MS degree in Computer Englneerlng
University of Rome Tor Vergat ™
Lecturer: Francesco Quaglia

Topics

A Addressing schemes and software protection models
A Hardware/software protection support

A Kernel access GATES

A PerCPU/perthread memory

A System calls dispatching

A Case study: LINUX (Kernels 2.4/2.6/3.x/..)

Linear addressing

\

Whatever memory slice available
> for software execution (physical vs logical

y
Linear address (<offset>)

Segmentation

Address space (a linear one)

Segment B

address = <seg.id,offset> (es. <A,0x10)

Combining segments In a linear address space

Address specification = <seg.id,offset> (es. <B,offsef>)
Segment C
Need to know where B is
located in the linear address Segment B
space (this iIs the fnAbaseod of
>

Then the linear address is
<base+offset>

Virtual memory

® } Kernel mode (code + data/stack)

S
\>< RAM

P
/

- W + data/stack)

/
Linear addressing + mapping to actual storage (if existing)

Segmentation based addresses

ACode relies omaddressedormed by<segment number,
offset>

Alf segment numbers are not specified by the machine
Instruction, someefault segmens used for each target
datum

AModern processors (system processors) are equipped suct
way to support segmentation efficiently, in combination witr
linear addressing and virtual memory (say paging)

AThe whole architecture is therefore requested to handle a
complex address mapping scheme such as

segmentecaddr Y linear addr Y pagedaddr Y physicaladdr

System” processor

AMisystemoO processors (t
operating system software) rely on hardware
components that allofast andtransparent
access to segmentation information (e.g.
segment specific information)

AThese are

U CPU registers

U Main memory tables (directly pointed by
registers)

Segmentation with paging

Segment number | offset Aboth are logical
u D addresses
~ Athe offset value may

l differ
ﬁ PDE | PTE | page offset
/

Y

7 HW supported
| . X
translation

Determination of the

linear address relying on 2-level paging example
<base,offset>

X86 memory access modes

AReal mode

V

V
V
V

< <

Offers backward compatibility towards 286!!

a 16bit segment register keeps the target segment ID

16-bit (general) registers keep the segment offset
Targeted addressase physical and are Computed as

— o o e
——— a4
- ~

\§~ —’
-——————_

Around 1MB (2*20B) of memory is allowed

Minimal support for separating chunks of memory in th
addressing scheme

No segment specific protection information!!
Not suited for modern software systems!!!

X86 memory access modes

AProtected mode

V

V
V

a 16bit segment register keeps the target segment ID
(using 13 bits)

32-bit (general) registers keep the segment offset

The base of the segment in linear addressing is kept in
table in memory

Targeted addressase linear and are computed as

address = TABLE[segment].base + offset

Up to 4GB of linear (either physical or logical) memory
allowed

3-bit for control (protection) are kept in the segment
regi ster é. much Dbetter

X86 memory access modes

ALong mode (x864)

V

V

V

a 16bit segment register keeps the target segment ID
(using 13 bits)

64-bit (general) registers keep the segment offset
(limited to 48Dbit global addressing in canonical form)

The base of the segment in linear addressing is kept ir
a table in memory

Targeted addressase linear and are computed as

address = TABLE[segment].base + offset
Up to 248 B (256 TB) of linear memory is allowed

3-bit for control (protection) are kept in the segment
register

X86 segment tables

AThe are two table types keeping segments information:
Global Descriptor Table (GDT) andLocal Descriptor
Table (LDT)

ATypically GDT and LDT are kept in main memory, and are
directly accessible via pointers maintained by CPU register

AGDT determines the mapping of linear addresses at least f
kernel mode (namely kernel level segments) ... nowadays i
the unique used segment table in most operating systems

ALDT determines the mapping of linear addresses for user
mode (namely user level segments), if not done via GDT

AThese addresses are then used to access physical memon
page tables (if paging is activated)

generic
entry

|

GDT organization

FLAGS: ¢

Segment protection and
usage rules

Segment base within
linear addressing

I

To be composed with
segmenbffset upon access

Segmentation vs paging

ASegmentation and paging typically have different targets
ASegmentation is a classical meanspimtecting code and data

AThis protection mechanism is generally basedaarse grain
schemegin fact, segments may have very large sizes, cover
up to the whole address space for the application)

APaging (possibly coupled with virtual memory techniques) is
generally employed as a meansifoproving physical-
memory management efficiency

ASuch fdefficiency or i e fine-grdm
approach, namely it relies on the size of the page frame for t
specific hardware architecture (e.g. 4KB or 2/4MB for x86
architectures)

Segmentation vs multicores/multi-threading

Aé we know that paging sch:
protection of memory (via control bits in patgble entries)

A So we may think that segmentation is somehow useless
modern software systems

A This is a wrong concept, since as we will stsBgmentatior
still plays a central role in muitore architectures

A It also plays a central role in muttiread programming

Aéé in 1985 paging was alr.
Intel further extended the segmentation support (e.g. in i
80386 processor)

Aé. although the segmentat |
revised in x8664 processors

The x86-64 revision

A Registers keeping track of segment IDs (also known as
selectors) are not all managed the same way by firmwal
boardof the processor

A For some registers keeping segment IDs (hence for the
corresponding segments in the GDT tabléxed base of
0x0 Is enforced for the segments

A Protection bits in the segment table entries associated v
those segments IDs still work

A For a few registers keeping segment IDs the classical rt
relying on arbitrary base values for the segments is ado

Segmentation based protection model (i)

AEach segment is associated with a gigasiection level (or
privilege level)

AEach routine having protection levetan invoke any other routine
having protection level, within any segmentliis can be achievec
via intra-segment and crossegment jumps

ARoutines having protection leviekan invoke routines having
protection level different frorh via crosssegment jumps

A Cross-segment jumps always alloyumping from protection leve
hto protection leveh+i

AEach segment having protection lelié$ associated with a set of
access points, called GATEs, each one identiflecsag.«d,offset

AAny GATE is associated with a maximum lewahx=h+j starting
from which the GATE can be passed through

Segmentation based protection model (i)

Alf level(S)=handmax(GATE(S))=h+then segmer
entails a GATE for accessing levdl for modules
associated with protection level uphoi

ACrosssegment jumpdeny the acceds the destination
If the source operates at protection level greater than t
maximum one associated with the gate

AOverall, crosssegment jumps deny the access to the
destination anytime we do not use a GATE as the
destinatiorentry for the jump

Protection levels and jumps: the ring model

Level 2

Always admitted

................... - Admitted depending on thmaxorigin level associated wit
the target GATE

An example

<S1, offsetl>
(S1: level O offsetl: max = 0)

<S1, offset2>
(S1: level O offset2: max = 3)

S2 (level 2) |

Kernel routine A % “t-....
"""'"""""""'"""""""""‘
_ /
Kernel routine B # 1
s, Y Non-admittec
‘\ crosssegment
\ jump
Admitted crosssegmeny
jumps I
/
/
/
e AN
User routlne Y A Lannn®

A
A

ODbjectives of protection levels

Denilal of uncontrolled access to kernel level modules

Ker nel | ev el access |1 S ¢

poi ntso (the GATEs), whi

destinations for jumps (more generally control flow
variations) originated while running at worse protectiol
levels

A In conventional operating systems, the entry points ar

typically associated with:

U Interrupt handlers (asynchronous invocations)

U software traps (synchronous invocations)

Ring scheme for x86 machines

Protection Rings

Operating
System -
Kemel

Operating System
Services (Device ~——
Drrivers, Etc.)

Applications —__

Highest
0 1 2

Privilege Levels [-\E.‘

X86 address composition with segmentation

A An address does not specify the segment ID
directly

A It can specify a Segmefelector register

A This register keeps information on the actual
segment to which we are accessing

A An example:
<selector - register,displacement >

X86 detalls on the segmentation support

- N
< \
(¥ j,!ll_l\
1 il eet ¥l = Table Indicator

Segment Selector mdex
IPL = Requestor Privilege Level

—

\
\ /

CS: code segment register =~~~ For CS RPL is
SS: stack segment register calledCPL
DS: data segment register This register is only
ES: data segment register writable by control
'F'S data segment register added in OW variation
N GS: data segment register 80386 Instructions

-
§~ -
el -—

_—e o mm mm = =

1 CS (Code Segment Registerpoints to the current segment. The 2 Isb identify th
CPL (Current Privilege Level) for the CPU (from 0 to 3).

1SS (Stack Segment Registepoints tothe segment for the current stack.
DS (Data Segment Registerpoints to the segment containing static and global d

x86 GDT entries (segment descriptors)

31

16

15

0

Base 0:15 Limit 0:15
63 56|55 52|51 48|47 40]39 32
: Limit :
Base 24:31 | Flags 16:19 Access Byte | Base 16:23

Access byte content:
Pr - Present bit. This must defor all valid selectors.

Privl - Privilege, 2 bits. Contains the ring level (0 to 3)

Ex - Executable bit1 if code In this segment can be executed)

e e .

Flags:

This directly supports
protected mode

Gr - Granularity bit. IfO the limit is in 1 B blocks (byte granularity),
If 1the limitis in 4 KB blocks (page granularity)

é .

Accessing GDT entries

A Given that asegment descriptas 8 bytes in size, its
relative address wihin GDT Is computed by multiplying
the 13 bits of thendexfield of segment selectdny 8

A E.g, in case GDT is located at-address 0x00020000

(value that is kept by tg

dir register]and thendex

value withinsegment se

éctas setto the value 2, the

address associated with tt@gment descriptos

0x00020000 + (2*8), na

This is not only a po

mely 0x00020010

Inter but actually a packed struct

describing positioning and size of the GDT

Store Global Descriptor Table Register

Opcode Mnemonic Description
OF 01 /0 SGDT m Store GDTR to m.
Description

Stores the content of the global descriptor table register (GDTR) in the destination operand. The destination operand specifies a 6-byte memory location. If
the operand-size attribute is 32 bits, the 16-bit limit field of the register is stored in the low 2 bytes of the memory location and the 32-bit base address is
stored in the high 4 bytes. If the operand-size attribute is 16 bits, the limit is stored in the low 2 bytes and the 24-bit base address is stored in the third,
fourth, and fifth byte, with the sixth byte filled with Os.

SGDT is only useful in operating-system software; however, it can be used in application programs without causing an exception to be generated.
See "LGDT/LIDT-Load Global/Interrupt Descriptor Table Register” in Chapter 3 for information on loading the GDTR and IDTR.

Operation

if(OperandSize == 16) {
Destination[®..15] = GDTR.Limit;
Destination[16..39] = GDTR.Base; //24 bits of base address loaded
Destination[40..47] = @;

¥

else { //32-bit Operand Size
Destination[®..15] = GDTR.Limit;
Destination[16..47] = GDTR.Base; //full 32-bit base address loaded

I1A-32 Architecture Compatibility

The 16-bit form of the SGDT is compatible with the Intel 286 processor if the upper 8 bits are not referenced. The Intel 286 processor fills these bits with 1s;
the Pentium 4, Intel Xeon, P8 family, Pentium, Intel486, and Intel386 processors fill these bits with Os.

Example code

#include < stdio.h >

struct desc ptr {
unsigned short size;
unsigned long address;
} _ attribute_ ((packed)) ;

#define store_gdt(ptr) asm volatile("sgdt %0":"=m"(*ptr))

int main(int argc ,char** argv {
struct desc_ptr gdtptr ;
char v[10];//another way to see 10 bytes packed in memory

store_gdt (&gdtptr);
store_gdt (v);

printf ("comparison is %d \ n", memcmgv,&gdtptr,10));

printft ("GDTR is at %x - sizeis%d \n", gdtptr.address , gdtptr.size);

printft ("GDTR is at %x - sizeis%d \n",((struct desc ptr *)v) ->address,
((struct desc ptr *)v) - >size);

Access scheme

adt orldt Linenr Address
o

Descriptor —r‘ ;

F A
N
gdtr or ldtr
J
_ - :

I Selector offser
Index T : -I

Lowpien)! Actelress

Deseriptor Table Segment

Caching of descriptors R e -
(1 cache register per segment —| gt L. i
selectofi nonprogrammable) l

Cache line filled upon selector| —~—=_ horyaneg
Segment Selector | Segment Descriptor !
update : .

Making explicit usage of segments while coding

#include < stdio.h >

———~

#define load(ptrivar) asm volatile(" mov' %%ds (%O) %% rax ""za* (C ~ war):"a" (- ptr)
#define store(val,ptr) asm volatile("push %% ~ —bx= “mov_ %0, %%ds (%1); pop %% rbx A\

at (o val), bt Tpte))- T
int main(int argc ,char** argv){

unsigned long x = 16;

unsigned long y; explicit reference
load(& X,y); to the data segme
printf (“variable y has value %ud n"y); register (DS)
store(y+1,&Xx);

printf ("variable x has value %u \n",x),

Code/data segments for LINUX

segment Base G Nmii 3 DPL D/B (P)
‘ H\ W —
user code R Y 1 ot 1 /|10 3 1 / 1
[] 1
sser data I r ™ 1|2 3 1 / |
erelade L | (| 0 / |
kernel data u”im/m/ 1 e |2 0 / 1 1

Can we read/write/execute?

%

Is the segment present?

Xx86-64 directly forces base to 0x0 for
the corresponding segment registers

CS
SS
DS
ES

FS
GS

X86-64 selector management detalls

Base = 0x0

Privilege level is still there
and working

Arbitrary Base

Segment selectors update rules

A CS plays a central role, since it keeps the CPI
(Current Privilege level)

A CS is only updated via control flow variations

A All the other segment registers can be update
If the segment descriptor they would point to
after the update has DPL => CPL

A Clearly,with CPL = 0 we can update
everything

LINUX GDT on x86

Linux’s GDT Segment Selectors Linux’s GOT Segment Selectors
null 0x0 T55 Ox80
reserwed LDT 0x88
reserwed FNPEBIOS 3.2-bit code 0x90
resered PNPBIOS 16-bitcode | Ox98
ot used [¥ PNPBIOST6-hitdata | Oxa0
not used PNPBIOS 16-bitdata ~ OxaB
- TLS 41 0x33 PNPBIOS 16-bitdata | OxbO
Beware< TLS#2 0x3b APMEIOS 32-bit code Oxbg
these 11543 0x43 APMBIOS 16-bit code | OXcO
- reserved APMBIOS data | OxeB
reserwed not used
reserved not used
kerned code Ox60 (KERNEL CS) not used
kernel data Ox68 (_ KERNEL_DS) not used
user code ox73 (_ USER CS) not used

user data ox7b { USER DS) double fault TS5 0xt8

1SS

ATSS (Task State Segment): the set of linear addresses associa
with TSS is a subset of the linear address space destined to ket
data segment

Aeach TSS (one per CRtdre) is kept within thent_tss array

Athe Basefield within then-th core TSS register points to timeth
entry of thant_tssarray (transparently via the TSS segment)

AGr=0 whileLimit=0x68, given that TSS is 104 bytes in size

ADPL=0, since the TSS segment cannot be accessed in user mc

Xx86 TSS structure

a 15 0
IO Map Base Addrass |T
LDT Segment Selector
G5
FS
DS
g5
CSs
ES
EDI
ESI
EEP
ESP
EEX
EDX
ECX
EAX
EFLAGS
EIF
CR3 (FDER)
| 582
ESPZ
| s81
ESP1
| SS0
ESPO
| Previous Task Link

[] Reserved bits. Setto 0.

100
96
g2
a8
84
80
76
Te
&8
64
B0
56
52
48
44
a0
36
a2
28
24
20
16
12

Although it could be ideally
used for hardware based
context switches, it is not in
Linux/x86

It is essentially used for
privilege level switches (e.qg.
access to kernel mode), bas
on stack differentiation

offset

X86-64 variant

31-16 ‘ 15-0

0x00

reserved

0x04

RSPO (low)

0x08

RSPO (high)

0x0C

RSP1 (low)

0x10

RSP1 (high)

0x14

RSP2 (low)

0x18

RSP2 (high)

room for 64bit

-~ stack pointers has been cree
sacrificing general registers
snapshots

¥

Loading the TSS register

A x86 ISA (Instruction Set Architecture)
offers the instructioh TR

A This is privileged and must be executed at
CPL=0

A The TSS descriptor must be filled with a
source operand

A The source can be a genepakpose
register or a memory location

A Its value (16 bits) keeps the index of the
TSS descriptor into the GDT

LTR — Load Task Register

Opcode Instruction Op/En 64-Bit Mode Compat/Leg Mode Description
OF00/3 LTR#/ml6 M Valid Valid Load r/m16 mto task register.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (r) NA NA NA
Description

Loads the source operand mto the segment selector field of the task register. The source operand (a general-purpose register or a memory
location) contains a segment selector that pots to a task state segment (TSS). After the segment selector is loaded in the task register, the
processor uses the segment selector to locate the segment descriptor for the TSS in the global descriptor table (GDT). It then loads the
segment limit and base address for the TSS from the segment descriptor into the task register. The task poimnted to by the task register 1s
marked busy, but a switch to the task does not occur.

The LTR mstruction 1s provided for use in operating-system software; 1t should not be used 1 application programs. It can only be executed
in protected mode when the CPL 1s 0. It 1s commonly used 1n mitialization code to establish the first task to be executed.

The operand-size attribute has no effect on this instruction.

GDT replication

ABy the discussion on TSS we might have already
observed that different CRtbres in a multcore/multt
processor system may need to fill a given entry of the
GDT with different values

ATo achieve this goal the GDT is actually replicated in
common operating systems, with one copy for each
CPU-core

AThen each copy slightly diverges in a few entries
AThe main (combined) motivations are

V performance

V transparency of data access separation

Actual architectural scheme

RAM memory

gdtr

gdtr
CPU-core O

The two tables may differ in a few entries!!

Replication benefits: perCPU seamless
memory accesses

RAM memory

4)
gdtr/

GS segment = X GS segment = X

BaseisB - ~ Base is B®

Same displacement within segmenseéamlessiyeads the two cores t
access different linear addresses

Per-CPU memory

ANoneedforaCPd or e to cal l C
devastating for the sp
determine what memory portion is explicitly
dedicated to it

AFast access via GS segment displacing foiQily
common operations such as

V Statistics update (non need for LOCKED
CMPXCHG)

V Fast control operations

Per-CPU memory setup In Linux

ABased on some p&PU reserved zone in the linea
addressing scheme

AThereservedzone is displaced by relying on the
GS segment register

ABased on macros that select a displacement in th
GS segment

ABased on macros that implement memory acces:s
relying on the selected displacement

An example
DEFINE_PER_CPU(nt , x);
int z;
z= this cpu read (X);
The above statement results in a single instructior
mov ax, gs:[X]

To operate with no special define we can also get |
actual address of the pepudata and work
normally:

y = this_cpu ptr (&X)

TLS — Thread Local Storage

A It is based on setting up different segments
associated with FS and GS selectors

A Each time a thread is CPdlispatched, kernel
software restores its corresponding segment
descriptors into TLS#1, TLS#2 and TLS#3 withir
the GD

A We have system calls allowing us to change the
segment descriptors to be posted on TLS entrie

Segment management system calls (1)

NAME top

arch prctl - set architecture-specific thread state

SYNOPSIS top

#include <asm/prctl.h>
#include <sys/prctl.h>

int arch prctl(int code, unsigned long addr);
int arch prctl(int code, unsigned long *addr);

DESCRIPTION top

arch prectl() sets architecture-specific process or thread state.
code selects a subfunction and passes argument addr to it; addr 1is
interpreted as either an unsigned long for the "set" operations, or
as an unsigned long *, for the "get" operations.

Subfunctions for x86-64 are:

Segment management system calls (i)

=

Subfunctions for x86-64 are:

ARCH SET FS
Set the 64-bit base for the FS register to addr.

ARCH GET FS
Return the 64-bit base value for the FS register of the

current thread in the unsigned long pointed to by addr.

ARCH SET GS
Set the 64-bit base for the GS register to addr.

ARCH GET GS
Return the 64-bit base value for the GS register of the

current thread in the unsigned long pointed to by addr.

RETURN VALUE top

On success, arch prctl() returns 0; on error, -1 is returned, and
errno 1s set to indicate the error.

X86-64 control registers

A CRO-CR3 or CROECR4 (on more modern
x86 CPUS)

A CRO: is the baseline one
A CR1: is reserved

A CR2: keeps the linear address in case of a
fault

A CR3: is the pag#able pointer

0

~
-~

2
3
4

16
18
29
30
31

f—

-
> Bit | Name

s

ET

NE

WP

AM

NW

CD
PG

CRO structure vslong mode

— gy,

5\

Full Name RN 4

Protected Mode

Enable ,

-
-

— |
1 Tvpe - -Manﬁor't;ofprzcessor

EM

Emulation

Task switched

Extension type

Numeric error

Write protect

Alignment mask
Not-write through
Cache disable

Paging

Long mode uses a combination of this and
the EFER (Extended Feature Enable Regist
MSR (model specific register)

Description

|
» If 1, system is in protected mode, else system is in real mode

| Controls interaction of WAIT/FWAIT instructions with TS flag in CRO
| If set, no x87 FPU is present, if clear, x87 FPU is present
| Allows saving x87 task context upon a task switch only after x87 instruction used
On the 386, it allowed 1o specify whether the external math coprocessor was an 80287 or 80387

Enable internal x87 floating point error reporting when set, else enables PC style x87 error
detection

When set, the CPU can't write to read-only pages when privilege level is 0

Alignment check enabled if AM set, AC flag (in EFLAGS register) set, and privilege level is 3
| Clobally enables/disable write-through caching
| Globally enables/disable the memory cache

If 1, enable paging and use the CR3 register, else disable paging

Interrupts/traps vskernel access

Alnterrupts ar@synchronous eventshat are not correlated with
the current CPttore execution flow

Alnterrupts are generated by external devices, and can be ma

(Vs hormas

ATraps, also
strictly coup

Ked)
Known aexceptions aresynchronous events

ed with the current CPtbre execution (e.g.

division by zero)

AMultiple executions of the same program, under the same in
may (but not necessarily do) give rise to the same exception:

ATraps aredctually have been historicajlysed as the

mechanism
calls)

for on demand access to kernel mode (via systel

Management of trap/interrupt events

AThe kernel keepstaap/interrupt table

AEach table entry keepsGATE descriptor, which provides
iInformation on the address associated with the GATE (e.qg.

<seg.id,offset) and the GATE
AThe content of the trap/interru

whether the access to the GAT

protection level
ot table Is exploited to determi

"E can be enabled

AThe check relies on the current content of CPU regigtess,
segment registers, whigpecify the current privilege level

(CPL)

Aln principle, it may occur that a given GAT&Edescribed
within multiple entries of the trap/interrupt table (aliasing),
possibly with different protection specifications

Summary onx86 control flow variations

A intra-segment standard jump instruction (e.g. JMP <displaceme
on x86 architectures)
U firmware only verifies whether the displacement is within the
current segment boundary
Acrosssegment long jump instructions (e.g. LIMP <seg.id>,
<displacement> on x86 architectures)
U Firmware verifies whether jump is enabled on the basis of
privilege levels (no CPL improvement is admitted)
U Then, firmware checks whether the displacement is within th
segment boundaries
Acrosssegment via GATES trap instructions (e.g. INT <table
displacement> on x86 architectures)
U Firmware checks whether jumping is admitted depending on
privilege level associated with the target GATE as specified
within thetrap/interrupt table

An overview

»
»

Always admitted
(requires anyway consulting
the segment Tables)

Move across .-

segments

Not always admitted
(requires consulting the
Trap/interrupt table

+

Segment Tables)

} Seg O level =0
} Seg 1i level? O

1 Seqg il level¢n

GATE details for the x86 architecture (i)

AThe trap/interrupt table is callédterrupt Descriptor
Table (IDT)

AAny entry keeps
U The ID of the target segment and the segment
displacement
U themaxlevel starting from which the access to the
GATE isgranted

A IDT is accessible via thdtr register which is a packed
structure keeping the linear address of the IDT and the
(number of entries, each made up by 8 or 16 bytes,
depending on whether extendedi@dmode isactive)

A The register is loadable via the LIDT machine instructic

GATE details for the x86 architecture (ii)

AWe know thecurrent privilege level is kept within CS

Alf protection information enables jumping, the segment I
within IDT Is used to access GDT In order to check whet
jumping Is within the segment boundaries

Alf check succeeds the current privilege level gets update

AThe new value is taken from terresponding entry of
GDT (this value corresponds to the privilege level of the
target segmeint

AThe GATE description also tells whether the activated cc
IS Interruptible or not

Conventional operating systems

AFor LINUX/Windows systems, the GATE for @lemand access
(via software traps) to the kernslunigue

AFor i386 machines the corresponding software traps are
U INT 0x80 for LINUX (with backward compatibility ix86-64)
U INT Ox2E for Windows

AAny other GATE is reserved for the management oftinne error
(e.g. divide by zero exceptions) and interrupts

AThey are not usable for aiemand access via software (clearl
except if you hack the kernel)

AThe software module associated with thedemand access GA
Implementsa dispatcher that is able to trigger the activation of
the specific system callargeted by the application

Data structures for system call dispatching

AThereexists & s y t e m c thdt keeps, @ hny entry, the
address of a specific system call

ASuch an address becomes the target for a subroutine activati
the dispatcher

ATo access the correct entry, the dispatcher gets as input the
number (the numerical code) of the target system call
(typically this input is provided within a CPU register)

AThe code is used to identify the target entry within the systerr
table

AThen the dispatcher invokes
subr o u tTiCALd mstruction on x86)

AThe actual system call, once executed, provides its output (re
value within a CPU register

he trap-based dispatching scheme
User level

define input and retrieve system call
access GATE (trap return value

Kernel level
system call
activatio

System call table

return from
trap

retrieve the reference to
the system call code

Trap vs interruptible execution

ADifferently from interruptstrap managemeris typically
configured so as not to entail/enablgomatically resetting
the interruptiblestate for the CPgore

AAny critical code portion associated with the management c
the trap within the kernel requires explicit set of the
Interruptiblestate bit, and the reset after job is complete (e.c
via CLI e STI instructions in X86 processors)

AFor SMP/multicore machines thisiay not sufficefor
guaranteeing correctness (e.g. atomicity) while handling the
trap

ATo address this issue, spinlock mechanisms are adopted, w
are base on atomtest-end-set code portions(e.g., generated
via the x86 LOCK prefix on standard compilation tool chains

Test-and-set support

AModern instruction sets offer a single instruction to
atomically testandset memory, this is the CAS (Compar
And Swap) intruction

AOn x86 machines the actual CAS is calRddPXCHG
(Compare And Exchange)

A... but we already discussed of this while dealing with
memory consistency!!

System call software components

AUser side: software module (a) providing the input
parameters to the GATE (and to the actual system call) (b)
activating the GATE and (c) recovering the system call retur
value

A kernel side:
U dispatcher
U system call table
U actual system call code
AAddition of a newsystem callmeans working on both sides

ATypically, this happens with no intervention on the dispatche
In all the cases where the system call format is compliant
with those predefined for the target operating system

Linux along our path

A Kernel 2.4 : highly oriented to expansibility
modifiability
A Kernel 2.6 : more scalable

A Kernel 3.0 (or later) : more structured and
secure

LINUX system calls support:
path starting from kernel 2.4

Predefined system call formats: the classical 2.4 wa

AMacros for standard system call formats armalude/asm -
xx/unistd.h (or asm/unistd.h)

AHere we can find:

U Numerical codes associated with system calls (as seen by u:
level software) hence displacement values within the system
call table at kernel side

U The standard formats for the user level module triggering
acces to the system GATEnamely the module that activates t
system call dispatcher), each for a different value of the num
of system call parameters (from O to 6)

A Essentially the above file contaiA$M vs C directivesand
architecture specific compilation directives

AThis file represents a meeting point between ABSirogramming
and machine specific ASM language (in relation to the GATE acc
functionality)

System call numerical codes 2.4.20

/*

* This file contains the system call numbers.

*/

#define _ NR_exit
#define _ NR_fork
#define _ NR_read
#define __ NR_write
#define __ NR_open
#define __ NR_close
#define _ NR_waitpid
#define _ NR_creat
#define _ NR_link
#define __ NR_unlink
#define _ NR_execve
#define _ NR_chdir

é ee

#define _ NR_fallocate

©OCoOoO~NOOTLPE WDN PR

i
N R~ O

324

User level tasks for accessing the gate GATE

1. Specification of the input parameters via CPU

registers (note that these include the actual system ca

parameters and the dispatcher ones)

2. ASM Instructions triggering the GATE (e.qg. traps)

3.

Recovery of the return value of the systems call (upor
returningfrom the trap associated with GATE
activation)

Code block for a standard system call with no
parameter (e.g. fork())

#define _syscallO(type,name) \
type name(void) \
\ . .
{ Assembler instructions
long _ res; \ /
—asm__ VO'?F'.'?-.(._'T@’_(:?Q ----------- b Tasks to be done after the
:a(—res) __________ A execution of the assembler
- "0U (_NR_##name)); ™\ code block
__syscall_return(type,__res); \ ™ Tasks preceding the assem!

} code block

Managing the return value anderrno

[* user - visible error numbers are in the range -1 - -124:
see <asm - i386/errno.h> */

#define __ syscall return(type, res) \
do{ \
if ((unsigned long)(res) >= (unsigned long)(-125){ \
errno= -(res); \ }
res= -1; \
3o\
return (type) (res); \
} while (0)

Case ofes within the
Interval [1, -124]

Note: why the do/while(0) construct?

It IS a C construct that allows to
A#define a multistatement
operation
Aput a semicolon after and
Astill use within anf statement

Code block for a standard system call with
one parameter (e.g. close())

#define _syscalll(type,name,typel,argl) \
type name(typel argl) \
{ \
long _ res; \
__asm___ volatile ("int $0x80" \
:"=a" (__res) \
:"0" (__NR_##name),"b" ((long)(argl))); \

__syscall return(type,__res); \
} \

2 registers used for the input

Code block for a system call with six parameters
(max admitted by the standard)— 1386 bit case

#define _syscall6(type,name,typel,argl,type2,arg2,type3,arg3,typed,arg4,
\

type5,arg5,type6,arg6) \
type name (typel argl,type2 arg2,type3 arg3,type4 arg4,type5 args,typeb
argé) \
{ \
long _res; \

__asm__ volatile ("push %%ebp ; movl %%eax,%%ebp ; movl %1,%%eax ; int
$0x80 ; pop %%ebp" \

:"=a" (__res) \
:"I" (__NR_##name),"b" ((long)(argl)),"c" ((long)(arg2)), \

"d” ((long)(arg3)),"S" ((long)(arg4)),"D" ((long)(args)), \

"0" ((long)(arg6))); \
__syscall_return(type,__res); \

}

We use 4 general purpose registers (eax,ebx,ecx,edx) plus the
additional registers ESI e EDI, and the ebp regisi@sd€ pointerfor
the current stack frame, which is saved before overwriting) and a
| ocal Il nteger variable Al o

1386 calling conventions for system calls

/*
0(%esp)
4(%esp)
8(%esp)
C(% esp)
10(%esp)
14(%esp)

1C(%esp)
20(%esp)

Yebx
Y®eCcX
Yedx
Yesi
Yedi
%ebp
Yeax
%ds
%es

24(%esp) - -orig_eax

_-28(%esp)

;7 2C(%esp)

[30(%esp)
* 34(%esp)
* v~ 38(%esp)

*/ ~

*
*
*
*
*
*
* 18(%esp)
*
*
*
*
*
*

~

%eip
%es
Yeflags
Yoldesp
Yoldss

-
-~ -

The stack layout representat

ARGS complies with the traditional
stack based passage of
parameters

END ARGS
Ring and baseline CF
state information
(firmware saved onto
N the system stack)

Xx86-64 calling conventions for systentalls

/*
* Register setup:
* rax system call number
*rdi arg0
*rcx return address for syscall/sysret, C arg3
*rsi argl
*rdx arg2
*1r1l0 arg3 (-- > moved to rcx for C)
*rg8 arg4
*r9 args
*rll eflags for syscall/sysret, temporary for C
*rl2 -rl5,rbp,rbx saved by C code, not touched.
*
* Interrupts are off on entry.
* Only called from user space.
*/

X86-64 system call reindexing

A x86-64 Linux has réndexed the system calls
available in the kernel

A A new table of defines describes the codes
associated with these system calls

A Such a table is available to user code programn
via:

/local/include/ linux /asm - x86/unistd_64.h

A However both the two different indexing mechanisms s
work ¢é. we wi |l |-exsstanalwbilea! t |

Details on passing parameters

A Once gained control, the dispatcher will take a complete
snapshot of CPU registers

A Thesnapshot is taken within tlsgstem level stack

A Then the dispatcher will invoke the system call as a
subroutine call (e.g. via a CALL instruction in x86
architectures)

A The actual system call will retrieve the paramesesording
to the ABI

A The taken snapshot can be modified by the dispatched upor
the system call return (e.g. for delivering the return value)

An example

PHASE 3
PHASE 1 PHASEZ Stack pointer

register

Base pointe

Stack pointer

Stack pointer

e

Sys call NR

Sys call NR

System stack
upon triggering
dispatcher !

Base pointe

B

. system call
Dispatcher execution - execution

Simple examples for adding system calls to
the user API

Provide a C file which:

Aincludesunistd.h
Acontains the definition of the numerical codes for the new systen

calls
Acontains the macrdefinition for creating the actual standard

module associated with the new system calls (eygscallO())

#include <unistd.h>
#define _NR_my first_sys call 254
#define _NR_my second sys call 255

_syscallo(int,my_first _sys call);
_syscalll(int,my _second_sys_call,int,arg);

Limitations

AThe system call table has a maximum number of entries (resizing
requires reshuffling the whol
Let 0s di scuss the 1 ssue by f a

AA few entries are free, and can be used for adding new system cal

AWith Kernel 2.4.25:

U The maximum number of entries is specified by the macro
#define NR_syscalls 270

U This is defined within the filanclude/linux/sys.h
U As specified by

iInclude/asm - 1386/unistd.h , the available system call
numerical codes start at the value 253

U Hence the available code interval (with no modification of the t
size) is in between 253 an 269

An example folgcc version 3.3.3
(SUSE Linux)

#include < stdio.h >
#include < asm/ unistd.h >
#include < errno.h >

#define _ NR_pippo 256
_syscallo(void,pippo);
main() {

pippo ();
}

Overriding the fork() 1386 system call

#include < unistd.h >

#define _ NR_my fork 2 //same numerical code as the original
#define _new_syscallO(name) \
int name(void) \
{ \
asm(" int $0x80" ::"a" (__NR_## my_fork)); \
return O; \
o\

_new_syscallo(my fork)

int main(int a, char**b)
my_fork ();
pause (); // there will be two processes pausing !!

*‘MtO0Ox80” system call patl

A One memory access to the IDT

A One memory access to the GDT to retrieve the
kernel CS segment

A One memory access to the GDT (namely the
TSS) to retrieve the kernel level stack pointer

A A lot of clock cycles waiting for data coming
from memory (just to control the execution flow)

A Asymmetric delays in asymmetric hardware (e.qg.
NUMA)

A Unreliable outcome for timaterval measures
using system calls, sgettimeofday ()

The x86 revolution (starting with Pentium3)

A CS value for kernel code cached into an apposite MSR
(Model Specific Register)

A Kernel entry point offset (the target EIP/RIP) kept into a
MSR

A Kernel level stack/data base kept into an MSR

A Entering kernel code is as easy as flushing the MSRs
values onto the corresponding original registers (e.g. C.
DS, SS e. recall that t he
defaulted to 0x0)

A No memory access for activating the system call
dispatcher

A This is the fast system call path!!

Fast system calpath additional detalls

SYSENTER instruction for 32 bits- SYSCALL instruction for 64 bits
based on (pseudo) register manipulation
A CS register set to the value of (SYSENTER_CS_MSR)
A EIP register set to the value of (SYSENTER_EIP_MSR)
A SS register set to the sum of (8 plus the value in
SYSENTER_CS_MSR)
A ESP register set to the value of (SYSENTER_ESP_MSR)

SYSEXIT instruction for 32 bits- SYSRET instruction for 64 bits
based on pseudo register manipulation

A CS register set to the sum of (16 plus the value in
SYSENTER_CS_MSR)

A EIP register set to the value contained in the EDX register

A SS register set to the sum of (24 plus the value in
SYSENTER_CS_MSR)

A ESP register set to the value contained in the ECX register

MSR and their setup

[usr/src/linux/include/asm/msr.h:

101 #define MSR_IA32_SYSENTER CS 0x174
102 #define MSR_IA32_SYSENTER ESP 0x175
103 #define MSR_IA32_SYSENTER _EIP 0x176

fusr/src/linux/arch/i386/kernel/sysenter.c:

36 wrmsr(MSR_1A32 _SYSENTER_CS, KERNEL_CS, 0);
37 wrmsr(MSR_1A32_SYSENTER_ESP, 4ssspl, 0);

38 wrmsr(MSR_1A32_SYSENTER_EIP,

(unsigned long) sysenter_entry, 0);

rdmsr and wrmsr are the actual machine instructions for
reading/writing the registers

Thesyscall () construct (Pentium3—kernel 2.6

A syscall () isimplemented withimglibc (in
stdlib.n)

A It allows triggering a trap to the kernel for the execution
a generic system call

A The first argument is the system call number

A The other parameters are the input for the system call

A The actual ASM code implementationsyfscall () is
targeted and optimized for the specific architecture

A Specifically, the implementation (including the kernel le
counterpart) relies on ASM instructions such as
sysenter /sysexit orsyscall /sysret , which
have been made available starting from Pentium3
pProcessors

An example for gcc version 4.3.3 (Ubuntu
4.3.35ubuntu4) — backward-compatible

#include <stdlib.h>

#define _ NR_my first sys call 333
#define _ NR_my second_sys call 334

int my_first_sys_call(){
return syscall(__NR_my_first_sys_call);
}

int my_second_sys_call(int argl1){
return syscall(__NR_my_second_sys_call, argl);
}

int main(){
int Xx;

my_first_sys_call();
my_second_sys_call(x);

he system call table
AThe kernel level system call table is defined in specific files

AAs an example, for kernel 2.4.20 and i386 machines it is
defined inarch/i386/kernel/ entry.S

AAs another example, for kernel 2.6.xx the table is posted on
the filearch/x86/kernel/syscall table32.S

AAs another example for kernel 4.15.xx and-@36the table
pointer is defined imarch/x86/entry/syscall _64.c

AThe.S files contains prérocessor ASM directives

AAny entry keeps a symbolic reference to the kernel level nal
of a systentall (typically, the kernel level name resembles th
one used at applicatidavel)

AThe above files (or other .S) also contains the code block fo
the dispatcher associated with the kernel access GATE

Table structure

ENTRY(sys_call_table)

Jlong SYMBOL_ NAME(sys_ni_syscall) [*0 - old "setup()"
system call*/

Jlong SYMBOL_NAME(sys_exit)

Jdong SYMBOL_NAME(sys_fork)

Jlong SYMBOL_NAME(sys_read)

Jdong SYMBOL_NAME(sys_write)

Jdong SYMBOL_NAME(sys_open) [*5*

Jlong SYMBOL_NAME(sys_close)

é e

Jlong SYMBOL_NAME(sys_sendfile64)

Jdong SYMBOL_NAME(sys_ni_syscall) [* 240 reserved for futex
*/

éee

Jdong SYMBOL_NAME(sys_ni_syscall) [* 252
sys_set tid address */

-~ _/~~""\ New symbols need to be inserted here

‘;

rept NR_syscalls - (. -sys_call table)/4
Jlong SYMBOL_NAME(sys_ni_syscall)
.endr

Definition of system call symbols

AFor the previous example, the actual system call specification w
be

Jlong SYMBOL_NAME(sys_my first_sys call)
Jlong SYMBOL_NAME(sys_my second_sys call)

AThe actual code for the system calls (generally based exclusivel
on C with compilation directives for the specific architecture) car
be included within new modules added to the kernel or within
already exiting modules

AThe actual code can rely on the kernel global data structures an
on functions already available within the kernel, except for the
case where they are explicitly masked (e.g. masking with
static declarations external to the file containing the system

call)

Compilation directives for kernel side
systems calls

ASpecific directives are used to make the system call code compli
with the dispatching rules

ACompliance is assessed on the basis of how the input
parameters are passed/retrieved

AThe input parameters passage by converttistorically took place
via the kernel stack

AThe corresponding compilation directiveaismlinkage
AThis directive is now mapped to the current ABI

AHencefor the previous examples we will have the following syster
call definitions
asmlinkage long sys_my first_sys_call () { return O;}
asmlinkage long sys_my second_sys call (int x){
return ((x>0)?x: - X);}

The actual dispatcher (trap driven activation— 1386

kernel 2.4)

ENTRY(system_cal Manipulating
pushl % eax # saveorig_eax the CPU
SAVE_ALL snapshot in
testb $0x02,tsk_ptrace(¥ebx) # PT_TRACESYS
jne tracesys
cmpl $(NR_syscall3,%eax
jae badsys
call *SYMBQL- NAME(sys: €all- tablg(,%eax,4) _ _

< movl %eax,EAX(%esp # save the return value -»

ENTRY(ret_from sys cay----------------""""""

cli # need_reschednd signals atomic test

cmpl $0,need_resched(%bx)
jne reschedule

cmpl $0,sigpending(¥ebx)
jne signal_return

restore_all
RESTORE_ALL

The actual dispatcher(syscall driven activation —
kernel 2.4)

ENTRY(system_cal)

SWapgs #define PDAREF(field) %s:field
mov(q %rsp,PDAREF(pda_oldrsp)
mov(q PDAREF(pda_kernelstack,%rsp

sti

SAVE_ARGS 8,1

movq %rax,0ORIG_RAX-ARGOFFSET(%rsp)
movq %rcX,RIP-ARGOFFSET(%rsp)

GET_CURRENT (% rcx) .
testl $PT_TRACESYS,tsk_ptracg%rcx) Part of the stack switc
jne tracesys P

cmpg$_ NR_syscall_max,%ax V\{Ork Orlglna”_y one

ja badsys via firmware is movec
mov(q %r10,%rcx

call *sys_call_tabl¢,%rax,8) # XXX: rip relative to SOftware

movq %rax,RAX-ARGOFFSET(%rsp)
.globl ret_from_sys_call
ret_from_sys_call
sysret_with_reschedule
GET_CURRENT (% rcx)
cli
cmpq $0,tsk_need_resched(¥ex)
jne sysret_reschedule
cmpl $0,tsk_sigpending(%cx)
jne sysret_signal
sysret_restore_args

Uservskernel GS segment

SWAPGS — Swap GS Base Register

L 64-Bit Compat/Leg e
Opcode Imstruction Op/En Mode Mode Description
OF 01 . . Exchanges the current GS base register value with the value contained in MSR address
s SWAPGS Z0o Valid Invalid C0000102E.

Instruction Operand Encoding

Op/En Operand 1 = Operand2 Operand 3 Operand 4
Z0 NA NA NA NA

Description

SWAPGS exchanges the current GS base register value with the value contained in MSR address C0000102H (IA32 KERNEL_GS_BASE). The SWAPGS instruction is a privilegec
instruction intended for use by system software.

When using SYSCALL to implement system calls, there is no kernel stack at the OS entry point. Neither is there a straightforward method to obtain a pointer to kernel structures fror
which the kernel stack pointer could be read. Thus, the kernel cannot save general purpose registers or reference memory.

By design, SWAPGS does not require any general purpose registers or memory operands. No registers need to be saved before using the instruction. SWAPGS exchanges the CPL 0
data pointer from the JA32 KERNEL_GS_BASE MSR with the GS base register. The kernel can then use the GS prefix on normal memory references to access kernel data
structures. Similarly, when the OS kernel is entered using an interrupt or exception (where the kernel stack is already set up), SWAPGS can be used to quickly get a pointer to the
kernel data structures.

The IA32 KERNEL GS_BASE MSR itself is only accessible using RDMSR/WRMSR instructions. Those instructions are only accessible at privilege level 0. The WRMSR
instruction ensures that the TA32 KERNEL _GS_BASE MSR contains a canonical address.

Virtual Dynamic Shared Object (VDSO)

A Kernel also setups system call entry/exit points for user proces

A Kernel creates a single page (or a few) in memory and attache
to all processes' address space when they are loaded into
memory.

A This page contains the actual implementation of the system ce
entry/exit mechanism

A For i386 the definition of this page can be found in the file
[usr / src / linux /arch/i386/kernel/ vsyscall -

sysenter.S

A Kernel calls this pageirtual dynamic shared object(VDSO)

A Originally exploited for making the fast system call path
available (in relation to a few services)

VDSO and the address space

User accessible memory

heap

Environmental
software iIs allowed
to know where
VDSO is located

: Kernel posts
code here

stack

Application exposed facilities

SYNOPSIS
#include <sys/auxv.h>

void *vdso = (uintptr_t) getauxval(AT_SYSINFO_EHDR);
DESCRIPTION

The "vDSQO" (virtual dynamic shared object) is a small
shared library that the kernel automatically maps into the
address space of all user-space applications. Applications
usually do not need to concern themselves with these
detalls as the vDSO is most commonly called by the C
library. This way you can code in the normal way using
standard functions and the C library will take care of using
any functionality that is available via the vDSO.

he actualVDSO

==> dd if=/proc/self/mem of=linux-gate.dso bs=4096 skip=1048574
1+0 records in
1+0 records out

==> objdump -d --start-address=0xffffed400 --stop-address=0xffff
ffffe400 < kernel vsyscall>:

ffffed00: 51 push ¥ecx
ffffedOl: 52 push Yedx
ffffed02: 55 push %ebp
ffffed03: 89 eb5 mov %esp, $ebp
ffffed05: Of 34 sysenter
ffffed0Od: 90 nop

ffffedOe: eb f3 Jmp ffffe403 < kern
ffffed4l0.: 5d pop %ebp
ffffedll.: 5a pop Yedx
ffffedl2: 59 pop ¥ecx
ffffedl3: c3 ret

The kernel level target is ENTRY(sysenter_entry)

Performance effects

AThe VDSO exploits flat (linear) addressing proper of
operating system memory managers in order to bypass
segmentation and the related operations

Alt therefore reduces the number of accessed to memory in
order to support the change to kernel mode

AStudies show that the reduction of clock cycles for system
calls can be of the order of %b

AThis is in the end typical for any usage of the fast system cs
path

The current picture

AVDSO is now used to replace the old facilitegportedsia

thevsyscallsection, say support for specific system calls
(e.g. query system calls suchgedtimeofday ())

AVDSO is randomized (in terms of positioning into the
address space) so security gets increased

AThe system call mechanism in the wide, which relies on
sysenter /syscall andsysexit /sysret ,isin

charge of the dynamic linker (lchux.so)

Back to the coexistence of slow and
fast system call paths
ASlow path
V Sitill based onint 0x80

V Still accessing IDT/GDT (which is the reason why the
target entry still requires to be populated)

V The kernel level system call dispatched accesses the i
system call table

AFast path

V Base on thayscall instruction (no IDT/GDT access)

V The kernel level dispatcher (different from the previous
one) accesses the x8@ system call table

Kernel software organization

AAbout the 90% of the actual code for system calls is
embedded within a few main portions of the kernel archive

AThese are contained in the following directories

U kernel (process and used management)
mm(basic memory management)
Ipc (Interprocessommunication management)
fs (virtual file system management)

net (network management)

Kernel compiling

AYou can exploitmake

Alt executed a set of tasks (compilation, assembly and linking tas!
which are specified via lelakefile

AThis file can specify differentiated actions to be done (possibly
exhibiting dependencies) which are described within a field calle
target

AEach action can be specified by the following syntax:
action -name:[dependency - name]*{new - line}
{tab} action - body

AFurther, we can define variables via the syntax:
variable - name = value

AAny variable can be accessed via the syntax:
$(variable - name)

Standard complilation steps (old style)

1. make config

this triggers a configuration script which is used for

tailoring compilation to the specific machine and user

needs
2. make dep

which determines the software modules dependencies
3. make bzilmage

which creates a bootable image of the kernel and logs

as

arch/i386/boot/bzimage

Standard compilation steps (current tyle)

make config (or menuconfig)

make

make modules

make modules_install (ROOT)

make install (ROOT)

mkinitrd (or mkinitramfs) —o Initrd.img -<vers> <vers>

update-grub
OR
grub-mkconfig -o /boot/grub/grub.cfg (ROOT)

A b o wdnfig"

A The possibilities
| allyesconfig(likelihood of conflicting modules)

I allnoconfig (likelohood of norsufficient services Iin
the kernel image)

I Answer to the individual guestions you may be
asked for

I Retrieve a good configuration file (depending on
you machine/settings) on the web

I Reuse the configuration files(s) you find in the
/boot directory of your root file system (likely
works when recompiling the same kernel version
you already have)

Role of initrd

A Itis a RAM disk

A It can be (temporary) mounted as the root file
system and programs can be run from it

A A different root file system can be then mounted
from a different device

A The previous root (from initrd) can then be moved
to a directory and can be subsequently unmounted

A With initrd system startup can occur in two phases

i the kernel initially comes up with a minimum
set of compiledn drivers

I additional modules are loaded from initrd

ma
ma
ma

ma
/I

Step effects

Ke config (or menuconfig)
Ke
Ke modules

Ke modules_install (ROOT) (writes Into
Ib/modules)

make Iinstall (ROOT) (writes into /boot: the kernel
Image, the system map and the config file)

update-grub

OR

grub-mkconfig -o /boot/grub/grub.cfg (ROOT)

“"Extended?” Ker nel CoO

A Makefile updates
1. setting of th&aXTRAVERSIONariable (noAamandatory)

2. update of th€ ORE_FILESvariable such in a way to
iInclude the directory that contains the added C files and to

specify the object file name tageted by the compilation
3. update th&UBDIRSvariable so to include the new directory

A Put a specific Makefile within the directory that contains the
source code to be compiled, which should be structured as

O_TARGET = object -file -name.o
export - objs ;= list of obj to be exported
obj -y := C files list (marked with .0)
include $(TOPDIR)/Rules.make

“"ExXtended?” Ker nel CO

AMakefile updates
1. setting of th&aEXTRAVERSIONariable

(non-mandatory)

2. use objdirective to add a file or a
directory into the compilation tree

3. the addition is within already available
makefiles (or new ones)

Kernel anatomy: the systems map

A lt contains the symbols and the corresponding virtual
memory reference (as determined at compile/link time
for:

AKernel functions (steady state ones)
AKernel data structures

A Each symbol is also associated with a tag that define
O0storage cl asso as det er

A As an example, 'T' usually denotes a global {si@ic
but not necessarily exported) function, 't' a function lo
to the compilation unit (i.e. static), 'D' global data, 'd
data local to the compilation unit. 'R' and 'r' same as
'D'/'d" but for reaebnly data

System map applications

AKernel debugging

AKernel runtime hacking

AThe system map is also (partially) reported by tf
(pseudo) file/proc/kallsysm

AThe latter is exploited for rutime kernel
Ohackingodo via the mod:i

Just an example
2657282s mp #1 SMP éé. 1686 i 68:¢

c03a8a00 D sys call table

Read/write data

26.325~amd64 #1 SMP eeé x86_64 G

ffffffff81308240 R sys_call table

Readonly data

