
Virtual file system

1. VFS basic concepts

2. VFS design approach and architecture

3. Device drivers

4. The Linux case study

Advanced Operating Systems (and System Security)
MS degree in Computer Engineering
University of Rome Tor Vergata
Lecturer: Francesco Quaglia

File system representations

• In RAM

– Partial/full representation of the current structure and content of the

File System (namely of its I/O objects)

On device

– (non-updated) representation of the structure and of the content of the

File System

Data access and manipulation

– FS independent part (VFS): interfacing-layer towards other

subsystems within the kernel

– FS dependent part: data access/manipulation modules targeted at a

specific file system type

•

•

Connections

• Any FS object (dir/file) is represented in RAM via specific data structures

• These data structures are generic (VFS style)

• The object keeps a reference to the module instances for its own operations

• The reference is accessed in a File System independent manner by any

overlying kernel layer → the virtual file system (VFS)

• This is achieved thanks to multiple different instances of a same function-

pointers’ (drivers’) table

Architectural hints

I/O object data structure

at the VFS layer

System call code block

at the VFS layer

Code block at the

object driver layer

Object specific in

memory representation

System call

invocation

VFS hints

• Devices can be seen as files

• What we drive, in terms of state update, is the structure used to represent the

device in memory

• Then we can also reflect such state somewhere out of memory (on a hardware

component)

• Classical devices we already know of

✓ Pipes and FIFO

✓ sockets

An overall scheme

File Pipe Socket what else?I/O objects

File access

driver
Pipe access

driver Socket access

driver

Software

implemented

within the OS

kernel

Hard Drives
Network interfaces

In memory only

data structures

Unique syscall

interface for

accessing

the objects

Your own

driver

Lets’ focus on the true files example

• Files are backed by data on a hard drive

• What software modules do we need for managing files on that hard drive in a

well shaped OS-kernel??

1. A function to read the device superblock for determining what files exist

and where their data are

2. A function to read device blocks for bringing them into a buffer cache

3. A function to flush updated blocks back to the device

4. A set of functions to actually work on the in-memory cached data and to

trigger the activation of the above functions

Block vs char device drivers

• The first three points in the previous slide are linked to the notion of block

device and block-device driver

• The last point (number 4) is linked to the notion of char device and char-

device driver

• These drivers are essentially tables of function pointers, pointing to the actual

implementation of the operations that can be executed on the target object

• The core point is therefore how to allow a VFS supported system call to

determine what is the actual driver to run when a given system call is

called

File system types in Linux

• To be able to manage a file system type we need a superblock read function

• This function relies on the block-device driver of a device to instantiate the

corresponding file system superblock in memory

• Each file system type has a superblock that needs to match its read function

Super-block read function

Block device

driver operations
materialize the

superblock in memory (if

read rule is matched)

Intermediary software – the buffer/page cache

• It allows the superblock read function (and other driver functions) to read the

block-device passing through a generic superblock data structure

• In the essence, the superblock data structure is the access data structure for a

cache of blocks of a given device

• The cached blocks are indexed (we can operate at a given index)

Actual blocks of a device

Generic VFS

level super

block for

managing

a given device

Software

cache of

memory

pages

..…

Software cache of generic inodes

Actual architecture (i)

• The super-block read function can exploit kernel level API in order to setup

the VFS portion of the superblock, like:

– mount_bdev(), which mounts a file system stored on a block device

– mount_single() , which mounts a file system that shares an instance

between all mount operations

– mount_nodev(), which mounts a file system that is not on a physical device

Actual architecture (ii)

• All the previously listed functions will take a call-back function as a parameter,

which will be called in order to finalize the super-block materialization

• This will be done in file-system specific manner

• This function typically just fills the super-block content

Super-block read function Fill callback-function

mount_bdev()

This intermediate functions sets up the page cache

The mount_bdev(...) signature

Name of the device

for which the page

cache needs to be

setup Name of the fill callback-function

Before the callback takes place the VFS generic

superblock is allocated

struct dentry *mount_bdev(struct file_system_type *fs_type,
int flags,
const char *dev_name,
void *data,
int (*fill_super)(struct super_block *, void *, int))

https://elixir.bootlin.com/linux/v6.7-rc4/C/ident/dentry
https://elixir.bootlin.com/linux/v6.7-rc4/C/ident/mount_bdev
https://elixir.bootlin.com/linux/v6.7-rc4/C/ident/file_system_type
https://elixir.bootlin.com/linux/v6.7-rc4/C/ident/fs_type
https://elixir.bootlin.com/linux/v6.7-rc4/C/ident/dev_name
https://elixir.bootlin.com/linux/v6.7-rc4/C/ident/fill_super
https://elixir.bootlin.com/linux/v6.7-rc4/C/ident/super_block

The “magic number”

• In the end a block device is anyhow a sequence of bytes

• We can read this sequence and check whether it contains (e.g. in the super block)

some identifying code we are expecting

• If this is not true, then we can abort the instantiation of the superblock in memory

• For Posix the command “file [–s] /dev/{device-name}” allows to

extract the magic number (the code) and reports the information on the actual file

system type kept by a device

Buffer/page cache details

• It is simply a memory area where we keep blocks of devices for managing

operations (read/write)

• Linux offers the struct buffer_head data structure to manage these blocks,

which is made by the following main data

– *b_data, pointer to a memory area where the data was read from or where the data must

be written to

– b_size, buffer size

– *b_bdev, the block device

– b_blocknr, the number of the block on the device that has been loaded or needs to be

saved on the device (essentially this is an index)

A scheme

struct buffer_head

device Block

number
size

Address in the

page cache

In memory

representation

Getting/putting device blocks

bread() → reads a block with the given number and given size in a buffer_head
structure; returns a pointer to the buffer_head structure (NULL on error)

sb_bread() → the size of the block to read is taken from the superblock;

mark_buffer_dirty() →marks the buffer as dirty (sets the BH_Dirty bit); the buffer

will be written to the hard drive at a later time (from time to time the bdflush kernel

thread, or more recently kworkers, wake up and write the buffers to disk);

brelse() → frees up the memory used by the buffer, after it has previously written

the buffer on disk if needed;

map_bh() → associates the buffer-head with the corresponding sector (block)

The overall layering

Buffer/page cache

bdevsw[] / cdevsw[] (the device drivers)

The HW object driver (e.g. the disk driver)

VFS interface

System calls

Whatever other driver

you may want

Regular files vs devices

• Any regular file can be seen as a block device hosting a file system

• To correctly associate this role to the file we will need to mount the

corresponding file system using a specific block-device driver

• This is the -o loop driver

• This enables passing through the VFS architecture multiple times (in terms of

actual actions executed when system calls are called)

• We can therefore create a stack of file system devices

What about RAM file systems?

• These are file systems whose data disappear at system shutdown

• On the basis of what described before, these file systems do not have an on-device

representation

• Their superblock read function does not really need to read blocks from a device

• It typically relies on in-memory instantiation of a fresh superblock representing the new

incarnation of the file system

Operations on the

device blocks

Super-block read function

Directly coded

super-block

in-memory

setup

RAM file system fill example – from kernel 5

static int ramfs_fill_super(struct super_block *sb, struct fs_context *fc){

struct ramfs_fs_info *fsi = sb->s_fs_info;

struct inode *inode;

sb->s_maxbytes

sb->s_blocksize

sb->s_blocksize_bits

sb->s_magic

sb->s_op

sb->s_time_gran

= MAX_LFS_FILESIZE;

= PAGE_SIZE;

= PAGE_SHIFT;

= RAMFS_MAGIC;

= &ramfs_ops;

= 1;

inode = ramfs_get_inode(sb, NULL, S_IFDIR | fsi->mount_opts.mode, 0);

sb->s_root = d_make_root(inode);

if (!sb->s_root)

return -ENOMEM;

return 0;

}

Here we are simply allocating other

two data structures in memory,

namely the inode and the dentry

https://elixir.bootlin.com/linux/v5.19.17/C/ident/ramfs_fill_super
https://elixir.bootlin.com/linux/v5.19.17/C/ident/super_block
https://elixir.bootlin.com/linux/v5.19.17/C/ident/fs_context
https://elixir.bootlin.com/linux/v5.19.17/C/ident/fc
https://elixir.bootlin.com/linux/v5.19.17/C/ident/ramfs_fs_info
https://elixir.bootlin.com/linux/v5.19.17/C/ident/fsi
https://elixir.bootlin.com/linux/v5.19.17/C/ident/s_fs_info
https://elixir.bootlin.com/linux/v5.19.17/C/ident/inode
https://elixir.bootlin.com/linux/v5.19.17/C/ident/inode
https://elixir.bootlin.com/linux/v5.19.17/C/ident/s_maxbytes
https://elixir.bootlin.com/linux/v5.19.17/C/ident/s_blocksize
https://elixir.bootlin.com/linux/v5.19.17/C/ident/s_blocksize_bits
https://elixir.bootlin.com/linux/v5.19.17/C/ident/s_magic
https://elixir.bootlin.com/linux/v5.19.17/C/ident/s_op
https://elixir.bootlin.com/linux/v5.19.17/C/ident/s_time_gran
https://elixir.bootlin.com/linux/v5.19.17/C/ident/MAX_LFS_FILESIZE
https://elixir.bootlin.com/linux/v5.19.17/C/ident/PAGE_SIZE
https://elixir.bootlin.com/linux/v5.19.17/C/ident/PAGE_SHIFT
https://elixir.bootlin.com/linux/v5.19.17/C/ident/RAMFS_MAGIC
https://elixir.bootlin.com/linux/v5.19.17/C/ident/ramfs_ops
https://elixir.bootlin.com/linux/v5.19.17/C/ident/inode
https://elixir.bootlin.com/linux/v5.19.17/C/ident/ramfs_get_inode
https://elixir.bootlin.com/linux/v5.19.17/C/ident/S_IFDIR
https://elixir.bootlin.com/linux/v5.19.17/C/ident/fsi
https://elixir.bootlin.com/linux/v5.19.17/C/ident/mount_opts
https://elixir.bootlin.com/linux/v5.19.17/C/ident/s_root
https://elixir.bootlin.com/linux/v5.19.17/C/ident/d_make_root
https://elixir.bootlin.com/linux/v5.19.17/C/ident/inode
https://elixir.bootlin.com/linux/v5.19.17/C/ident/s_root
https://elixir.bootlin.com/linux/v5.19.17/C/ident/ENOMEM

Baseline API for i-nodes and dentry

struct inode *new_inode(struct super_block *sb) → we simply allocate a generic i-

node data structure making it refer to a generic super-block data structure

struct dentry *d_make_root(struct inode *root_inode) → we simply create a generic

dentry data structure that will figure out as the root one, and we link it to the root-inode

The root-inode can be populated in a FS specific manner (e.g. upon file system mount)

reading an actual i-node from a device

It is typical that these data structures will keep generic fields used by the VFS plus some

field (e.g. a pointer) usable for linking FS specific data

generic i-node
FS specific

i-node data

Baseline structure of a superblock-fill function
int <FS_name>_fill_super(struct super_block *sb, ...){

……
bh = sb_bread(….); //read the FS specific superblock from device
… // populate the FS-specific structure in memory
brelse(bh); //release the page-cache kept data (not mandatory)
root_inode = <FS_name>_iget(sb,0) //get the root inode (generic + FS specific data)
…
d_make_root(root_inode);
…

}

int <FS_name>_iget(struct super_block *sb, int inode){
……
Inode_buffer = … // allocate a generic inode
…
bh = sb_bread(….); //read the FS-specific inode with given index from device
inode_buffer → <field> = bh → <something>;

brelse(bh); //release the page-cache kept data (not mandatory)
…

}

index 0 is typical of the

root-inode of any file system

Data structures vs drivers

generic inode
FS specific

inode data

•A driver for operations on a data structure in the VFS is a table of function

pointers

•When one of the operations is invoked we can pass as parameter the address of

the generic data structure

• From this address the driver can access (more or less directly) the FS specific data

•As mentioned before a data structure in the VFS keeps a reference to the actual

driver for its operations

The driver

f(){

}

Reference to some VFS

data structure

The VFS startup in Linux

• This is the minimal startup path

➢vfs_caches_init()

➢mnt_init()

✓init_rootfs()

✓init_mount_tree()

• Typically, at least two different FS types are supported

➢Rootfs (file system in RAM)

➢Ext (in the various flavors)

• However, in principles, the Linux kernel could be configured such in a way to

support no FS

• In this case, any task to be executed needs to be coded within the kernel (hence being

loaded at boot time)

This tells we are instantiating

at least one FS type – the

Rootfs

“File system types” data structures

• The description of a specific FS type is done via the structure

file_system_type defined in include/linux/fs.h

• This structure keeps information related to

➢The actual file system type

➢A pointer to a function to be executed upon mounting the file system

(superblock-read)

struct file_system_type {

const char *name;

int fs_flags;

……

struct super_block *(*read_super) (struct super_block *, void *, int);

struct module *owner;

struct file_system_type * next;

struct list_head fs_supers;

……

};

Moved to the mount field

in newer kernel versions

… newer kernel version alignment

struct file_system_type {

const char *name;

int fs_flags;

…

…

struct dentry *(*mount) (struct file_system_type *,

int, const char *, void *);

void (*kill_sb) (struct super_block *);

struct module *owner;

struct file_system_type * next;

…

…

}

Beware this!!

https://elixir.bootlin.com/linux/v4.20-rc5/ident/file_system_type
https://elixir.bootlin.com/linux/v4.20-rc5/ident/file_system_type
https://elixir.bootlin.com/linux/v4.20-rc5/ident/mount
https://elixir.bootlin.com/linux/v4.20-rc5/ident/file_system_type
https://elixir.bootlin.com/linux/v4.20-rc5/ident/super_block
https://elixir.bootlin.com/linux/v4.20-rc5/ident/module
https://elixir.bootlin.com/linux/v4.20-rc5/ident/owner
https://elixir.bootlin.com/linux/v4.20-rc5/ident/file_system_type

Rootfs and basic fs-type API (i)

• Upon booting, a compile time defined instance of the structure

file_system_type keeps meta-data for the Rootfs

• This file system only lives in main memory (hence it is re-initialized each time the

kernel boots)

• The associated data act as initial “inspection” point for reaching additional file

systems (starting from the root one)

• We can exploit kernel macros/functions in order to allocate/initialize a

file_system_type variable for a specific file system, and link it to a proper list

• The linkage one is

int register_filesystem(struct file_system_type *)

• Allocation of the structure keeping track of Rootfs is done statically (compile time)

• The linkage to the list is done by the function init_rootfs()

• The name of the structured variable is rootfs_fs_type

int init init_rootfs(void){

…

register_filesystem(&rootfs_fs_type);

…

}

Rootfs and basic fs-type API (ii)

let’s check with the details

Kernel 4.xx instance

User level checks on the managed file systems

• The file system currently manageable by the kernel can be listed by accessing

the /proc/filesystems file

• The nodev field in the output tells that a specific file system is handled as a in-

memory one, e.g.:

nodev

nodev

nodev

……

nodev

……

ext3

ext4

sysfs

rootfs

ramfs

proc

• Among the nodev file systems we typically find sys and proc

Creating and mounting the Rootfs instance

• Creation and mounting of the Rootfs instance takes place via the function

init_mount_tree()

• The whole task relies on manipulating 4 data structures
➢struct vfsmount

➢struct super_block

➢struct inode

➢struct dentry

• The instances of struct vfsmount and struct super_block keep file

system proper information (e.g. in terms of relation with other file systems)

• The instances of struct inode and struct dentry are such that one

copy exits for any file/directory of the specific file system

More details on the data structures

struct vfsmount

struct super_block

struct inode

struct dentry

Tells, e.g., what is the parent FS

Keeps basic FS metadata

Keeps per I/O object metadata

Tells what is a name for an I/O object

along the FS hierarchy

The structure vfsmount (still in place in kernel 3.xx)

struct vfsmount {

struct list_head mnt_hash;

struct vfsmount *mnt_parent;

struct dentry *mnt_mountpoint;

struct dentry *mnt_root;

struct super_block *mnt_sb;

struct list_head mnt_mounts;

struct list_head mnt_child;

atomic_t mnt_count;

int mnt_flags;

char *mnt_devname;

struct list_head mnt_list;

}

/*fs we are mounted on */

/*dentry of mountpoint */

/*root of the mounted tree*/

/*pointer to superblock */

/*list of children, anchored here */

/*and going through their mnt_child */

/* Name of device e.g. /dev/dsk/hda1 */

struct vfsmount {

struct dentry *mnt_root;

struct super_block *mnt_sb;

int mnt_flags;

} randomize_layout;

/* root of the mounted tree */

/* pointer to superblock */

…. now structured this way in kernel 4.xx or later

This feature is supported by the randstruct plugin

Let’s look at the details …….

https://elixir.bootlin.com/linux/latest/ident/vfsmount
https://elixir.bootlin.com/linux/latest/ident/super_block
https://elixir.bootlin.com/linux/latest/ident/__randomize_layout

Randstruct (see CONFIG_GCC_PLUGIN_RANDSTRUCT)

• Access to any field of a structure is based on compiler rules when relying on classical ‘.’ or ‘-

>’ operators

• Machine code is generated in such a way to correctly displace into the proper field

• randomize_layout introduces a reshuffle of the fields, with the inclusion of padding

• This is done based on pseudo random values selected at compile time

• Hence an attacker who discovers the address of a structure but does not know what’s the

randomization, will not be able to easily trap into the target field

• Linux usage (stable since kernel 4.8):

- on demand (via randomize_layout)

- by default on any struct only made by function pointers (a driver!!!)

- the latter can be disabled with no_randomize_layout

The structure super_block – Kernel 5 example

struct super_block {

struct list_head

dev_t

…

unsigned long

loff_t

s_list;

s_dev;

/* Keep this first */

/* search index; _not_ kdev_t */

s_blocksize;

s_maxbytes; /* Max file size */

struct file_system_type *s_type;

const struct super_operations *s_op;

…

s_magic;

*s_root;

unsigned long

struct dentry

…

struct list_head s_mounts; /* list of mounts */

struct block_device *s_bdev;

…

void *s_fs_info;

…

/* Filesystem private info */

const struct dentry_operations *s_d_op; /* default d_op for dentries */

…

struct user_namespace *s_user_ns;

…

} randomize_layout;

The structure dentry – Kernel 5 example

struct dentry {

…

struct dentry *d_parent; /* parent directory */

struct qstr d_name;

struct inode *d_inode; /* Where the name belongs to */

/* small names */unsigned char d_iname[DNAME_INLINE_LEN];

…

const struct dentry_operations *d_op;

struct super_block *d_sb; /* The root of the dentry tree */

…

void *d_fsdata; /* fs-specific data */

…

struct list_head d_child; /* child of parent list */

/* our children */struct list_head d_subdirs;

…

} randomize_layout;

The structure inode – Kernel 5 example

struct inode {

umode_t

unsigned short

kuid_t

kgid_t

unsigned int

…

i_mode;

i_opflags;

i_uid;

i_gid;

i_flags;

const struct inode_operations

struct super_block *i_sb;

…

*i_op;

i_size;loff_t

…

spinlock_t

…

union {

i_lock; /* i_blocks, i_bytes, maybe i_size */

const struct file_operations *i_fop; /* former ->i_op->default_file_ops */

void (*free_inode)(struct inode *);

};

…

void *i_private; /* fs or device private pointer */

} randomize_layout;

Overall scheme

dentry

dentry dentry dentry

inode

child
child of parent list

father

superblock

vfsmount
file_system_type

Possibly belonging to other

file systems

namespace

information

Initializing the Rootfs instance

• The main tasks, carried out by init_mount_tree(), are

1. Allocation of the 4 data structures for Rootfs

2. Linkage of the data structures

3. Setup of the name “/” for the root of the file system

4. Linkage between the IDLE PROCESS and Rootfs

• The first three tasks are carried out via the function do_kern_mount() or

vfs_kern_mount(), which are in charge of invoking the execution of the

super-block read-function for Rootfs

• Linkage with the IDLE PROCESS occurs via the functions set_fs_pwd()

and set_fs_root()

static void init init_mount_tree(void){

struct vfsmount *mnt;

struct namespace *namespace;

struct task_struct *p;

mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);

if (IS_ERR(mnt))

panic("Can't create rootfs");

………

set_fs_pwd(current->fs, namespace->root,

namespace->root->mnt_root);

set_fs_root(current->fs, namespace->root,

namespace->root->mnt_root);

}
…. very minor changes of this

function are in kernel 4.xx/5.xx

Mount tree setup – kernel 3 example

FS mounting and namespaces

FS1

FS2

FS3

The list of mount points along the three is a so called

“mount namespace”

By default the “initial namespace” is seen by active

threads

We can make a thread start working

with a new mount namespace which

is initially a copy of another one

Moving to another mount namespace makes mount/unmount operations only

acting on the current namespace (except if the mount operation is tagged with

SHARED)

Actual system calls for mount namespaces

clone(… int flags …)

CLONE_NEWNS

unshare(int flags)

An example of what we can do

FS1

FS2

We can mount FS2 after unsharing the

mount namespace

All the threads that will leave in the newly

generated mount namespace will be able to

access data on FS2

this file system can become

the root one for a container

Be careful to the command

switch_root newroot init

An overall view

Super operations

Dentry operations

i-node operations

file operations

Update superblock (and flush on device)

Get superblock info (e.g. statfs/fstatfs)
Manage i-nodes (read/write them from/ to

superlock)

Allocate/deallocate dentries

Link them to other data structures

creat/link/unlink/lookup

Actual operations

on data
The char-device

driver

struct file_operations (a bit more fields in very recent
kernel versions)
sruct file_operations {

struct module *owner;

loff_t (*llseek) (struct file *, loff_t, int);

ssize_t (*read) (struct file *, char *, size_t, loff_t *);

ssize_t (*write) (struct file *, const char *, size_t, loff_t *);

int (*readdir) (struct file *, void *, filldir_t);

unsigned int (*poll) (struct file *, struct poll_table_struct *);

int (*ioctl) (struct inode*, struct file *, unsigned int, unsigned long);

int (*mmap) (struct file *, struct vm_area_struct *);

int (*open) (struct inode *, struct file *);

int (*flush) (struct file *);

int (*release) (struct inode *, struct file *);

int (*fsync) (struct file *, struct dentry *, int datasync);

int (*fasync) (int, struct file *, int);

int (*lock) (struct file *, int, struct file_lock *);

ssize_t (*readv) (struct file *, const struct iovec *,

` unsigned long, loff_t *);

ssize_t (*writev) (struct file *, const struct iovec *,

unsigned long, loff_t *);

ssize_t (*sendpage) (struct file *, struct page *, int, size_t,

loff_t *, int);

unsigned long (*get_unmapped_area)(struct file *, unsigned long,

unsigned long, unsigned long, unsigned long);

};

TCB vs VFS

• The TCB keeps the field struct fs_struct *fs pointing to information

related to the current directory and the root directory for the associated process

• fs_struct was defined as follows in kernel 2.4

struct fs_struct {

atomic_t count;

rwlock_t lock;

int umask;

struct dentry * root, * pwd, * altroot;

struct vfsmount * rootmnt, * pwdmnt,

* altrootmnt;

};

3.xx/4.7 kernel style

See include/linux/fs_struct.h

8 struct fs_struct {
9 int users;

10 spinlock_t lock;
11 seqcount_t seq;
12 int umask;
13 int in_exec;
14 struct path root, pwd;
15 };

http://lxr.free-electrons.com/source/include/?v=3.16
http://lxr.free-electrons.com/source/include/linux/?v=3.16
http://lxr.free-electrons.com/source/include/linux/fs_struct.h?v=3.16

… and then 4.8 or later style

struct fs_struct {

int users;

spinlock_t lock;

seqcount_t seq;

int umask;

int in_exec;

struct path root, pwd;

} randomize_layout;

Towards more security

https://elixir.bootlin.com/linux/latest/ident/fs_struct
https://elixir.bootlin.com/linux/latest/ident/users
https://elixir.bootlin.com/linux/latest/ident/spinlock_t
https://elixir.bootlin.com/linux/latest/ident/seqcount_t
https://elixir.bootlin.com/linux/latest/ident/seq
https://elixir.bootlin.com/linux/latest/ident/path
https://elixir.bootlin.com/linux/latest/ident/__randomize_layout

File descriptor table
• It builds a relation between an I/O channel (a numerical ID code) and an I/O object

we are currently working with along an I/O session

• It enables fast search of the data structures used to represent I/O objects and sessions

• The search is based on the channel ID as the key

• The actual implementation of the layout for the file descriptor table is system specific

• In Linux we have the below scheme

TCB

dentry/i-node

dentry/i-node

dentry/i-node

File descriptor

table

session data

Classical file descriptor table (a few variations
in very recent kernel versions)

• TCB keeps the field struct files_struct *files which points to the

descriptor table

• This table is defined in as

struct files_struct {

atomic_t count;

/* Protects all the below members.

inside tsk->alloc_lock */

rwlock_t file_lock;

Nests

int max_fds;

int max_fdset;

int next_fd;

struct file ** fd; /* current fd array */

fd_set *close_on_exec;

fd_set *open_fds;

fd_set close_on_exec_init;

fd_set open_fds_init;

struct file * fd_array[NR_OPEN_DEFAULT];

};

bitmap identifying open fds

bitmap for close on exec

The session data - struct file (the very classical

shape)
struct file {

struct list_head

struct dentry

struct vfsmount

f_list;

*f_dentry;

*f_vfsmnt;

struct file_operations *f_op;

atomic_t

unsigned int

mode_t

loff_t

f_count;

f_flags;

f_mode;

f_pos;
unsigned long f_reada, f_ramax, f_raend, f_ralen, f_rawin;

struct fown_struct f_owner;

unsigned int f_uid, f_gid;

int f_error;

unsigned long f_version;

/* needed for tty driver, and maybe others */

void *private_data;

/* preallocated helper kiobuf to speedup O_DIRECT */

struct kiobuf *f_iobuf;

long f_iobuf_lock;

};

3.xx/4.xx/5.xx style (quite similar to 2.4)
775 struct file {

union {

struct llist_node

struct rcu_head
} f_u;

776

777

778

779

780

fu_llist;

fu_rcuhead;

struct path f_path;

781 #define f_dentry

struct inode

f_path.dentry

*f_inode;

const struct file_operations

/* cached value */

*f_op;

/*

* Protects f_ep_links, f_flags.

* Must not be taken from IRQ context.

*/

spinlock_t

atomic_long_t

unsigned int

fmode_t

struct mutex

loff_t

f_lock;

f_count;

f_flags;

f_mode;

f_pos_lock;

f_pos;

struct fown_struct

const struct cred
struct file_ra_state

f_owner;

*f_cred;
f_ra;

782

783
784

785

786

787

788

789

790

791
792

793

794
795

796

797

798

………

………. randomize_layout;;

Now we have randomized

layout and a few fields are

moved to other pointed tables

Randomized from kernel 4.8

Linux VFS API layering

• System call layer

✓

✓

Session setup

Channel ID based data access/manipulation

• Path-based VFS layer

✓ Do something on file system based on a path passed as parameter

• Data structure based VFS layer

✓ Do something on file system based on pointers to data structures

Relations

System call layer

Path-based VFS API

Data-structure-based

VFS API

open

read/write

…

vfs_create

vfs_mkdir

vfs_read

vfs_write

dget

dput

alloc_inode

…

filp_open

path_lookup

lookup_create

…

Path-based API examples

struct file *filp_open(const char * filename, int flags,

int mode)

returns the address of the struct file associated with the opened file

open() system-call

kernel-level
filp_open()

i-node operation lookup()

In the end we pass trough dentry/i-node/char-dev/superblock drivers

Data-structure based API examples

int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)

Creates an i-node and associates it with dentry. The parameter dir is used to point to a

parent i-node from which basic information for the setup of the child is retrieved. mode

specifies the access rights for the created object

int vfs_create(struct inode *dir, struct dentry *dentry, int mode)

Creates an i-node linked to the structure pointed by dentry, which is child of the i-node pointed

by dir. The parameter mode corresponds to the value of the permission mask passed in input to

the open system call. Returns 0 in case of success (it relies on the i-node-operation create)

static inline struct dentry * dget(struct dentry *dentry)

Acquires a dentry (by incrementing the reference counter)

void dput(struct dentry *dentry)

Releases a dentry (this module relies on the dentry operation d_delete)

… still on data-structure based API examples

ssize_t vfs_read(struct file *file, char user *buf,

size_t count, loff_t *pos)

ssize_t vfs_write(struct file *file, char user *buf,

size_t count, loff_t *pos)

file operation read(……)
file operation write(……)

In the end we traverse dentry/i-node structures to retrieve the file

operations table associated with that dentry

https://elixir.bootlin.com/linux/latest/ident/ssize_t
https://elixir.bootlin.com/linux/latest/ident/__user
https://elixir.bootlin.com/linux/latest/ident/size_t
https://elixir.bootlin.com/linux/latest/ident/loff_t
https://elixir.bootlin.com/linux/latest/ident/pos
https://elixir.bootlin.com/linux/latest/ident/ssize_t
https://elixir.bootlin.com/linux/latest/ident/__user
https://elixir.bootlin.com/linux/latest/ident/size_t
https://elixir.bootlin.com/linux/latest/ident/loff_t
https://elixir.bootlin.com/linux/latest/ident/pos

Relating I/O objects and drivers - the
MAJOR number

• A driver (for either a block or a char device) is registered into a so called device-

drivers table

• The table is an array and the displacement into the array where the driver is

registered is called MAJOR number

• Suppose we have to instantiate in memory the dentry/i-node of a file, then we need

to:

✓ Identify the char-dev driver for operating on the file (this will depend on

where we registered the driver for that device into the table)

✓ Link the dentry/i-node to that driver (recall a char-device driver is a table of

file-operations)

Lets’ simplify the job

• Suppose we instantiate in memory a dentry/i-node that depends on another one

on the same file system

• They are “homogeneous”

• In this case we simply inherit the same char-device driver of the parent (or a

file system specific one)

dentry/i-node (parent)

file_operations
dentry/i-node (child)

Actual operations

on the stream

What about data isolation?

• Generally the i-node identifies what data are touched by a call to a function in

file_operations

• This might not be the case with generic I/O objects that are not regular files

• As an example, what about things that are not files??

• We may have an I/O object that

✓ Can be managed by a given char-device driver

✓ Can be an instance in a group of many that need to be driven by the same

char-device driver (they are homogeneous but are not regular files)

VFS “nodes” and device numbers

• The field umode_t i_mode within struct inode keps an information

indicating the type of the i-node, e.g.:
➢directory

➢file

➢char device

➢block device

➢(named) pipe

•sys_mknod() allows creating an i-node associated with a generic type

• In case the i-inode represents a device, the operations for managing the device are

retrieved via the device driver tables

• Particularly, the i-node keeps the field kdev_t i_rdev which logs information

related to both MAJOR and MINOR numbers for the device

The mknod() system call

int mknod(const char *pathname, mode_t mode, dev_t dev)

•mode specifies the permissions to be used and the type of the node to be created

• permissions are filtered via the umask of the calling process (mode & umask)

• several different macros can be used for defining the node type → S_IFREG,

S_IFCHR, S_IFBLK, S_IFIFO

• when using S_IFCHR or S_IFBLK, the parameter dev specifies MAJOR and

MINOR numbers for the device file that gets created, otherwise this parameter

is a don’t care

Device numbers

• for x86 machines, device numbers are represented as bit masks

•MAJOR corresponds to the least significant byte within the mask

•MINOR corresponds to the second least significant byte within the mask

• The macro MKDEV(ma,mi), which is defined in

include/linux/kdev_t.h, can be used to setup a correct bit mask

by starting from the two numbers

Usage of MINOR numbers in drivers

• The functions belonging to the driver take a pointer to struct file in

input

• Therefore we know the session – the dentry – and the i-node ...

• …. hence we know the MINOR!

• …. and we can do stuff based on the MINOR!

• … as an example we might have that the driver manages an array of tables,

each associated with the state of an I/O object with a given MINOR (an

index)

Char devices table

struct device_struct {

const char * name;

struct file_operations * fops;

};

static struct device_struct chrdevs[MAX_CHRDEV];

Device name

Device operations

➢ in fs/devices.c we can find the following functions for

registering/deregistering a driver

int register_chrdev(unsigned int major, const char * name, struct

file_operations *fops)

Registration takes place onto the entry at displacement MAJOR (0 means the choice is up to

the kernel). The actual MAJOR number is returned

int unregister_chrdev(unsigned int major, const char * name)

Releases the entry at displacement MAJOR

Kernel 3 or later - augmenting flexibility and structuring

Pointer to file-operations is here

Minor number ranges

already indicated and
flushed to the cdev table

A scheme on i-node to file operations mapping for
kernel 3 or later

Operations remapping

int register_chrdev(unsigned int major, const char

*name, struct file_operations *fops)

int regis ter_chrdev(unsigned int major, unsigned

int baseminor, unsigned int count, const char

*name, const struct file_operations *fops)

int unregister_chrdev(unsigned int major, const char *name)

void unregister_chrdev(unsigned int major, unsigned

int baseminor, unsigned int count, const char *name)

New

features

Final part of the boot -
activating the INIT thread - 2.4 style

• The last function invoked while running start_kernel() is rest_init()

and is defined in init/main.c

• This function spawns INIT, which is initially created as a kernel level thread, and

eventually activates the l’IDLE PROCESS function

static void rest_init(void)

{

kernel_thread(init, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL);

unlock_kernel();

current->need_resched = 1;

cpu_idle();

}

… and 3.xx or later style

stat i c noinline void init_re fok rest_init(vo id)

395 {
396
397
398
399
400
401

402

i n t pid;

rcu_scheduler_starting();
/*
* We need to spawn i n i t f i r s t so that i t obtains pid 1,
* the i n i t task w i l l end up wanting to create kthreads,

* we schedule i t before we create kthreadd, w i l l OOPS.

however
which, i f

403*/
404 kernel_thread(kernel_init, NULL, CLONE_FS);

…………
numa_default_policy();

……..
…..

see linux/init/main.c

Switch off round-robin to first-touch

The function init()

• The init() function for INIT is defined in init/main.c

• This function is in charge of the following main operations

➢Mount of ext2 (or the reference root file system)

➢Activation of the actual INIT process (or a shell in case of problems)

static int init(void * unused){

struct files_struct *files;

lock_kernel();

do_basic_setup();

prepare_namespace();

………

if (execute_command) run_init_process(execute_command);

run_init_process("/sbin/init");

run_init_process("/etc/init");

run_init_process("/bin/init");

run_init_process("/bin/sh");

panic("No init found. Try passing init= option to kernel.");

}

registering drivers

The prepare_namespace() function (2.4 style -
minor variations are in kernels 3/4/5)

void prepare_namespace(void){

……

sys_mkdir("/dev", 0700);

sys_mkdir("/root", 0700);

sys_mknod("/dev/console", S_IFCHR|0600,

MKDEV(TTYAUX_MAJOR, 1));

……

mount_root();

out:

……

sys_mount(".", "/", NULL, MS_MOVE, NULL);

sys_chroot(".");

……

}

The scheme

This is the typical state before calling mount_root()

/

dev root

console
all in Rootfs (in RAM)

The mount_root() function
static void init mount_root(void) {

……

create_dev("/dev/root", ROOT_DEV,

root_device_name);

……

mount_block_root("/dev/root", root_mountflags);

}

static int init create_dev(char *name, kdev_t dev,

char *devfs_name) {

void *handle;

char path[64];

int n;

sys_unlink(name);

if (!do_devfs)

return sys_mknod(name, S_IFBLK|0600,

kdev_t_to_nr(dev));

……

}

The function mount_block_root()
static void init mount_block_root(char *name, int flags) {

char *fs_names = getname(); char *p;

get_fs_names(fs_names);

retry: for (p = fs_names; *p; p += strlen(p)+1) {

int err = sys_mount(name, "/root", p, flags, root_mount_data);

switch (err) {

case 0: goto out;

case -EACCES: flags |= MS_RDONLY; goto retry;

case -EINVAL:

case -EBUSY: continue;

}

printk ("VFS: Cannot open root device \"%s\" or %s\n",

root_device_name, kdevname (ROOT_DEV));

printk ("Please append a correct \"root=\" boot option\n");

panic("VFS: Unable to mount root fs on %s", kdevname(ROOT_DEV));

}

panic("VFS: Unable to mount root fs on %s", kdevname(ROOT_DEV));

putname(fs_names);

sys_chdir("/root");

ROOT_DEV = current->fs->pwdmnt->mnt_sb->s_dev;

printk("VFS: Mounted root (%s filesystem)%s.\n",

current->fs->pwdmnt->mnt_sb->s_type->name,

(current->fs->pwdmnt->mnt_sb->s_flags & MS_RDONLY) ?

" readonly" : "");

out:

}

The mount()system call

int mount(const char *source, const char *target, const char *filesystemtype,

unsigned long mountflags, const void *data);

MS_NOEXEC

MS_NOSUID

Do not allow programs to be executed from this file system.

Do not honour set-UID and set-GID bits when execut ing programs from this

file system.

MS_RDONLY Mount file system read-only.

MS_REMOUNT Remount an existing mount. This is allows you to change the mountflags

and data of an existing mount without having to unmount and remount the file system.

source and target should be the same value specified in the initial mount() call;

filesystem type is ignored.

MS_SYNCHRONOUS Make writes on this file system synchronous (as though the O_SYNC

flag to open(2) was specified for all file opens to this file system).

Mounting scheme

• The device to be mounted is used for accessing the driver (e.g. to open the

device and to load the super-block)

• The superblock read function is identified via the device (file system type)

to be mounted

• The super-block read-function will check whether the superblock is

compliant with what expected for that device (i.e. file system type)

• In case of success, the 4 classical file system representation structures get

allocated and linked in main memory

• Note → sys_mount relies on do_kern_mount()

The scheme

➢This is the state at the end of the execution of mount_root()

/

dev root

/
in EXT2 (or

other)

console root

in Rootfs (in RAM) new pwd for INIT

Mount point

• Any directory selected as the target for the mount operation becomes a so

called “mount point”

• struct dentry keeps the field int d_mounted to determine

whether we are in presence of a mount point

• This approach allows building views of the file system that can in general

be articulated in a complex manner with respect to the mounted file system

instances

• One of the advantages has been the introduction of “bind mounts” (more

different paths towards the same mounted file system)

Description of open() – kernel side

The steps

1. Get a free file descriptor (via current->files->fd)

1. Get the dentry via filp_open()(internally calls

file_operation open)

1. Link the two things together

Description of close() – kernel side

The steps

1. Release the dentry (by file descriptor) via filp_close()(internally

calls file_operation close)

2. Release the file decriptor (via current->files->fd)

Description of a read()/write() – kernel side

The steps

1. Get reference to dentry via file descriptor

2. Get reference to file_operations

3. Call the associated interface in file_operations

proc file system
• It is an in-memory file system which provides information on

➢Active programs (processes)

➢The whole memory content

➢Kernel level settings (e.g. the currently mounted modules)

• Common files on /proc are

➢ cpuinfo contains the information established by the kernel about the processor at

boot time, e.g., the type of processor, including variant and features

➢kcore contains the entire RAM contents as seen by the kernel

➢ meminfo contains information about the memory usage, how much of the

available RAM and swap space are in use and how the kernel is using them

➢ version contains the kernel version information that lists the version number,

when it was compiled and who compiled it

• net/ is a directory containing network information

• net/dev contains a list of the network devices that are compiled into the kernel.

For each device there are statistics on the number of packets that have been

transmitted and received

• net/route contains the routing table that is used for routing packets on the

network

• net/snmp contains statistics on the higher levels of the network protocol

• self/ contains information about the current process. The contents are the same

as those in the per-process information described below

• pid/ contains information about process number pid. The kernel maintains a

directory containing process information for each process

• pid/cmdline contains the command that was used to start the process (using null

characters to separate arguments)

• pid/cwd contains a link to the current working directory of the process

• pid/environ contains a list of the environment variables that the process has

available

• pid/exe contains a link to the program that is running in the process

• pid/fd/ is a directory containing a link to each of the files that the process has

open

• pid/mem contains the memory contents of the process

• pid/stat contains process status information

• pid/statm contains process memory usage information

Registering/creating the proc file system type

• The /proc file system is configured via the function proc_root_init()

defined in fs/proc/root.c

• This is called by the start_kernel() function

• proc_root_init() is in charge of

➢

➢

registering /proc

creating the actual instance

• Additional tasks by this function include creating some subdirs of proc such as
➢

➢

➢

net

sys

sys/fs

Core data structures for proc (classical)
struct proc_dir_entry {

unsigned short low_ino;

unsigned short namelen;

const char *name;

mode_t mode;

nlink_t nlink; uid_t uid; gid_t gid;

unsigned long size;

struct inode_operations * proc_iops;

struct file_operations * proc_fops;

get_info_t *get_info;

struct module *owner;

struct proc_dir_entry *next, *parent, *subdir;

void *data;

read_proc_t *read_proc;

write_proc_t *write_proc;

atomic_t count;

int deleted;

/* use count */

/* delete flag */

kdev_t rdev;

};

Core data structures for proc (very latest kernels)
struct proc_dir_entry {

………

const struct inode_operations *proc_iops;

union {

const struct proc_ops *proc_ops;

const struct file_operations *proc_dir_ops;

};

const struct dentry_operations *proc_dops;

….

proc_write_t write;

void *data;

………

} randomize_layout;

for a file

for a directory

improvement of security

Data structure layout

Proc FS data structures
VFS data structures

Properties of struct proc_dir_entry

•It fully describes any element of the proc file system in terms of

➢name

➢ i-node operations

➢file operations

➢specific read/write functions for the element

•We have specific functions to create proc entries, and to link the
proc_dir_entry to the file system tree

Mounting proc

• The proc file system is not necessarily mounted upon booting the kernel, it only gets

instantiated if configured

• The proc file system gets mounted by INIT (if not before)

• This is done in relation to information provided by /etc/fstab or as a

configured/default runtime task (e.g. by systemd)

• Typically, the root of the application level root-file-system keeps the directory /proc

that is exploited as the mount point for the proc-file-system

• NOTE

➢No device needs to be specified for mounting proc, thus only the type of file

system is required as parameter

➢Hence the /etc/fstab line for mounting proc does not specify any device

API for handling proc directories

struct proc_dir_entry *proc_mkdir(const char *name,

struct proc_dir_entry *parent);

Creates a directory called name within the directory pointed by parent

Returns the pointer to the new struct proc_dir_entry

static inline struct proc_dir_entry

*proc_create(const char *name, umode_t mode, struct

proc_dir_entry *parent, const struct

file_operations *proc_fops)

Moved to struct proc_ops

name: The name of the proc entry

mode: The access mode for proc entry

parent: The name of the parent directory under /proc

proc_fops: The structure in which the file operations for

the proc entry will be created

API for handling proc entries (i)

static inline struct proc_dir_entry

*proc_create_data(const char *name, umode_t mode,

struct proc_dir_entry *parent,

const struct proc_ops *proc_fops,

void* data)

API for handling proc entries (ii)

i-node

Get directly to some data

via this pointer

Read/Write operations

• Read/write operations for proc have the same interface as for any file system handled by

VFS, that is →

ssize_t (*read) (struct file *, char *, size_t, loff_t *)

ssize_t (*write) (struct file *, const char *, size_t,

loff_t *);

•… on the history → in kernel 5 the direct write operation reappeared, resembling direct

read/write operations time ago offered by kernel 2

• The signature is → typedef int (*proc_write_t)(struct file *, char *, size_t)

•No explicit usage of the offset is adopted

The sys file system (available since kernel 2.6)
•

•

Similar in spirit to /proc

It is an alternative way to make the kernel export information (or set it) via

common I/O operations

Very simple API

Clear-cut structuring

sysfs is compiled into the kernel by default depending on the configuration

option CONFIG_SYSFS (visible only if CONFIG_EMBEDDED is set)

•

•

•

Baseline architectural concepts - kernel objects

• The /sys file system is based on data structures that play a more

ample role within the Linux kernel

This is the kernel object data structure architecture

What is a kernel object

– Something that allows to identity individual things

– Something that allows to identify groups of things

– Something that allows to identify the typology of things

– Something that allows to associate the same typology to many

– Something that allows to identify hierarchies

•

•

The kobject structure

struct kobject{

const char

struct list_head

struct kobject

struct kset

struct kobj_type

*name;

entry;

*parent;

*kset;

*ktype;

struct kernfs_node *sd;

/*sysfs directory entry*/

kref;struct kref

……

……

} Reference counting

The kobj_type structure

struct kobj_type{

void (*release)(struct kobject*);

struct sysfs_ops *sysfs_ops;

struct attribute **default_attrs;

}

Called when reference counting reaches the

value zero

Actual operations to be executed on the object

We can have

multiple

attributes

The specification of the read/write operations occurs via
the sysfs_ops couple of functions

struct sysfs_ops {

/* method invoked on read of a sysfs file */

ssize_t (*show) (struct kobject *kobj,

struct attribute *attr,

char *buffer);

/* method invoked on write of a sysfs file */

ssize_t (*store) (struct kobject *kobj,

struct attribute *attr,

const char *buffer,

size_t size);

}

What can we do with kernel objects
• We can represent data that can be used by software to keep track of the

current state of both logical and physical entities

Examples are related to the representation of•

✓

✓

✓

The USB bus subsystem

The char devices subsystem

The block devices subsystem

•

•

•

A kernel object may belong to only one subsystem!

A subsystem must contain only identical kernel object elements!

In Linux we use struct kset to group together all the kernel objects we

want to have within the same subsystem

A representation of the linkage

Although it is not mandatory, we should keep all these kernel objects

linked to the same type specification

File system linkage

• A kset element is associated with an I/O element of the /sys file

system

• On the other hand, a kernel object can be either associated or not to an
element of the /sys file system

✓ it is associated if it is in kset

✓ it can be out of the /sys file system if it is not inside a kset

• This also provides the importance of the kernel object reference

counter

Baseline API

int kobject_add(struct kobject *kobj, struct kobject

parent, const char fmt ...)

void kobject_del(struct kobject *kobj)

Add/remove from, e.g. a pointed to kset

There is also

kobject_register, which is a combination of kobject_init and kobject_add

kobject_unregister, which is a combination of kobject_del and kobject_put

Baseline

management

kset API

void kset_init(struct kset *kset)

int kset_register(struct kset *kset)

void kset_unregister(struct kset *kset)

struct kset *kset_get(struct kset *kset)

void kset_put(struct kset *kset)

kobject_set_name(my_set->kobj,“thename")

Event to user space

• It is used to notify that something has changed in relation to things that are

handled by kernel objects

The architecture is based on a function pointer that is called
kobject_uevent

This function pointer is recorded into the kset data structure

The identified function is typically used to let the kernel start some user

space application when something occurs at the kernel side

The classical example is when inserting an USB drive, in this case a user

space program is started to let the user know about the insertion (and to ask

what to do)

•

•

•

•

sysfs core API for kernel objects

Main fields: parent - name

•

•

•

it is possible to call sysfs_create_dir without k->parent set

it will create a directory at the very top level of the sysfs file system

this can be useful for writing or porting a new top-level subsystem

using the kobject/sysfs model

sysfs core API for object attributes

The owner field may be set by the caller to point to the module in

which the attribute code exists

Minimal

modifications along

kernel releases

struct kobj_attribute {

struct attribute attr;

ssize_t (*show)(struct kobject *kobj,

struct kobj_attribute *attr, char *buf);

ssize_t (*store)(struct kobject *kobj,

struct kobj_attribute *attr,

const char *buf, size_t count);

}

Actual object attributes

Overall architecture

kobject

kset

kobject kobject

kobj_type attribute

This is an array of

pointers to kobj_attributes

name

operations

dentry
void* d_fsdata

Kernel API for creating devices in /sys

•/sys/class is a device file that internally hosts the reference to other device files

• To create a device file in this “directory” one can resort to:

static struct class* class_create(struct moudule* owner, char*

class_name)

static struct class* device_create(static struct class* the_class, …

kdev_t i_rdev, … char* name)

• There are similar API functions for destroying the device and the class

	Diapositiva 1: Advanced Operating Systems (and System Security) MS degree in Computer Engineering University of Rome Tor Vergata Lecturer: Francesco Quaglia
	Diapositiva 2: File system representations
	Diapositiva 3: Connections
	Diapositiva 4: Architectural hints
	Diapositiva 5: VFS hints
	Diapositiva 6: An overall scheme
	Diapositiva 7: Lets’ focus on the true files example
	Diapositiva 8: Block vs char device drivers
	Diapositiva 9: File system types in Linux
	Diapositiva 10: Intermediary software – the buffer/page cache
	Diapositiva 11: Actual architecture (i)
	Diapositiva 12: Actual architecture (ii)
	Diapositiva 13: The mount_bdev(...) signature
	Diapositiva 14: The “magic number”
	Diapositiva 15: Buffer/page cache details
	Diapositiva 16: A scheme
	Diapositiva 17: Getting/putting device blocks
	Diapositiva 18: The overall layering
	Diapositiva 19: Regular files vs devices
	Diapositiva 20: What about RAM file systems?
	Diapositiva 21: RAM file system fill example – from kernel 5
	Diapositiva 22: Baseline API for i-nodes and dentry
	Diapositiva 23: Baseline structure of a superblock-fill function
	Diapositiva 24: Data structures vs drivers
	Diapositiva 25: The VFS startup in Linux
	Diapositiva 26: “File system types” data structures
	Diapositiva 27: … newer kernel version alignment
	Diapositiva 28: Rootfs and basic fs-type API (i)
	Diapositiva 29: Rootfs and basic fs-type API (ii)
	Diapositiva 30: Kernel 4.xx instance
	Diapositiva 31: User level checks on the managed file systems
	Diapositiva 32: Creating and mounting the Rootfs instance
	Diapositiva 33: More details on the data structures
	Diapositiva 34: The structure vfsmount (still in place in kernel 3.xx)
	Diapositiva 35: …. now structured this way in kernel 4.xx or later
	Diapositiva 36: Randstruct (see CONFIG_GCC_PLUGIN_RANDSTRUCT)
	Diapositiva 37: The structure super_block – Kernel 5 example
	Diapositiva 38: The structure dentry – Kernel 5 example
	Diapositiva 39: The structure inode – Kernel 5 example
	Diapositiva 40: Overall scheme
	Diapositiva 41: Initializing the Rootfs instance
	Diapositiva 42: Mount tree setup – kernel 3 example
	Diapositiva 43: FS mounting and namespaces
	Diapositiva 44: Actual system calls for mount namespaces
	Diapositiva 45: An example of what we can do
	Diapositiva 46: An overall view
	Diapositiva 47: struct file_operations (a bit more fields in very recent kernel versions)
	Diapositiva 48: TCB vs VFS
	Diapositiva 49: 3.xx/4.7 kernel style
	Diapositiva 50: … and then 4.8 or later style
	Diapositiva 51: File descriptor table
	Diapositiva 52: Classical file descriptor table (a few variations in very recent kernel versions)
	Diapositiva 53: The session data - struct file (the very classical
	Diapositiva 54: 3.xx/4.xx/5.xx style (quite similar to 2.4)
	Diapositiva 55: Linux VFS API layering
	Diapositiva 56: Relations
	Diapositiva 57: Path-based API examples
	Diapositiva 58: Data-structure based API examples
	Diapositiva 59: … still on data-structure based API examples
	Diapositiva 60: Relating I/O objects and drivers - the MAJOR number
	Diapositiva 61: Lets’ simplify the job
	Diapositiva 62: What about data isolation?
	Diapositiva 63: VFS “nodes” and device numbers
	Diapositiva 64: The mknod() system call
	Diapositiva 65: Device numbers
	Diapositiva 66: Usage of MINOR numbers in drivers
	Diapositiva 67: Char devices table
	Diapositiva 68: Kernel 3 or later - augmenting flexibility and structuring
	Diapositiva 69: A scheme on i-node to file operations mapping for kernel 3 or later
	Diapositiva 70: Operations remapping
	Diapositiva 71: Final part of the boot - activating the INIT thread - 2.4 style
	Diapositiva 72: … and 3.xx or later style
	Diapositiva 73: The function init()
	Diapositiva 74: The prepare_namespace() function (2.4 style - minor variations are in kernels 3/4/5)
	Diapositiva 75: The scheme
	Diapositiva 76: The mount_root() function
	Diapositiva 77: The function mount_block_root()
	Diapositiva 78: The mount()system call
	Diapositiva 79: Mounting scheme
	Diapositiva 80: The scheme
	Diapositiva 81: Mount point
	Diapositiva 82: Description of open() – kernel side
	Diapositiva 83: Description of close() – kernel side
	Diapositiva 84: Description of a read()/write() – kernel side
	Diapositiva 85: proc file system
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88: Registering/creating the proc file system type
	Diapositiva 89: Core data structures for proc (classical)
	Diapositiva 90: Core data structures for proc (very latest kernels)
	Diapositiva 91: Data structure layout
	Diapositiva 92: Properties of struct proc_dir_entry
	Diapositiva 93: Mounting proc
	Diapositiva 94: API for handling proc directories
	Diapositiva 95: API for handling proc entries (i)
	Diapositiva 96: API for handling proc entries (ii)
	Diapositiva 97: Read/Write operations
	Diapositiva 98: The sys file system (available since kernel 2.6)
	Diapositiva 99: Baseline architectural concepts - kernel objects
	Diapositiva 100: The kobject structure
	Diapositiva 101: The kobj_type structure
	Diapositiva 102: The specification of the read/write operations occurs via the sysfs_ops couple of functions
	Diapositiva 103: What can we do with kernel objects
	Diapositiva 104: A representation of the linkage
	Diapositiva 105: File system linkage
	Diapositiva 106: Baseline API
	Diapositiva 107: kset API
	Diapositiva 108: Event to user space
	Diapositiva 109: sysfs core API for kernel objects
	Diapositiva 110: sysfs core API for object attributes
	Diapositiva 111: Actual object attributes
	Diapositiva 112: Overall architecture
	Diapositiva 113: Kernel API for creating devices in /sys

