
Linux modules
1. Support system calls and services

2. Programming facilities

3. Kernel probing

4. Kernel audit

Advanced Operating Systems

MS degree in Computer Engineering

University of Rome Tor Vergata

Lecturer: Francesco Quaglia

Modules basics

• A Linux module is a software component which can be

added as part of the kernel (hence being included into the

kernel memory image) when the latter is already running

• One advantage of using modules is that the kernel does not

need to be recompiled in order to add the corresponding

software facility

• Modules are also used as a baseline technology for

developing new parts of the kernel that are then integrated

(once stable) in the original compiled image

• They are also used to tailor the start-up of a kernel

configuration, depending on specific needs

Steps for module insertion

• We need memory for loading in RAM both code blocks

and data structures included in the module

• We need to know where the corresponding logical

buffer is located in order to resolve internal references

by the module (to either data or code)

• We need to know where in logical memory are located

the kernel facilities the module relies on

• While loading the module, actual manipulation for

symbols resolution (to addresses) needs to be carried

out

A scheme

Free

room

data

code

Kernel image

Module stuff
0x00xf….

(buddy or

vmalloc …)

get_zeroed_page() address

Internal

reference

External

reference

Who does the job??

• It depends on the kernel release

• Up to kernel 2.4 most of the job (but not all) is done at

application level

✓ A module is a .o ELF

✓ Shell commands are used to reserve memory, resolve

the symbols’ addresses and load the module in RAM

• From kernel 2.6 most of the job is kernel-internal

✓ A module is a .ko ELF

✓ Shell commands are used to trigger the kernel actions

for memory allocation, address resolving and module

loading

System call suite up to kernel 2.4

create_module

✓ reserves the logical kernel buffer

✓ associates a name to the buffer

init_module

✓ loads the finalized module image into the

kernel buffer

✓ calls the module setup function

delete_module

✓ calls the module shutdown function

✓ releases the logical kernel buffer

System call suite from kernel 2.6

create_module

✓ no more supported

init_module

✓ reserves the logical kernel buffer

✓ associates a name to the buffer

✓ loads the non-finalized module image into

the kernel buffer

✓ calls the module setup function

delete_module

✓ calls the module shutdown function

✓ releases the logical kernel buffer

Common parts (i)

• A module is featured by two main functions which

indicate the actions to be executed upon loading or

unloading the module

• These two functions have the following prototypes

int init_module(void) /*used for all

initialition stuff*/

{ ... }

void cleanup_module(void) /*used for a

clean shutdown*/

{ ... }

Common parts (ii)

• Within the metadata that are used to handle a module we

have a so called usage-count (or reference-count)

• If the usage-count is not set to zero, then the module is so

called “locked”

• This means that we can expect that some thread will

eventually need to used the module stuff (either in process

context or in interrupt context), e.g. for task finalization

purposes

• Unload in this case fails, except if explicitly forced

• If the usage-count is set to zero, the module is unlocked, and

can be unloaded with no particular care (or force command)

Common parts (iii)

• We can pass parameters to modules in both

technologies

• These are not passed as actual function parameters

• Rather, they are passed as initial values of global

variables appearing in the module source code

• These variables, after being declared, need to be

marked as “module parameters” explicitly

Declaration of module parameters

• For any parameter to be provided in input we need to rely on the

below macros defined in include/linux/module.h or

include/linux/moduleparm.h

✓ MODULE_PARM(variable, type)(old style)

✓ module_param(variable, type, perm)

• These macros specify the name of the global variable to be

treated as input parameter and the corresponding data type

• The three-parameter version is used in order to expose the

variable value as a pseudo-file content (hence we need to specify

permissions)

Module parameters dynamic audit

• It can be done via the /sys pseudo-file system

• It is an aside one with respect to /proc

• In /sys for each module we find pseudo-files for inspecting

the state of the module

• These include files for all the module parameters that are

declared as accessible (on the basis of the permission mask)

in the pseudo file system

• We can even modify the parameters at run-time, if

permissions allow it

A variant for array arguments

• module_param_array() can be used to declare the

presence of parameters that are array of values

• this macro takes in input 4 parameters

✓ The array-variable name

✓ The base type of an array element

✓ The address of a variable that will specify the array size

✓ The permission for the access to the module parameter on the

pseudo file system

• An example

module_param_array(myintarray,int,&size,0)

Loading/unloading a module

• A module can be loaded by the administrator via the shell

command insmod

• You can use it also for passing parameters (in the form
variable=value)

• This command takes the name of the object file generated

by compiling the module source code as the parameter

• The unloading of a module can be executed via the shell

command rmmod

• We can also use modprobe, which by default looks for

the actual module in the directory
/lib/modules/$(uname –r)

Actual execution path of insmod

Up to kernel 2.4 since kernel 2.6

insmod

create_module

Relocate module

(exploiting symtab, e.g.

exposed via

/proc/kallsyms)

init_module

1 2 3

insmod

init_module

Module suited system calls – up to 2.4

#include <linux/module.h>

caddr_t create_module(const char *name,

size_t size);

DESCRIPTION

create_module attempts to create a loadable module entry and

reserve the kernel memory that will be needed to hold the module.

This system call is only open to the superuser.

RETURN VALUE

On success, returns the kernel address at which the module will

reside. On error -1 is returned and errno is set appropriately.

#include <linux/module.h>

int init_module(const char *name, struct module

*image);

DESCRIPTION

init_module loads the relocated module image into kernel

space and runs the module's init function. The module image begins

with a module structure and is followed by code and data as appropri-

ate. The module structure is defined as follows:

struct module {

unsigned long size_of_struct;

struct module *next; const char *name;

unsigned long size; long usecount;

unsigned long flags; unsigned int nsyms;

unsigned int ndeps; struct module_symbol *syms;

struct module_ref *deps; struct module_ref *refs;

int (*init)(void); void (*cleanup)(void);

const struct exception_table_entry *ex_table_start;

const struct exception_table_entry *ex_table_end;

#ifdef __alpha__

unsigned long gp;

#endif

};

In the 2.4 tool chain parameters are setup

by the insmod user program

In fact their existence is not reflected into

any module-suited system call signature

They cannot be changed at run-time from

external module stuff (except if we hack

their memory locations)

#include <linux/module.h>

int delete_module(const char *name);

DESCRIPTION

delete_module attempts to remove an unused loadable module

entry. If name is NULL, all unused modules marked auto-clean will be

removed. This system call is only open to the superuser.

RETURN VALUE

On success, zero is returned. On error, -1 is returned and errno is set

appropriately.

Module suited system calls – since 2.6

SYNOPSIS
int init_module(void *module_image, unsigned long len,

const char *param_values);

int finit_module(int fd, const char *param_values,
int flags);

Note: glibc provides no header file declaration of init_module() and no wrapper

function for finit_module(); see NOTES.

DESCRIPTION

init_module() loads an ELF image into kernel space, performs any necessary sym-

bol relocations, initializes module parameters to values provided by the call-

er, and then runs the module's init function. This system call requires privi-

lege.

The module_image argument points to a buffer containing the binary image to be

loaded; len specifies the size of that buffer. The module image should be a

valid ELF image, built for the running kernel.

What about the missing address resolution

job by insmod in the 2.6 tool-chain?

• To make a .ko file, we start with a regular .o

file.

• The modpost program creates (from the .o

file) a C source file that describes the

additional sections that are required for the .ko

file

• The C file is called .mod file

• The .mod file is compiled and linked with the

original .o file to make a .ko file

Module headings

#define __KERNEL__

#define MODULE

#include <linux/module.h>

#include <linux/kernel.h>

……

#include <linux/smp.h>

For inclusion of header file parts

with pre-processor
directive ifdef __KERNEL__

For inclusion of header file parts with
Pre-processor directive ifdef MODULE

SMP specific stuff

Module in-use indications (classical style)

• The kernel associates with any loaded module a counter

• Typically, this counter is used to indicate how many

processes/threads/top-bottom-halves still need to rely on the

module software for finalizing some job

• In case the counter is currently greater than zero, the unload of

the module will fail (unless forcing if with –f on a kernel with

CONFIG_MODULE_FORCE_UNLOAD activated)

• There are macros defined in include/linux/module.h,

which are suited for accessing/manipulating the counter

➢MOD_INC_USE_COUNT

➢MOD_DEC_USE_COUNT

➢MOD_IN_USE

• NOTE:

➢While debugging the module it would be convenient to

redefine the macros MOD_INC_USE_COUNT and

MOD_DEC_USE_COUNT as no-ops, so to avoid blocking

scenarios when attempting to unload the module

• NOTE:

➢the proc file system exposes a proper file

/proc/modules which provides information on any

loaded module, including the usage counter and the amount

of memory reserved for the module

Reference counter interface in kernel 2.6 (or later)

We have the following functions:

✓ try_module_get(struct module *module)

for incrementing the reference counter

✓ module_put(struct module *module) for

decrementing the reference counter

✓ CONFIG_MODULE_UNLOAD can be

used to check unloadability

http://www.linuxforums.org/forum/redirect-to/?redirect=http%3A%2F%2Flxr.linux.no%2Fsource%2Finclude%2Flinux%2Fmodule.h%23L405
http://www.linuxforums.org/forum/redirect-to/?redirect=http%3A%2F%2Flxr.linux.no%2Fsource%2Finclude%2Flinux%2Fmodule.h%23L405
https://elixir.bootlin.com/linux/v4.17.19/ident/module
https://elixir.bootlin.com/linux/v4.17.19/ident/module
http://www.linuxforums.org/forum/redirect-to/?redirect=http%3A%2F%2Flxr.linux.no%2Fsource%2Finclude%2Flinux%2Fmodule.h%23L405
http://www.linuxforums.org/forum/redirect-to/?redirect=http%3A%2F%2Flxr.linux.no%2Fsource%2Fkernel%2Fmodule.c%23L793
https://elixir.bootlin.com/linux/v4.17.19/ident/module
https://elixir.bootlin.com/linux/v4.17.19/ident/module
http://www.linuxforums.org/forum/redirect-to/?redirect=http%3A%2F%2Flxr.linux.no%2Fsource%2Fkernel%2Fmodule.c%23L793

Finding a module to lock/unlock

struct module *find_module(const char *name)

This provides us with capabilities of targeting an

“external” module

The macro THIS_MODULE passed in input can be used

to identify the module that is calling the API, it clearly

works also with try_module_get/module_put

https://elixir.bootlin.com/linux/latest/ident/module
https://elixir.bootlin.com/linux/latest/ident/find_module

Kernel exported symbols

• Either the Linux kernel or its modules can export symbols

• An exported symbol (e.g., the name of a variable or the

name of a function) is made available and can be referenced

by any module to be loaded

• If a module references a symbol which is not exported, then

the loading of the module will fail

• The Kernel (including the modules) can export symbols by

relying on the macro EXPORT_SYMBOL (symbol)

which is defined in include/linux/module.h

Exported symbols table

• There exist a table including all the symbols that are

exported by the compiled kernel

• Further, each module is associated with a per module table

of exported symbols (if any)

• All the symbols that are currently exported by the kernel

(and by its modules) are accessible via the proc file system

through the file /proc/kallsyms

• This file keeps a line for each exported symbol, which has

the following format

Kernel-memory-address symbol-type symbol-name

A note on exporting symbols

• kernel can be parameterized (compiled) to export

differentiated types of symbols via standard facilities (e.g.

/proc/kallsyms)

• A few examples

CONFIG_KALLSYMS = y

CONFIG_KALLSYMS_ALL = y

symbol table includes all the variables (including

EXPORT_SYMBOL derived variables)

• All the previous are required for exporting variables (not

located in the stack)

Actually usable exported symbols

in recent kernels

• They do not longer appear in /proc/kallsyms)

• This is way, e.g., sys_close is not actually

usable while mounting modules

• The actually exported symbols are reported in

/lib/modules/<kernel version>/build/Module.symvers

• The /proc/kallsyms file is still useful to inspect the

type of symbols within the kernel (e.g. ‘T’ vs ‘t’)

Dynamic symbols querying and kernel patching

int __kprobes register_kprobe(struct kprobe *p)

static int __kprobes __unregister_kprobe_top(struct kprobe *p)

int __kprobes register_kretprobe(struct kretprobe *p)

Example usage

// Get a kernel probe to access flush_tlb_all()

memset(&kp, 0, sizeof(kp));

kp.symbol_name = "flush_tlb_all";

…

if (!register_kprobe(&kp)) {

flush_tlb_all_lookup = (void *) kp.addr;

…

unregister_kprobe(&kp);

}

To enable kprobes: CONFIG_KPROBES=y and

CONFIG_KALLSYMS=y or CONFIG_KALLSYMS_ALL=y

http://lxr.free-electrons.com/ident?i=__kprobes
http://lxr.free-electrons.com/ident?i=register_kprobe
http://lxr.free-electrons.com/ident?i=kprobe
http://lxr.free-electrons.com/ident?i=p
http://lxr.free-electrons.com/ident?i=__kprobes
http://lxr.free-electrons.com/ident?i=__unregister_kprobe_top
http://lxr.free-electrons.com/ident?i=kprobe
http://lxr.free-electrons.com/ident?i=p
http://lxr.free-electrons.com/ident?i=__kprobes
http://lxr.free-electrons.com/ident?i=register_kprobe
http://lxr.free-electrons.com/ident?i=kprobe
http://lxr.free-electrons.com/ident?i=p

struct kprobe

<linux/kprobes.h>

struct kprobe {

struct hlist_node hlist; /* Internal */

……

kprobe_opcode_t addr; /* Address of probe */

……

const char *symbol_name; /* probed function name */

kprobe_pre_handler_t pre_handler;

/* Address of pre-handler */

kprobe_post_handler_t post_handler;

/* Address of post-handler */

……

kprobe_fault_handler_t fault_handler;

/* Address of fault handler */

kprobe_break_handler_t break_handler;

/* Internal */

………

};

struct kprobe {

struct hlist_node hlist;

/* list of kprobes for multi-handler support */

struct list_head list;

/*count the number of times this probe

was temporarily disarmed */

unsigned long nmissed;

……

……

}

struct kprobe (kernel 3 or later)

https://elixir.bootlin.com/linux/v3.1/ident/kprobe
https://elixir.bootlin.com/linux/v3.1/ident/hlist_node
https://elixir.bootlin.com/linux/v3.1/ident/list_head

Kprobe mechanism

Function to be probed

Trap to a debugger module that in the end manages kprobes

Kprobes pre

Actual pre handler

Kprobes post

Patch return

address

and log original

Actual post handler

Return to logged

address

Kprobe handlers

typedef int (*kprobe_pre_handler_t)

(struct kprobe*, struct pt_regs*);

typedef void (*kprobe_post_handler_t)

(struct kprobe*, struct pt_regs*,

unsigned long flags);

typedef int (*kprobe_fault_handler_t)

(struct kprobe*, struct pt_regs*, int trapnr);

Modifiable registers status

kretprobe

struct kretprobe {

struct kprobe kp;

kretprobe_handler_t handler;

kretprobe_handler_t entry_handler;

int maxactive;

int nmissed;

size_t data_size;

struct hlist_head free_instances;

raw_spinlock_t lock;

};

Very similar interface

as other

probe handlers

Max active number and

counter of lost activations

https://elixir.bootlin.com/linux/v3.2/ident/kretprobe
https://elixir.bootlin.com/linux/v3.2/ident/kprobe
https://elixir.bootlin.com/linux/v3.2/ident/kp
https://elixir.bootlin.com/linux/v3.2/ident/kretprobe_handler_t
https://elixir.bootlin.com/linux/v3.2/ident/handler
https://elixir.bootlin.com/linux/v3.2/ident/kretprobe_handler_t
https://elixir.bootlin.com/linux/v3.2/ident/entry_handler
https://elixir.bootlin.com/linux/v3.2/ident/size_t
https://elixir.bootlin.com/linux/v3.2/ident/data_size
https://elixir.bootlin.com/linux/v3.2/ident/hlist_head
https://elixir.bootlin.com/linux/v3.2/ident/raw_spinlock_t

Probing deny

• Not all kernel functions can be probed

• A few of them are blacklisted (depending on

compilation choices)

• Those that are blacklisted can be fount in the

pseudofile

/sys/kernel/debug/kprobes/blacklist

• Motivations can be compiler optimizations

(such as in-lining) or the fact that these

functions can be (indirectly) triggered by probe

executions

LINUX kernel versioning

• The include/linux/version.h file is automatically included

via the inclusion of include/linux/module.h (except for cases

where the __NO_VERSION__ macro is used)

• The include/linux/version.h file entails macros that can be

used for catching information related to the actual kernel version such

as:

➢UTS_RELEASE, which is expanded as a string defining the

version of the kernel which is the target for the compilation of the

module (e.g. “4.12.14”)

➢LINUX_VERSION_CODE which is expanded to the binary

representation of the kernel version (with one byte for each

number specifying the version)

➢KERNEL_VERSION(major,minor,release) which is

expanded to the binary value representing the version number as

defined via major, minor and release

Kernel versioning exploitation

#if LINUX_VERSION_CODE > KERNEL_VERSION(x,y,z)

<whatever you want to specify or include>

#else

<whatever else you want to specify or include>

#endif

Programmer

specified outcome

Compiler defined outcome

Renaming of module startup/shutdown functions

• Starting from version 2.3.13 we have facilities for renaming the startup

and shutdown functions of a module

• These are defined in the file include/linux/init.h as:

➢module_init(my_init) which generates a startup routine

associated with the symbol my_init

➢module_exit(my_exit) which generates a shutdown routine

associated with the symbol my_exit

• These should be used at the bottom of the main source file for the

module

• They can help on the side of debugging since we can avoid using

functions with the same name for the modules

• Further, we can develop code that can natively be integrated within the

initial kernel image or can still represent some module for specific

compilation targets

The LINUX kernel messaging system

• Kernel level software can provide output messages in relation to

events occurring during the execution

• The messages can be produced both during initialization and

steady state operations, hence

➢ Sofware modules forming the messaging system cannot rely

on I/O standard services (such as sys_write() or

kernel_write())

➢ No standard library function can be used for output

production

• Management of kernel level messages occurs via specific

modules that take care of the following tasks

➢Message print onto the “console” device

➢Message logging into a circular buffer kept within kernel

level virtual addresses

The printk()function

• The kernel level module for producing output messages is called

printk() and is defined within the file kernel/printk.c

• This function accepts an input parameter representing a format

string, which is similar to the one used for the printf()

standard library function

• The major difference is that with printk() we cannot

specify floating point values (these are unallowed in kernel

toolchains)

• The format string optionally entails an indication in relation to

the priority (or criticality) level for the output message

• The message priority level can be specified via macros

(expanded as strings) which can be pre-fixed to the arguments

passed in input to printk()

Message priority levels

• The macros specifying the priority levels are defined in the

include/linux/kernel.h header file

#define KERN_EMERG "<0>" /* system is unusable */

#define KERN_ALERT "<1>" /* action must be taken

immediately */
#define KERN_CRIT "<2>" /* critical conditions */

#define KERN_ERR "<3>" /* error conditions */

#define KERN_WARNING "<4>" /* warning conditions */

#define KERN_NOTICE "<5>" /* normal but significant

condition */
#define KERN_INFO "<6>" /* informational */

#define KERN_DEBUG "<7>" /* debug-level messages */

• One usage example
printk(KERN_WARNING “message to print”)

Function aliases

The aliases

automatically

generate the

priority string

Message priority treatment

• There exist 4 configurable parameters which determine actual

output-message treatment

• They are associated with the following variables

➢console_loglevel (this is the level under which the

messages are actually logged on the console device)

➢default_message_loglevel (this is the priority level

that gets associated by default with any message not specifying

any priority value explicitly)

➢ minimum_console_loglevel (this is the minimum

level for admitting the log of messages onto the console

device)

➢default_console_loglevel (this is the default level

for messages destined to the console device)

Inspecting the current log level settings

• Look at the special file /proc/sys/kernel/printk

• Write into this file for modifications of these parameters (if

supported by the specific kernel version/configuration)

• This is not a real stable storage file (updates need to be

reissued or need to be implemented at kernel startup)

console_loglevel

• typically console_loglevel is associated with the

value 7 (this settings is anyhow non-mandatory)

• Hence all messages, except debug messages, need to be

shown onto the console device

• Setting this parameter to the value 8 enables printing debug

messages onto the console device

• Setting this parameter to the value 1 any message is

disabled to be logged onto the console, except emergency

messages

Circular buffer management: syslog()

int syslog(int type, char *bufp, int len);

• This is the system call for performing management

operation onto the kernel level circular buffer hosting output

messages

• the bufp parameter points to the memory area where the

bytes read from the circular buffer needs to be logged

•len specifies how many bytes we are interested in or a flag

(depending on the value of type)

• for type we have the following options:

SYSLOG_ACTION_CLOSE (0) Close the log. Currently a NOP.

SYSLOG_ACTION_OPEN (1) Open the log. Currently a NOP.

SYSLOG_ACTION_READ (2) Read from the log.

The call waits until the kernel log buffer is nonempty, and then reads at most len bytes into the buffer

pointed to by bufp. The call returns the number of bytes read. Bytes read from the log disappear

from the log buffer: the information can be read only once. This is the function executed by the

kernel when a user program reads /proc/kmsg.

SYSLOG_ACTION_READ_ALL (3) Read all messages remaining in the ring buffer, placing them in

the buffer pointed to by bufp. The call reads the last len bytes from the log buffer (nondestructively),

but will not read more than was written into the buffer since the last "clear ring buffer" command (see

command 5 below)). The call returns the number of bytes read.

SYSLOG_ACTION_READ_CLEAR (4) Read and clear all messages remaining in the ring buffer.

The call does precisely the same as for a type of 3, but also executes the "clear ring buffer"

command.

SYSLOG_ACTION_CLEAR (5) The call executes just the "clear ring buffer" command. The bufp

and len arguments are ignored. This command does not really clear the ring buffer. Rather, it sets a

kernel bookkeeping variable that determines the results returned by commands 3

(SYSLOG_ACTION_READ_ALL) and 4 (SYSLOG_ACTION_READ_CLEAR). This command has

no effect on commands 2 (SYSLOG_ACTION_READ) and 9 (SYSLOG_ACTION_SIZE_UNREAD).

SYSLOG_ACTION_CONSOLE_OFF (6) The command saves the current value of console_loglevel

and then sets console_loglevel to minimum_console_loglevel, so that no messages are printed to

the console. Before Linux 2.6.32, the command simply sets console_loglevel to

minimum_console_loglevel. See the discussion of /proc/sys/kernel/printk, below. The bufp and len

arguments are ignored.

SYSLOG_ACTION_CONSOLE_ON (7) If a previous SYSLOG_ACTION_CONSOLE_OFF

command has been performed, this command restores console_loglevel to the value that was saved

by that command. Before Linux 2.6.32, this command simply sets console_loglevel to

default_console_loglevel. See the discussion of /proc/sys/kernel/printk, below. The bufp and len

arguments are ignored.

SYSLOG_ACTION_CONSOLE_LEVEL (8) The call sets console_loglevel to the value given in len,

which must be an integer between 1 and 8 (inclusive). The kernel silently enforces a minimum value

of minimum_console_loglevel for len. See the log level section for details. The bufp argument is

ignored.

SYSLOG_ACTION_SIZE_UNREAD (9) (since Linux 2.4.10) The call returns the number of bytes

currently available to be read from the kernel log buffer via command 2 (SYSLOG_ACTION_READ).

The bufp and len arguments are ignored.

SYSLOG_ACTION_SIZE_BUFFER (10) (since Linux 2.6.6) This command returns the total size of

the kernel log buffer. The bufp and len arguments are ignored.

Updates of console_loglevel

console_loglevel can be set (to a value
in the range 1-8) by the call

syslog() (8,dummy,value)

The calls syslog() (type,dummy,dummy) with
type equal to 6 or 7, set it to 1 (kernel panics
only) or 7 (all except debugging messages),
respectively

Messaging management demon

klogd - Kernel Log Daemon

SYNOPSIS

klogd [-c n] [-d] [-f fname] [-iI] [-n] [-o] [-
p] [-s] [-k fname] [-v] [-x] [-2]

DESCRIPTION

klogd is a system daemon which intercepts and
logs Linux kernel messages

Circular buffer features

• The circular buffer keeping the kernel output messages

has size that varies over time

➢originally 4096 bytes,

➢Since kernel version 1.3.54, we had up to 8192 bytes,

➢Since kernel version 2.1.113, we had up to 16384

bytes … much more in more recent versions

• A unique buffer is used for any message, independently of

the message priority level

• The buffer content can be accessed by also relying on the

shell command “dmesg”

Actual management of messages

• In order to enable the delivery of messages with exactly-once

semantic, message printing onto the console is executed

synchronously (recall that standard library functions only

enable at-most-once semantic, just due to asynchronous

management)

• Hence the printk() function does not return control until

the message is delivered to any active console-device driver

• The driver, in its turn does not return control until the message

is actually sent to the (physical) console device

• NOTE: this may impact performance

➢As an example, the delivery of a message on a serial

console device working at 9600 bit per second, slows down

system speed by 1 millisecond per char

The panic() function

• The panic() function is defined in

kernel/panic.c

• This function prints the specified message onto the

console device (by relying on printk())

• The string “Kernel panic:” is prefixed to the message

• Further, this function halts the machine, hence leading

to stopping the execution of the kernel

