;

struct wait_queue_entry wq_entry; 

long ret = ret; /* explicit shadow */
\init_wait_entry(& wq_entry, exclusive ? WQ_FLAG_EXCLUSIVE : 0); 

for (;;) {

long int = prepare_to_wait_event(&wq_head, & wq_entry, state); \ 

if (condition)

\

\

\break;

if ( wait_is_interruptible(state) && int) {

ret = int; \ goto out;

}

cmd;

\

\

\

\

\}

finish_wait(&wq_head, & wq_entry); \ out: ret; \

})

Cycle based approach

https://elixir.bootlin.com/linux/latest/ident/___wait_event
https://elixir.bootlin.com/linux/latest/ident/exclusive
https://elixir.bootlin.com/linux/latest/ident/wait_queue_entry


The scheme for interruptible waits

Yes: return

Condition check

No: remove from run queue

Signaled check

No: retryYes: return
Beware 

this!!



Linearizability
• The actual management of condition checks prevents any possibility of false negatives in 

scenarios with concurrent threads

• This is still because removal from the run queue occurs within the schedule()

function and the removal leads to spinlock the TCB

• However the awake API leads to spinlock the TCB too for updating the thread status and 

(possibly) relinking it to the run queue

• This leads to memory synchronization (TSO bypass avoidance)

• The locked actions represent the linearization point of the operations

• An awake updates the thread state after the condition has been set

• A wait checks the condition before checking the thread state via schedule()



A scheme

Condition update 

Thread awake

Prepare to sleep 

Condition check

Thread sleep

Not possible
Do not care ordering

awaker sleeper



The mm field in the TCB

• The mm of the TCB points to a memory area structured as mm_struct

• This area keeps information used for memory management purposes for the specific 

process, such as

➢Virtual address of the page table (pgd field) – top 4KB kernel, bottom 4KB 

user in case of PTI

➢A pointer to a list of records structured as vm_area_struct (mmap field)

• Each record keeps track of information related to a specific virtual memory area (user 

level) which is valid for the process



vm_area_struct
struct vm_area_struct {

struct mm_struct * vm_mm;/* The address space we belong to. */ 

unsigned long vm_start; /* Our start address within vm_mm. */ 

unsigned long vm_end; /* The first byte after our end address

within vm_mm. */ 

struct vm_area_struct *vm_next;

pgprot_t vm_page_prot; /* Access permissions of this VMA. */

…………………

/* Function pointers to deal with this struct. */ 

struct vm_operations_struct * vm_ops;

……………

};

The vm_ops field points to a structure used to define the treatment of faults occurring within 

that virtual memory area → this is specified via the field nopage or fault

As and example this pointer identifies a function signed as
struct page * (*nopage)(struct vm_area_struct * area, unsigned 

long address, int unused)



A scheme

The executable format for Linux is ELF

This format specifies, for each section (text, data) the positioning within the virtual 

memory layout, and the access permission



An example



Red-black tree re-organization

• The vmarea list has been replaced in recent kernels (e.g. Kernel 6) by a red-

black tree, for improving the complexity of additions/deletions

• The Linux kernel offers anyhow some API for traversing the vmarea entries

• Here is an example of what you can exploit:

• For searching an entry with a given area you can use:

struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr);

void traverse_vm_areas(struct mm_struct *mm) {

struct rb_node *node; 

struct vm_area_struct *vma; // Start with the leftmost node in the red-black tree 

for (node = rb_first(&mm->mm_rb); node; node = rb_next(node)) {

vma = rb_entry(node, struct vm_area_struct, vm_rb); 

pr_info("VMA: start=0x%lx, end=0x%lx\n", vma->vm_start, vma->vm_end);

}

} 



Threads identification

• In modern implementations of OS kernels we can also virtualize PIDs

• So each thread may have more than one PID

✓ a real one (say current->pid)

✓ a virtual one

• This concept is linked to the notion of namespaces

• Depending on the namespace we are working with then one PID value (not the 

other) is the reference for a set of common operations

• As an example, if we call the ppid()system call, then the ID that is returned is 

the PID of the parent thread referring to the current namespace of the invoking 

one



PID namespace scheme

• The baseline kernel namespace is by default used to set the value
current->pid

• When a new thread is created, then we can specify to move to another PID 

namespace, which becomes a child level PID namespace with respect to 

the current one

• A maximum of 32 levels of PID namespaces can be used in Linux, based 

on the define

#define MAX_PID_NS_LEVEL 32



A representation

Namespace C Namespace E

Default namespace

Namespace B

Namespace A
Namespace D

The thread whose creation leads to create a new namespace has virtual 

PID set to 1 in that namespace, and its ancestor is PID zero



Namespace visibility

• By relying on common OS kernel services, a thread that leaves in a given 

namespace has no visibility of ancestor namespaces

• So it cannot “exploit” the existence of ancestor threads

• As an example, we cannot kill threads living into ancestral namespaces

• A namespace is therefore a sort of container (a concept you should be 

already familiar with)

• NOTE → all the above is true in an agreed upon environmental settings, it 

can change if we modify kernel operations



A scheme

Conventionally we cannot 

cross this boundary



The implementation

…

struct … {

…

…

}

TCB

struct nsproxy *nsproxy;

The PID namespace

(and other namespaces not 

related to PIDs)

The PID value in the reference 

PID namespace



Some more details

struct nsproxy {
…

struct pid_namespace *pid_ns_for_children;

…

}

struct pid_namespace {
…

unsigned int pid_allocated;

…

struct pid_namespace *parent;

…

}

struct pid_namespace {
…

struct pid_namespace *parent;

…

}



PID to task_struct mapping

• A lot of kernel services work by using the address of the TCB of a thread 

(see awake from sleep/wait queues)

• So we need a mapping between PIDs and TCB addresses

• The mapping is based on linked data, such as TCB linkage or namespaces 

linkage

• Linux offers services for transparently traversing these linkages



Accessing TCBs in the default namespace (the only 
one existing originally)

• TCBs are linked in various lists with hash access

• They were supported via the below fields within the TCB structure

/* PID hash table linkage. */ 

struct task_struct *pidhash_next; 

struct task_struct *pidhash_pprev;

• There existed a hashing structure was defined as below

#define PIDHASH_SZ (4096 >> 2)

extern struct task_struct *pidhash[PIDHASH_SZ];

#define pid_hashfn(x) ((((x) >> 8) ^ (x)) & (PIDHASH_SZ - 1))



• We also have the following function (of static type), still defined in 

include/linux/sched.h which allows retrieving the memory address of the PCB by 

passing the process/thread pid as input

static inline struct task_struct *find_task_by_pid(int pid) { 

struct task_struct *p,

**htable = &pidhash[pid_hashfn(pid)];

for(p = *htable; p && p->pid != pid; 

p = p->pidhash_next) ;

return p;

}



• The newer kernel versions (e.g. >= 2.6) support is

struct task_struct *find_task_by_vpid(pid_t vpid)

•This is based on the notion of virtual pid (so the one in the current namespace 

we are working with)

•We access a hashing system that more or less directly links vPIDs to TCBs

•The vPID of thread by default coincides with its PID if no namespace different 

from the default one is setup

Querying across namespaces



vPIDs hashing

We can query for individuals 

or groups (see TGID)
When accessing the target

PID records we can match with 

the namespace of the caller

This keeps the number and the 

reference to the namespace



Enabling lower level namespace visibility

static bool access_pidfd_pidns(struct pid *pid) {
struct pid_namespace *active = task_active_pid_ns(current); 
struct pid_namespace *p = ns_of_pid(pid);
for (;;) {

if (!p)
return false; 

if (p == active)
break;

p = p->parent;
}
return true;

}

This is called, e.g., when a kill 

from the current thread is issued 

towards another threads

https://elixir.bootlin.com/linux/v5.19.17/C/ident/bool
https://elixir.bootlin.com/linux/v5.19.17/C/ident/access_pidfd_pidns
https://elixir.bootlin.com/linux/v5.19.17/C/ident/pid
https://elixir.bootlin.com/linux/v5.19.17/C/ident/pid
https://elixir.bootlin.com/linux/v5.19.17/C/ident/pid_namespace
https://elixir.bootlin.com/linux/v5.19.17/C/ident/active
https://elixir.bootlin.com/linux/v5.19.17/C/ident/task_active_pid_ns
https://elixir.bootlin.com/linux/v5.19.17/C/ident/current
https://elixir.bootlin.com/linux/v5.19.17/C/ident/pid_namespace
https://elixir.bootlin.com/linux/v5.19.17/C/ident/ns_of_pid
https://elixir.bootlin.com/linux/v5.19.17/C/ident/pid
https://elixir.bootlin.com/linux/v5.19.17/C/ident/false
https://elixir.bootlin.com/linux/v5.19.17/C/ident/active
https://elixir.bootlin.com/linux/v5.19.17/C/ident/break
https://elixir.bootlin.com/linux/v5.19.17/C/ident/parent
https://elixir.bootlin.com/linux/v5.19.17/C/ident/true


Managing virtual PIDs in Linux modules

struct task_struct *pid_task(struct pid *pid, enum 

pid_type);

find_vpid(pid)PIDTYPE_PID or other

pid_task(find_vpid(pid), PIDTYPE_PID);

Querying the TCB address by the default PID



Process and thread creation

pthread_create()

sys_clone()

clone()[LINUX specific]

fork()

user level

kernel level

sys_fork()

sys calls

library call

do_fork() kernel_clone()

older vs newer 

kernel versions



The glibc interface

Return value mapped to thread exit code

Parameters can vary in 

number and order



Architecture specific interfaces

Newer pthreadXX() services



The flags (not exhaustive)

CLONE_VM 

CLONE_FS 

CLONE_FILES 

CLONE_PARENT 

CLONE_NEWPID 

CLONE_SETTLS

VM shared between processes

fs info shared between processes 

open files shared between processes

we want to have the same parent as the cloner 

create the process/tread in a new PID namespace

the TLS (Thread Local Storage) descriptor is set to 

newtls

the child is placed in the same thread group as the 

calling process

CLONE_THREAD



do_fork/kernel_clone overview

•

•

•

•

•

•

•

Allocate a TCB 

Allocate a stack area

Get the proper PID (real/virtual) 

Link the parent memory map?

Link the parent FS view? 

Link the parent files view?

….. possibly share ticks with parent!!!



Synchronization abstractions

DECLARE_MUTEX(name);

/* declares struct semaphore <name> ... */

void sema_init(struct semaphore *sem, int val);

/* alternative to DECLARE_... */

void down(struct semaphore *sem); /* may sleep */

int down_interruptible(struct semaphore *sem);

/* may sleep; returns -EINTR on interrupt */

int down_trylock(struct semaphone *sem);

/* returns 0 if succeeded; will no sleep */

void up(struct semaphore *sem);



Spinlock API
#include <linux/spinlock.h>

spinlock_t my_lock = SPINLOCK_UNLOCKED; 
spin_lock_init(spinlock_t *lock); 
spin_lock(spinlock_t *lock);
spin_lock_irqsave(spinlock_t *lock, unsigned long flags); 
spin_lock_irq(spinlock_t *lock);
spin_lock_bh(spinlock_t *lock);

spin_unlock(spinlock_t *lock); 
spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags); 
spin_unlock_irq(spinlock_t *lock);
spin_unlock_bh(spinlock_t *lock); 
spin_is_locked(spinlock_t *lock); 
spin_trylock(spinlock_t *lock) 
spin_unlock_wait(spinlock_t *lock);



The “save” version

it allows not to interfere with IRQ management along the path where the call is nested 

a simple masking (with no saving) of the IRQ state may lead to misbehavior

Save and manipulation of IRQ state 

(start running in state IRQ state A)

Code-block nesting
manipulation of IRQ state 

(suppose the final restore of IRQ is 

to some default state B)

Runs with incorrect IRQ state (say B)

Return to the original code block



Variants - discriminating readers vs writers

rwlock_t xxx_lock = RW_LOCK_UNLOCKED(xxx_lock); 

unsigned long f l ags;

read_lock_irqsave(&xxx_lock, f l ags);
. .  c r i t i c a l  section that only reads the info . . .  
read_unlock_irqrestore(&xxx_lock, f l ags);

write_lock_irqsave(&xxx_lock, f l ags);
. .  read and write exclusive access to the info . . .  
write_unlock_irqrestore(&xxx_lock,  f l ags);



The Linux scheduler logic evolution

Kernel version

2.6

Perfect load sharing

- O(N)
Completely Fair

- O(log(N))

Improved orientation to SMP/multi-core and fairness

Load balancing

- O(1)

2.6.23 (2007)



Scheduler logic - traditional baseline aspects

•

•

The planning of tick usage is based on epochs

An epoch ends when all threads on the runqueue have already ended their 

ticks

Threads on waitqueues may still have residuals

When an epoch ends we recompute the ticks to be assigned to all threads for 

the next epoch

Assigned tick volumes reflect priorities

•

•

•



Actual priority scheme - Posix classic

We can move across priority values by exploiting thread 

niceness



Perfect load sharing scheduler

•

•

•

What TCB do we look at upon the execution of schedule()? 

ALL those that are not on a waitqueue

Ideally any thread can be CPU-dispatched on any CPU-core at any time 

instant

CPU-scheduling decisions based on priorities and on the target of 

maximizing hardware effectiveness (e.g. caching)

•



The 2.4 kernel perfect load sharing scheduler

- The execution of the function schedule() can be seen as entailing 3 

distinct phases:

1) check on the current process (does it really need to be removed from 

the runqueue?)

2) “Run-queue analysis” (next process selection) of the unique 

runqueue in the overall system – affinity still works here

3) context switch to the next process (actually thread)



Check on the current process - update of 
the process state

………

prev = current;

………

switch (prev->state) {

case TASK_INTERRUPTIBLE:

if (signal_pending(prev)) { 

prev->state = TASK_RUNNING; 

break;

}

default:

del_from_runqueue(prev); 

case TASK_RUNNING:;

}

prev->need_resched = 0;



Current state

Behavior A

TASK_RUNNING

Behavior B

(if the current state is
TASK_INTERRUPTIBLE

and a pending signal exists)



Helps

#define list_for_each(pos, head) \

for (pos = (head)->next; pos != (head); pos = pos->next)

#define list_entry(ptr, type, member) \ 

container_of(ptr, type, member)

Scan of a circular list through a cursor (i.e. pos)

Access to the container element in the list linkage



A scheme

list_for_each()

list_entry()



Run queue analysis

-  for all the TCBs currently registered within the run-queue a so called goodness 

value is computed

-  the TCB associated with the best goodness value gets pointed by next (which is 

initially set to point to the idle-process TCB)

repeat_schedule:

/* Default process to select..*/ 

next = idle_task(this_cpu);

c = -1000;

list_for_each(tmp, &runqueue_head) {

p = list_entry(tmp, struct task_struct, run_list); 

if (can_schedule(p, this_cpu)) {

int weight = goodness(p, this_cpu, prev->active_mm); 

if (weight > c)

c = weight, next = p;

}

}



The role of memory mappings

mm_struct fileds in the TCB are 2 (not just one)

struct mm_struct *mm;

struct mm_struct *active_mm;

This is the user space memory mapping of the last 

thread run on this same CPU

✓ For an application thread mm == active_mm is an invariant

✓ For a kernel level thread mm == NULL but active_mm can be different 

from NULL



Memory mappings and timelines

schedule()

Time passage

Thread A Thread B
Kernel 

Thread x

Kernel 

Thread y

mm
active_mm

mm



Computing the goodness

goodness (p) = 20 – p->nice (base time quantum)

+ p->counter (ticks left in time quantum)

+1 (if page table is shared with the

previous process)

(in SMP, if p was last running 

on the same CPU)

+15

NOTE: goodness is forced to the value 0 in case

p->counter is zero



Kind of batch ticks usage

The +15 bonus tends to cluster tick usage by threads on a same CPU

schedule()

Time passage

Thread A Thread BThread A Thread A

p->counter == 0

for thread A

Extreme exploitation of program flow 

and architectural support for locality



Management of the epochs

Any epoch ends when all the threads registered within the run-queue already 

used their planned CPU quantum

This happens when the residual tick counter (p->counter) reaches the value 

zero for all the TCBs kept by the run-queue

Upon epoch ending, the next quantum is computed for all the active threads 

The formula for the recalculation is as follows

p->counter = p->counter /2 + 6 - p->nice/4



……………

/* Do we need to re-calculate counters? */

if (unlikely(!c)) {

struct task_struct *p;

spin_unlock_irq(&runqueue_lock); 

read_lock(&tasklist_lock); 

for_each_task(p)

p->counter = (p->counter >> 1) + 

NICE_TO_TICKS(p->nice);

read_unlock(&tasklist_lock); 

spin_lock_irq(&runqueue_lock); 

goto repeat_schedule;

}

……………



Perfect load sharing - O(n) scheduler causes

- A non-runnable task is anyway searched to determine its goodness

- Mix of runnable/non-runnable tasks into a single run-queue in any 

epoch

- Chained negative performance effects in atomic scan operations in 

case of SMP/multi-core machines (length of critical sections 

dependent on system load)



A timeline example with 4 processing units

Core-0 calls schedule()

All other cores call schedule()
Core-0 ends schedule()

0

1

2

3

Red means busy wait



Newer CPU-scheduling internals - load balancing

- Constant-time – O(1) – scheduling

- Very low frequency of collisions by CPUs in inspecting a same run- 

queue

- Still keep the workload balanced (in compliance with affinity)

- Still distinguish priorities (even more levels with respect to what 

done before)



Constant time scheduling with load balancing

- No mix of runnable and non-runnable tasks on a 

runqueue

- Clear separation of runnable tasks into multiple run 

queues

we do not search for priorities into the TCBs, we 

already know it, based on the runqueue a TCB stands 

onto



Infrequent CPU-conflicts in the access to runqueues

- Fully separated runqueues, one per CPU

- Each CPU-core accesses its own runqueue when running the scheduler 

logic

- A CPU-core can access the runqueue of another one (hopefully 

infrequently) when

→ An explicit linkage of the TCB on that run queue is requested

→ This is for load balancing or for promptness of reschedule



Load balancing example

CPU-0 Runqueue 

head pointer

CPU-1 Runqueue 

head pointer

Transfer done by the 

under-loaded CPU-core 

or a demon running on 

whatever CPU-core



Actual implementation on Linux kernel 2.6

- The run queue of each CPU-core is a multiqueue with 140 different levels

- 40 levels (say [100-139]) map to classical Unix time-sharing

- 100 levels (say [0-99]) map to Unix real-time scheduler extensions

- It is also separated into

The active queue, keeping runnable threads

The expired queue, keeping non-runnable threads



The priority scale - kernel level representation

SCHED_RR/SCHED_FIFO SCHED_OTHER

Manageable with the sched_setscheduler() syscall or the chrt shell 

command



A scheme

We search for a non empty 

queue level by searching 

into a fixed size bitmap (in 

constant time)

We simply switch the queues 

upon a new epoch



Relations with the thread wakeup API

wake_up_process(…)

Can the thread run on this CPU? 

If YES put on the local runqueue

If NO, get affinity info from TCB and put in some 

remote runqueue via the below API

void ttwu_queue(struct task_struct *p, 

int cpu, int wake_flags)



“Load” vs ticks

• In load sharing, the assignment of ticks to be spent by a thread is based on 

the notion of “load”

This is an information kept within a new field of the TCB structured as•

This value is assigned on the 

basis of the niceness and is 

used in a calculation to assign 

the number of ticks …….



Weight assignment vector (kernel 3 snippet)

Moving one entry up or down (depending on niceness) 

leads to achieve 10% more or less CPU time to exploit

Renamed to const int sched_prio_to_weight[40] in Kernel 4/5/6



Additional priority details

• A non-real-time thread has two characterizing priority values

✓ the static priority – this is defined by the users (linked to niceness) and defines 

the level at which the thread will appear in the runqueue

✓ the dynamic priority – this is based on a reward or a penalty (applied to the 

static priority) depending on whether the thread is interactive or not

Thread is interactive if its sleep time is high enough, and the reward is based on a 

formula that considers the sleep time

Both these priority values appear as recorded into the TCB

The one that is looked at when we run the schedule() function is the dynamic 

priority

•

•

•



The effect of dynamic priorities

• A thread that calls the schedule function can be preempted by one that has higher 

dynamic priority (although lower static priority)

• A classical scenario

1. The thread calls wakeup of some other thread

2. The thread calls schedule

• Another classical scenario

1. Someone calls wakeup putting a thread on the queue of another CPU

2. The CPU is then hit by a cross-CPU reschedule-request



CPU-scheduling API - a wider view



Explicit stack refresh

It is a software operation

It is used when an action is finalized via local variables with 

lifetime across different reschedules

Used in 2.6 or later versions for schedule() finalization

Local variables are explicitly repopulated after the stack 

switch has occurred



asmlinkage void sched schedule(void)

{

struct task_struct *prev, *next; 

unsigned long *switch_count; 

struct rq *rq;

int cpu;

need_resched:

preempt_disable();

cpu = smp_processor_id(); 

rq = cpu_rq(cpu); 

rcu_qsctr_inc(cpu);

prev = rq->curr;

switch_count = &prev->nivcsw;

release_kernel_lock(prev); 

need_resched_nonpreemptible:

……..

spin_lock_irq(&rq->lock); 

update_rq_clock(rq); 

clear_tsk_need_resched(prev);

……..



……

#ifdef CONFIG_SMP

if (prev->sched_class->pre_schedule)

prev->sched_class->pre_schedule(rq, prev);

#endif

if (unlikely(!rq->nr_running)) idle_balance(cpu, rq);

prev->sched_class->put_prev_task(rq, prev); 

next = pick_next_task(rq, prev);

if (likely(prev != next)) { 

sched_info_switch(prev, next);

rq->nr_switches++; 

rq->curr = next;

++*switch_count;

context_switch(rq, prev, next); /* unlocks the rq */

/* the context switch might have flipped the stack from under 

us, hence refresh the local variables. */

cpu = smp_processor_id(); 

rq = cpu_rq(cpu);

} else spin_unlock_irq(&rq->lock);

if (unlikely(reacquire_kernel_lock(current) < 0)) 

goto need_resched_nonpreemptible;

preempt_enable_no_resched();

if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) 

goto need_resched;

}



Struct rq (run-queue)

struct rq {

/* runqueue lock: */ 

spinlock_t lock;

/* nr_running and cpu_load should be in the same cacheline because remote CPUs 

use both these fields when doing load calculation. */

unsigned long nr_running;

#define CPU_LOAD_IDX_MAX 5

unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 

unsigned char idle_at_tick;

………..

/* capture load from *all* tasks on this cpu: */ 

struct load_weight load;

……….

struct task_struct *curr, *idle;

……..

struct mm_struct *prev_mm;

……..

};



Finally - completely fair scheduling - kernel
2.6.23 or later ones

- No longer run queues for selecting time-shared TCBs

- A red/black tree is used and threads are ordered by used VCPU 

(Virtual CPU) time (the lower the better)

- Granularity of measurements is nanoseconds

- The actual ordering within the red/black tree reflects dynamic 

priorities at much better granularity compared to heuristics based on 

waiting time



Completely fair scheduling concepts

- N equally important threads should have exactly 1/N of the CPU 

time over an observation window

- In real scenarios this is only approximated by the fact that we 

typically use the tick timer with a minimum granularity (to avoid 

context switch over frequency)

- Also, threads not all have the same importance

- In this scheduler we use load weights to determine the VCPU time 

advancement of threads



VCPU advancement

-  It is computed as real CPU usage normalized by the schedulable entity 

weight

-  The more the weight, the less the VCPU usage (fixed the real CPU 

usage)

-  Schedulable entities are ordered into a red/black tree based on VCPU 

usage - O(log(N)) cost

-  The less the VCPU usage, the sooner the schedulable entity will take 

control of the CPU



A graphical representation

Real CPU usage
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Kernel threads - initial 2.4/i386 binding …

kernel threads can be generated via the function kernel_thread() defined in

kernel/fork.c

This function relies on an ASM function called arch_kernel_thread()

which is arch/i386/kernel/process.c

The latter does some job before calling sys_clone()

Upon returning within the child thread, the target thread function is executed via a 

call

In this scenario, the base of user mode stack is a don’t care since this thread will 

never bounce to user mode



long kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)

{

struct task_struct *task = current; 

unsigned old_task_dumpable;

long ret;

/* lock out any potential ptracer */ 

task_lock(task);

if (task->ptrace) { 

task_unlock(task); 

return -EPERM;

}

old_task_dumpable = task->task_dumpable; 

task->task_dumpable = 0; 

task_unlock(task);

ret = arch_kernel_thread(fn, arg, flags);

/* never reached in child process, only in parent */ 

current->task_dumpable = old_task_dumpable;

return ret;

}



int arch_kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)

{

long retval, d0;

asm  volatile ( 

"movl %%esp,%%esi\n\t" 

"int $0x80\n\t" /* Linux/i386 system call */

"cmpl %%esp,%%esi\n\t" /* child or parent? */

"je 1f\n\t" /* parent - jump */

/* Load the argument into eax, and push it. That way, it does

* not matter whether the called function is compiled with

* -mregparm or not. */ 

"movl %4,%%eax\n\t" 

"pushl %%eax\n\t"

"call *%5\n\t" /* call fn */

/* exit */"movl %3,%0\n\t" 

"int $0x80\n" 

"1:\t"

:"=&a" (retval), "=&S" (d0)

:"0" ( NR_clone), "i" ( NR_exit),

"r" (arg), "r" (fn), 

"b" (flags | CLONE_VM)

: "memory");

return retval;

}



More recent (module exposed) API

truct task_struct *kthread_create(int (*function)(void *data),void *data, 

const char name[])

Exec style naming

In the end this service relies on the core thread-startup function 

seen before plus others

The thread function
The function param



Thread features with kthread_create

The created thread sleeps on a wait queue

So it exists but is not really active 

We need to explicitly awake it

As for signals we have the following:

We can kill, if thread (or creator) enables

Killing only has the effect of awakening the thread (if sleeping)

Terminating threads via kills is based on the thread polling a termination bit 

in its TCB or on polls on the signal mask



Kernel threads vs affinity

truct task_struct *kthread_create_on_cpu(int (*function)(void *data), 

void *data,

unsigned int cpu_id, 

const char name[])

Affinity settings for the new thread
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