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Linear addressing 

Whatever memory slice available  

for software execution (physical vs logical) 

Linear address (<offset>) 



Segmentation 

Segment A 

Segment B 

 

Segment C 

Address space (a linear one) 

address = <seg.id,offset> (es. <A,0x10) 



Combining segments in a linear address space 

Segment A 

Segment B 

 

Segment C 

Address specification = <seg.id,offset> (es. <B,offset>) 

Need to know where B is  

located in the linear address  

space (this is the “base” of B) 

 

Then the linear address is  

<base+offset> 



Virtual memory 

Kernel mode (code + data/stack) 

user mode (code + data/stack) 

Linear addressing + mapping to actual storage (if existing) 

RAM 



Segmentation based addresses 

• Code relies on addresses formed by <segment number, 

offset>  

• If segment numbers are not specified by the machine 

instruction, some default segment is used for each target 

datum 

• Modern processors (system processors) are equipped such in a 

way to support segmentation efficiently, in combination with 

linear addressing and virtual memory (say paging) 

• The whole architecture is therefore requested to handle a 

complex address mapping scheme such as   

  segmented addr  linear addr  paged addr  physical addr 



“System” processors vs segmentation 

• “system” processors (those oriented to host 

operating system software) rely on hardware 

components that allow fast and transparent 

access to segmentation information (e.g. 

segment specific information) 

• These are 

CPU registers 

Main memory tables (directly pointed by 

registers) 



Segmentation with paging 

Segment number offset 

HW supported  

translation 

PDE page offset PTE 

• both are logical 

addresses  

• the offset value may 

differ 

2-level paging example 
Determination of the  

linear address relying on 

<base,offset> 



x86 memory access modes 

• Real mode 

 Offers backward compatibility towards 286!!  

 a 16-bit segment register keeps the target segment ID 

 16-bit (general) registers keep the segment offset 

 Targeted addresses are physical, and are computed as 

    PhysicalAddress = Segment * 16 + Offset 

 Around 1MB (2^20B) of memory is allowed 

 Minimal support for separating chunks of memory in the 

addressing scheme 

 No segment specific protection information!! 

 Not suited for modern software systems!!! 



x86 memory access modes 

• Protected mode 

 a 16-bit segment register keeps the target segment ID 

(using 13 bits)  

 32-bit (general) registers keep the segment offset 

 The base of the segment in linear addressing is kept into a 

table in memory 

 Targeted addresses are linear and are computed as 

     address = TABLE[segment].base + offset 

 Up to 4GB of linear (either physical or logical) memory is 

allowed 

 3-bit for control (protection) are kept in the segment 

register …. much better for OS software!!!  



x86 memory access modes 
• Long mode (x86-64) 

 a 16-bit segment register keeps the target segment ID 

(using 13 bits)  

 64-bit (general) registers keep the segment offset 

(limited to 48-bit global addressing in canonical form) 

 The base of the segment in linear addressing is kept into 

a table in memory 

 Targeted addresses are linear and are computed as 

     address = TABLE[segment].base + offset 

 Up to 2^48 B (256 TB) of linear memory is allowed 

 3-bit for control (protection) are kept in the segment 

register  



x86 segment tables 

• The are two table types keeping segments information: 

Global Descriptor Table (GDT) and Local Descriptor 

Table (LDT) 

• Typically GDT and LDT are kept in main memory, and are 

directly accessible via pointers maintained by CPU registers 

• GDT determines the mapping of linear addresses at least for 

kernel mode (namely kernel level segments) ... nowadays it is 

the unique used segment table in most operating systems 

• LDT determines the mapping of linear addresses for user 

mode (namely user level segments), if not done via GDT 

• These addresses are then used to access physical memory via 

page tables (if paging is activated) 



GDT organization 

generic  

entry 

Segment base within  

linear addressing 

FLAGS 

To be composed with 

segment-offset upon access 

Segment protection and  

usage rules 



Segmentation vs paging 

• Segmentation and paging typically have different targets 

• Segmentation is a classical means for protecting code and data 

• This protection mechanism is generally based on coarse grain 

schemes (in fact, segments may have very large sizes, covering 

up to the whole address space for the application)  

• Paging (possibly coupled with virtual memory techniques) is 

generally employed as a means for improving physical-

memory management efficiency  

• Such “efficiency oriented” mechanism is based on a fine-grain 

approach, namely it relies on the size of the page frame for the 

specific hardware architecture (e.g. 4KB or 2/4MB for x86 

architectures) 



 Segmentation vs multi-cores/multi-threading 

• … we know that paging schemes are still able to enforce 

protection of memory (via control bits in page-table entries) 

•  So we may think that segmentation is somehow useless in 

modern software systems 

•  This is a wrong concept, since as we will show segmentation 

still plays a central role in multi-core architectures 

• It also plays a central role in multi-thread programming 

• …… in 1985 paging was already there in the hardware but 

Intel further extended the segmentation support (e.g. in the 

80386 processor) 

• …. although the segmentation logic has been significantly 

revised in x86-64 processors   



The x86-64 revision 

• Registers keeping track of segment IDs (also known as 

selectors) are not all managed the same way by firmware on 

board of the processor 

• For some registers keeping segment IDs (hence for the 

corresponding segments in the GDT table) a fixed base of 

0x0 is enforced for the segments 

• Protection bits in the segment table entries associated with 

those segments IDs still work   

• For a few registers keeping segment IDs the classical rule 

relying on arbitrary base values for the segments is adopted 



Segmentation based protection model (i) 

• Each segment is associated with a given protection level (or 

privilege level) 

• Each routine having protection level h can invoke any other routine 

having protection level h, within any segment (this can be achieved 

via intra-segment and cross-segment jumps) 

• Routines having protection level h can invoke routines having 

protection level different from h via cross-segment jumps 

• Cross-segment jumps always allow jumping from protection level 

h to protection level h+i 

• Each segment having protection level h is associated with a set of 

access points, called GATEs, each one identified as <seg.id,offset>  

• Any GATE is associated with a maximum level max=h+j starting 

from which the GATE can be passed through 



Segmentation based protection model (ii) 

• If level(S)=h and max(GATE(S))=h+i then segment S 

entails a GATE for accessing level h for modules 

associated with protection level up to h+i  

• Cross-segment jumps deny the access to the destination 

if the source operates at protection level greater than the 

maximum one associated with the gate 

• Overall, cross-segment jumps deny the access to the 

destination anytime we do not use a GATE as the 

destination entry for the jump  



Protection levels and jumps: the ring model 

Level 0 

Level 1 

Level 2 

Always admitted 

Admitted depending on the max origin level associated with 

the target GATE 



User routine 

Kernel routine A 

Kernel routine B 

<S1, offset1>  

(S1: level 0 – offset1: max = 0) 

<S1, offset2>  

(S1: level 0 – offset2: max = 3) 

S2 (level 2) 

 

Admitted cross-segment 

jumps 

Non-admitted 

cross-segment 

jump 

An example 



Objectives of protection levels 

• Denial of uncontrolled access to kernel level modules 

• Kernel level access is controlled via specific “entry 

points” (the GATEs), which are explicitly used as 

destinations for jumps (more generally control flow 

variations) originated while running at worse protection 

levels 

• In conventional operating systems, the entry points are 

typically associated with: 

 interrupt handlers (asynchronous invocations) 

 software traps (synchronous invocations) 



Ring scheme for x86 machines 



x86 address composition with segmentation 

• An address does not specify the segment ID 

directly 

• It can specify a Segment-Selector register 

• This register keeps information on the actual 

segment to which we are accessing 

• An example:  

  <selector-register,displacement> 



x86 details on the segmentation support 

CS: code segment register 

SS: stack segment register 

DS: data segment register 

ES: data segment register 

FS: data segment register 

GS: data segment register 

CS (Code Segment Register)  points to the current segment. The 2  lsb identify the 

CPL (Current Privilege Level) for the CPU (from 0 to 3).

SS (Stack Segment Register) points to the segment for the current stack.

DS (Data Segment Register)  points to the segment containing static and global data.

For CS RPL is 

called CPL 

This register is only 

writable by control 

flow variation 

instructions 
added in  

80386 



x86 GDT entries (segment descriptors) 

Access byte content: 

Pr - Present bit. This must be 1 for all valid selectors.  

Privl - Privilege, 2 bits. Contains the ring level (0 to 3) 

Ex - Executable bit (1 if code in this segment can be executed)  

……. 

 
Flags: 

Gr - Granularity bit. If 0 the limit is in 1 B blocks (byte granularity),  

        if 1 the limit is in 4 KB blocks (page granularity) 

….  

This directly supports  

protected mode 



Accessing GDT entries 

• Given that a segment descriptor is 8 bytes in size, its 
relative address wihin GDT is computed by multiplying 
the 13 bits of the index field of segment selector by 8 

  

• E.g, in case GDT is located at address 0x00020000 
(value that is kept by the gdtr register) and the index 
value within segment selector is set to the value 2, the 
address associated with the segment descriptor is 
0x00020000 + (2*8), namely 0x00020010 

 

This is not only a pointer but actually a packed struct  

describing positioning and size of the GDT 





Example code 
#include <stdio.h> 

 

struct desc_ptr { 

        unsigned short size; 

        unsigned long address; 

} __attribute__((packed)) ; 

 

#define store_gdt(ptr) asm volatile("sgdt %0":"=m"(*ptr)) 

 

int main (int argc, char**argv){ 

 struct desc_ptr gdtptr; 

 char v[10];//another way to see 10 bytes packed in memory 

 

 store_gdt(&gdtptr); 

 store_gdt(v); 

 

 printf("comparison is %d\n",memcmp(v,&gdtptr,10)); 

 printf("GDTR is at %x - size is %d\n",gdtptr.address, gdtptr.size); 

 printf("GDTR is at %x - size is %d\n",((struct desc_ptr*)v)->address, 

           ((struct desc_ptr*)v)->size); 

 

} 



Access scheme 

Caching of descriptors 

(1 cache register per segment 

  selector – non-programmable) 

 

Cache line filled upon  selector  

update 



Making explicit usage of segments while coding 

#include <stdio.h> 

 

#define load(ptr,var) asm volatile("mov %%ds:(%0), %%rax":"=a" (var):"a" (ptr)) 

#define store(val,ptr) asm volatile("push %%rbx; mov %0, %%ds:(%1); pop %%rbx“\ 

      ::"a" (val), "b" (ptr):) 

 

int main (int argc, char**argv){ 

 

        unsigned long x = 16; 

 

        unsigned long y; 

 

        load(&x,y); 

        printf("variable y has value %u\n",y); 

 

        store(y+1,&x); 

        printf("variable x has value %u\n",x); 

 

} 

explicit reference 

to the data segment 

register (DS) 



Code/data segments for LINUX 

Can we read/write/execute? 

Is the segment present? 
x86-64 directly forces base to 0x0 for  

the corresponding segment registers 



x86-64 selector management details 

CS 

SS 

DS 

ES 

 

 

FS 

GS 

Base = 0x0 

Privilege level is still there  

and working 

Arbitrary Base 



Segment selectors update rules 

• CS plays a central role, since it keeps the CPL 

(Current Privilege level) 

• CS is only updated via control flow variations 

• All the other segment registers can be updated 

if the segment descriptor they would point to 

after the update has DPL => CPL 

• Clearly, with CPL = 0 we can update 

everything 



LINUX GDT on x86 

Beware 

these 



TSS  

• TSS (Task State Segment): the set of linear addresses associated 

with TSS is a subset of the linear address space destined to kernel 

data segment 

  

• each TSS (one per CPU-core) is kept within the int_tss array 

 

• the Base field within the n-th core TSS register points to the  n-th 

entry of the int_tss array (transparently via the TSS segment) 

 

• Gr=0 while Limit=0x68, given that TSS is 104 bytes in size 

 

• DPL=0, since the TSS segment cannot be accessed in user mode 



x86 TSS structure 

Although it could be ideally 

used for hardware based 

context switches, it is not in 

Linux/x86 

 

It is essentially used for 

privilege level switches (e.g. 

access to kernel mode), based 

on stack differentiation 



x86-64 variant 

room for 64-bit 

stack pointers has been created 

sacrificing general registers  

snapshots 



Loading the TSS register 

• x86 ISA (Instruction Set Architecture) 
offers the instruction LTR 

• This is privileged and must be executed at 

CPL = 0 

• The TSS descriptor must be filled with a 

source operand 

• The source can be a general-purpose 

register or a memory location 

• Its value (16 bits) keeps the index of the 

TSS descriptor into the GDT 





GDT replication 

• By the discussion on TSS we might have already 

observed that different CPU-cores in a multi-core/multi-

processor system may need to fill a given entry of the 

GDT with different values 

• To achieve this goal the GDT is actually replicated in 

common operating systems, with one copy for each 

CPU-core 

• Then each copy slightly diverges in a few entries 

• The main (combined) motivations are 

 performance   

 transparency of data access separation 



Actual architectural scheme 

RAM memory 

CPU-core 0 CPU-core 1 

gdtr 

gdtr 

The two tables may differ in a few entries!! 



Replication benefits: per-CPU seamless 

memory accesses 

RAM memory 

CPU-core 0 CPU-core 1 

gdtr 

gdtr 

GS segment = X GS segment = X  

Base is B Base is B’ 

Same displacement within segment X seamlessly leads the two cores to  

access different linear addresses 



Per-CPU memory 

• No need for a CPU-core to call CPUID (… 

devastating for the speculative pipeline …) to 

determine what memory portion is explicitly 

dedicated to it 

• Fast access via GS segment displacing for per-CPU 

common operations such as 

 Statistics update (non need for LOCKED 

CMPXCHG) 

 Fast control operations 



Per-CPU memory setup in Linux 

• Based on some per-CPU reserved zone in the linear 

addressing scheme 

• The reserved zone is displaced by relying on the 

GS segment register 

• Based on macros that select a displacement in the 

GS segment 

• Based on macros that implement memory access 

relying on the selected displacement  

 



An example 

DEFINE_PER_CPU(int, x);  

int z;  

z = this_cpu_read(x); 

The above  statement results in a single instruction:  

    mov ax, gs:[x] 

 

To operate with no special define we can also get the 

actual address of the per-cpu data and work 

normally: 

       y = this_cpu_ptr(&x) 



TLS – Thread Local Storage 

• It is based on setting up different segments 

associated with FS and GS selectors 

• Each time a thread is CPU-dispatched, kernel 

software restores its corresponding segment 

descriptors into TLS#1, TLS#2 and TLS#3 within 

the GDT 

• We have system calls allowing us to change the 

segment descriptors to be posted on TLS entries  



Segment management system calls (i) 



Segment management system calls (ii) 



x86-64 control registers 

• CR0-CR3 or CR0-CR4 (on more modern 

x86 CPUs) 

• CR0: is the baseline one 

• CR1: is reserved 

• CR2: keeps the linear address in case of a 

fault 

• CR3: is the page-table pointer 



CR0 structure vs long mode 

Long mode uses a combination of this and  

the EFER (Extended Feature Enable Register)  

MSR (model specific register) 



Interrupts/traps vs kernel access 

• Interrupts are asynchronous events that are not correlated with 

the current CPU-core execution flow 

• Interrupts are generated by external devices, and can be masked 

(vs non-masked) 

• Traps, also known as exceptions, are synchronous events, 

strictly coupled with the current  CPU-core execution (e.g. 

division by zero) 

• Multiple executions of the same program, under the same input, 

may (but not necessarily do) give rise to the same exceptions 

• Traps are (actually have been historically) used as the 

mechanism for on demand access to kernel mode (via system 

calls) 



Management of trap/interrupt events 

• The kernel keeps a trap/interrupt table 

• Each table entry keeps a GATE descriptor, which provides 

information on the address associated with the GATE (e.g. 

<seg.id,offset>) and the GATE protection level  

• The content of the trap/interrupt table is exploited to determine 

whether the access to the GATE can be enabled 

• The check relies on the current content of CPU registers, the 

segment registers, which specify the current privilege level 

(CPL) 

• In principle, it may occur that a given GATE is described 

within multiple entries of the trap/interrupt table (aliasing), 

possibly with different protection specifications 



Summary on x86 control flow variations 

•  intra-segment: standard jump instruction (e.g. JMP <displacement> 

on x86 architectures) 

 firmware only verifies whether the displacement is within the 

current segment boundary 

• cross-segment: long jump instructions (e.g. LJMP <seg.id>, 

<displacement> on x86 architectures) 

Firmware verifies whether jump is enabled on the basis of 

privilege levels (no CPL improvement is admitted)  

Then, firmware checks whether the displacement is within the 

segment boundaries 

• cross-segment via GATEs: trap instructions (e.g. INT <table 

displacement> on x86 architectures) 

Firmware checks whether jumping is admitted depending on the 

privilege level associated with the target GATE as specified 

within the trap/interrupt table  

 



An overview 

Seg 0 – level = 0 

Seg 1 – level  0 

Seg i – level  n 

Not always admitted 

(requires consulting the 

 Trap/interrupt table 

 + 

Segment Tables) 

Always admitted 

(requires anyway consulting 

  the segment Tables) 

Move across 

segments 



GATE details for the x86 architecture (i) 

• The trap/interrupt table is called Interrupt Descriptor 

Table (IDT)  

• Any entry keeps  

 The ID of the target segment and the segment 

displacement 

 the max level starting from which the access to the 

GATE is granted 

• IDT is accessible via the idtr register which is a packed 

structure keeping the linear address of the IDT and the size 

(number of entries, each made up by 8 or 16 bytes, 

depending on whether extended 64-bit mode is active) 

• The register is loadable via the LIDT machine instruction 



GATE details for the x86 architecture (ii) 

• We know the current privilege level  is kept within CS 

• If protection information enables jumping, the segment ID 

within IDT is used to access GDT in order to check whether 

jumping is within the segment boundaries 

• If check succeeds the current privilege level gets updated 

• The new value is taken from the corresponding entry of 

GDT (this value corresponds to the privilege level of the 

target segment) 

• The GATE description also tells whether the activated code 

is interruptible or not  



Conventional operating systems 

• For LINUX/Windows systems, the GATE for on-demand access 

(via software traps) to the kernel is unique 

• For i386 machines the corresponding software traps are 

  INT 0x80 for LINUX (with backward compatibility in x86-64) 

  INT 0x2E for Windows 

• Any other GATE is reserved for the management of run-time errors 

(e.g. divide by zero exceptions) and interrupts 

• They are not usable for on-demand access via software  (clearly 

except if you hack the kernel)  

• The software module associated with the on-demand access  GATE 

implements a dispatcher that is able to trigger the activation of 

the specific system call targeted by the application 



Data structures for system call dispatching 

• There exists a “sytem call table” that keeps, in any entry, the 

address of a specific system call  

• Such an address becomes the target for a subroutine activation by 

the dispatcher 

• To access the correct entry, the dispatcher gets as input the 

number (the numerical code) of the target system call 

(typically this input is provided within a CPU register) 

• The code is used to identify the target entry within the system call 

table 

• Then the dispatcher invokes the system call routine (as a “jump 

sub-routine” – CALL instruction on x86)  

• The actual system call, once executed, provides its output (return) 

value within a CPU register 



The trap-based dispatching scheme 

User level 

define input and 

access GATE (trap) 

dispatcher 

Kernel level 

System call table 

System call  

code 

system call  

activation 

return from 

trap 

retrieve system call 

return value 

retrieve the reference to 

the system call code 



Trap vs interruptible execution 

• Differently from interrupts, trap management is typically 

configured so as not to entail/enable automatically resetting 

the interruptible-state for the CPU-core 

• Any critical code portion associated with the management of 

the trap within the kernel requires explicit set of the 

interruptible-state bit, and the reset after job is complete (e.g.  

via CLI e STI instructions in x86 processors) 

• For SMP/multi-core machines this may not suffice for 

guaranteeing correctness (e.g. atomicity) while handling the 

trap  

• To address this issue, spinlock mechanisms are adopted, which 

are base on atomic test-end-set code portions  (e.g., generated 

via the x86 LOCK prefix on standard compilation tool chains) 



Test-and-set support 

• Modern instruction sets offer a single instruction to 

atomically test-and-set memory, this is the CAS (Compare 

And Swap) intruction 

• On x86 machines the actual CAS is called CMPXCHG 

(Compare And Exchange) 

• ... but we already discussed of this while dealing with 

memory consistency!! 



System call software components 

• User side: software module (a) providing the input 

parameters to the GATE (and to the actual system call) (b) 

activating the GATE and (c) recovering the system call return 

value 

•  kernel side:  

 dispatcher 

system call table 

 actual system call code 

• Addition of a new system call means working on both sides 

• Typically, this happens with no intervention on the dispatcher 

in all the cases where the system call format is compliant 

with those predefined for the target operating system 



Linux along our path 

• Kernel 2.4 : highly oriented to expansibility 

modifiability 

• Kernel 2.6 : more scalable 

• Kernel 3.0 (or later) : more structured and 

secure 



LINUX system calls support: 

path starting from kernel 2.4 



Predefined system call formats: the classical 2.4 way 

• Macros for standard system call formats are in include/asm-

xx/unistd.h (or asm/unistd.h) 

• Here we can find: 

 Numerical codes associated with system calls (as seen by user 

level software), hence displacement values within the system 

call table at kernel side 

 The standard formats for the user level module triggering 

acces to the system GATE (namely the module that activates the 

system call dispatcher), each for a different value of the number 

of system call parameters (from 0 to 6)  

• Essentially the above file contains ASM vs C directives and 

architecture specific compilation directives 

• This file represents a meeting point between ANSI-C programming 

and machine specific ASM language (in relation to the GATE access 

functionality) 



System call numerical codes – 2.4.20 
/* 

 * This file contains the system call numbers. 

 */ 

 

#define __NR_exit     1 

#define __NR_fork     2 

#define __NR_read     3 

#define __NR_write    4 

#define __NR_open     5 

#define __NR_close  6 

#define __NR_waitpid  7 

#define __NR_creat  8 

#define __NR_link     9 

#define __NR_unlink  10 

#define __NR_execve  11 

#define __NR_chdir  12 

……… 

#define __NR_fallocate  324 



User level tasks for accessing the gate GATE 

1. Specification of the input parameters via CPU 

registers (note that these include the actual system call 

parameters and the dispatcher ones) 

2. ASM instructions triggering the GATE (e.g. traps) 

3. Recovery of the return value of the systems call (upon 

returning from the trap associated with GATE 

activation)  



Code block for a standard system call with no 

parameter (e.g. fork()) 

#define _syscall0(type,name) \ 

type name(void) \ 

{ \ 

long __res; \ 

__asm__ volatile ("int $0x80" \ 

 : "=a" (__res) \ 

 : "0" (__NR_##name)); \ 

__syscall_return(type,__res); \ 

} 

 

Assembler instructions 

Tasks preceding the assembler 

code block 

Tasks to be done after the  

execution of the  assembler  

code block 



Managing the return value and errno 

/* user-visible error numbers are in the range -1 - -124:  

  see <asm-i386/errno.h> */ 

 

#define __syscall_return(type, res) \ 

do { \ 

 if ((unsigned long)(res) >= (unsigned long)(-125)) { \ 

  errno = -(res); \ 

  res = -1; \ 

 } \ 

 return (type) (res); \ 

} while (0) 

 Case of res within the  

interval [–1, -124] 



Note: why the do/while(0) construct? 

It is a C construct that allows to  

• #define a multi-statement 

operation 

• put a semicolon after and  

• still use within an if statement 
 



Code block for a standard system call with 

one parameter (e.g. close()) 

#define _syscall1(type,name,type1,arg1) \ 

type name(type1 arg1) \ 

{ \ 

long __res; \ 

__asm__ volatile ("int $0x80" \ 

 : "=a" (__res) \ 

 : "0" (__NR_##name),"b" ((long)(arg1))); \ 

__syscall_return(type,__res); \ 

} 

2 registers used for the input 



Code block for a system call with six parameters 

(max admitted by the standard) – i386 bit case 
#define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, 

\ 

   type5,arg5,type6,arg6) \ 

type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,type6 

arg6) \ 

{ \ 

long __res; \ 

__asm__ volatile ("push %%ebp ; movl %%eax,%%ebp ; movl %1,%%eax ; int 

$0x80 ; pop %%ebp" \ 

 : "=a" (__res) \ 

 : "i" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \ 

   "d" ((long)(arg3)),"S" ((long)(arg4)),"D" ((long)(arg5)), \ 

   "0" ((long)(arg6))); \ 

__syscall_return(type,__res); \ 

} 

We use 4 general purpose registers (eax,ebx,ecx,edx) plus the 

additional registers ESI e EDI, and the ebp register (base pointer for 

the current stack frame, which is saved before overwriting) and a 

local integer variable “i” 



i386 calling conventions for system calls 

/* 

 *  0(%esp) - %ebx     ARGS 

 *  4(%esp) - %ecx 

 *  8(%esp) - %edx 

 *     C(%esp) - %esi 

 * 10(%esp) - %edi 

 * 14(%esp) - %ebp    END ARGS 

 * 18(%esp) - %eax 

 * 1C(%esp) - %ds 

 * 20(%esp) - %es 

 * 24(%esp) - orig_eax 

 * 28(%esp) - %eip 

 * 2C(%esp) - %cs 

 * 30(%esp) - %eflags 

 * 34(%esp) - %oldesp 

 * 38(%esp) - %oldss 

*/ 

Ring and baseline CPU  

state information  

(firmware saved onto  

the system stack) 

The stack layout representation  

complies with the traditional  

stack based passage of  

parameters  



x86-64 calling conventions for system calls 

/* 

 * Register setup: 

 * rax  system call number 

 * rdi  arg0 

 * rcx  return address for syscall/sysret, C arg3  

 * rsi  arg1 

 * rdx  arg2 

 * r10  arg3 (--> moved to rcx for C) 

 * r8   arg4 

 * r9   arg5 

 * r11  eflags for syscall/sysret, temporary for C 

 * r12-r15,rbp,rbx saved by C code, not touched.  

 *  

 * Interrupts are off on entry. 

 * Only called from user space. 

 */  



x86-64 system call re-indexing 

• x86-64 Linux has re-indexed the system calls 

available in the kernel 

• A new table of defines describes the codes 

associated with these system calls 

• Such a table is available to user code programmers 

via:  

 /local/include/linux/asm-x86/unistd_64.h 

• However both the two different indexing mechanisms still 

work …. we will se how they can co-exist in a while!!   



Details on passing parameters 

• Once gained control, the dispatcher will take a complete 

snapshot of  CPU registers  

• The snapshot is taken within the system level stack 

• Then the dispatcher will invoke the system call as a 

subroutine call (e.g. via a CALL instruction in x86 

architectures) 

• The actual system call will retrieve the parameters according 

to the ABI 

• The taken snapshot can be modified by the dispatched upon 

the system call return (e.g. for delivering the return value)  



registers 

System stack 

upon triggering  

dispatcher  

Stack pointer 

Base pointer 

Stack pointer 
PC 

Base pointer 

Stack pointer 
PHASE 1 PHASE 2 

PHASE 3 

Dispatcher execution 
system call 

execution 

An example 

Sys call NR 

Sys call NR 
Sys call NR 



Simple examples for adding system calls to 

the user API 

Provide a C file which: 
• includes unistd.h 

• contains the definition of the numerical codes for the new system 

calls 

• contains the macro-definition for creating the actual standard  

module associated with the new system calls (e.g. _syscall0()) 

#include <unistd.h> 

#define _NR_my_first_sys_call  254 

#define _NR_my_second_sys_call  255 

 

_syscall0(int,my_first_sys_call); 

_syscall1(int,my_second_sys_call,int,arg); 



Limitations 

• The system call table has a maximum number of entries (resizing 

requires reshuffling the whole kernel compilation process … why? 

Let’s discuss the issue by face) 

• A few entries are free, and can be used for adding new system calls 

• With Kernel 2.4.25: 

The maximum number of entries is specified by the macro 
#define _NR_syscalls 270 

This is defined within the file  include/linux/sys.h 

As specified by  

 include/asm-i386/unistd.h, the available system call 

numerical codes start at the value 253 

Hence the available code interval (with no modification of the table 

size) is in between 253 an 269 



An example for gcc version 3.3.3 

(SuSE Linux)  

#include <stdio.h> 

#include <asm/unistd.h> 

#include <errno.h> 

 

#define __NR_pippo 256 

 

_syscall0(void,pippo); 

 

main() { 

  pippo(); 

} 

 

 



Overriding the fork() i386 system call 

#include <unistd.h> 

 

#define __NR_my_fork 2 //same numerical code as the original 

#define _new_syscall0(name) \ 

int name(void) \ 

{ \ 

 asm("int $0x80" : : "a" (__NR_##my_fork) ); \ 

 return 0; \ 

} \ 

 

_new_syscall0(my_fork) 

 

int main(int a, char** b){ 

        my_fork(); 

        pause();  // there will be two processes pausing !! 

} 

 



“int 0x80” system call path performance implications 

• One memory access to the IDT 

• One memory access to the GDT to retrieve the 

kernel CS segment 

• One memory access to the GDT (namely the 

TSS) to retrieve the kernel level stack pointer 

• A lot of clock cycles waiting for data coming 

from memory (just to control the execution flow) 

• Asymmetric delays in asymmetric hardware (e.g. 

NUMA) 

• Unreliable outcome for time-interval measures 

using system calls, see gettimeofday() 



The x86 revolution (starting with Pentium3) 

• CS value for kernel code cached into an apposite MSR 

(Model Specific Register) 

• Kernel entry point offset (the target EIP/RIP) kept into an 

MSR 

• Kernel level stack/data base kept into an MSR 

• Entering kernel code is as easy as flushing the MSRs 

values onto the corresponding original registers (e.g. CS, 

DS, SS …. recall that the corresponding bases are 

defaulted to 0x0) 

• No memory access for activating the system call 

dispatcher 

• This is the fast system call path!! 



Fast system call path additional details 

SYSENTER instruction for 32 bits - SYSCALL instruction for 64 bits 

 based on (pseudo) register manipulation 

• CS register set to the value of (SYSENTER_CS_MSR) 

• EIP register set to the value of (SYSENTER_EIP_MSR) 

• SS register set to the sum of (8 plus the value in  

SYSENTER_CS_MSR) 

• ESP register set to the value of (SYSENTER_ESP_MSR) 

 
SYSEXIT instruction for 32 bits - SYSRET instruction for 64 bits  

 based on pseudo register manipulation 

• CS register set to the sum of (16 plus the value in  

 SYSENTER_CS_MSR) 

• EIP register set to the value contained in the EDX register 

• SS register set to the sum of (24 plus the value in  

 SYSENTER_CS_MSR) 

• ESP register set to the value contained in the ECX register 

 



MSR and their setup 

/usr/src/linux/include/asm/msr.h:  

101 #define MSR_IA32_SYSENTER_CS   0x174  

102 #define MSR_IA32_SYSENTER_ESP 0x175  

103 #define MSR_IA32_SYSENTER_EIP  0x176 

/usr/src/linux/arch/i386/kernel/sysenter.c:  

36 wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);  

37 wrmsr(MSR_IA32_SYSENTER_ESP, tss->esp1, 0);  

38 wrmsr(MSR_IA32_SYSENTER_EIP,  

    (unsigned long) sysenter_entry, 0); 

 

rdmsr and  wrmsr are the actual machine instructions for 

reading/writing the registers 



The syscall() construct  (Pentium3 – kernel 2.6) 

• syscall() is implemented within glibc (in 

stdlib.h) 

• It allows triggering a trap to the kernel for the execution of 

a generic system call 

• The first argument is the system call number 

• The other parameters are the input for the system call code 

• The actual ASM code implementation of syscall() is 

targeted and optimized for the specific architecture 

• Specifically, the implementation (including the kernel level 

counterpart) relies on ASM instructions such as 

sysenter/sysexit or syscall/sysret, which 

have been made available starting from Pentium3 

processors 



An example for gcc version 4.3.3 (Ubuntu 

4.3.3-5ubuntu4) – backward-compatible 

#include <stdlib.h> 

 

#define __NR_my_first_sys_call  333 

#define __NR_my_second_sys_call 334 

 

int my_first_sys_call(){ 

       return syscall(__NR_my_first_sys_call); 

} 

 

int my_second_sys_call(int arg1){ 

       return syscall(__NR_my_second_sys_call, arg1); 

} 

 

int main(){ 

        int x; 

 

        my_first_sys_call(); 

        my_second_sys_call(x); 

} 

 



The system call table 
• The kernel level system call table is defined in specific files 

• As an example, for kernel 2.4.20 and i386 machines it is 

defined in arch/i386/kernel/entry.S 

• As another example, for kernel 2.6.xx the table is posted on 

the file arch/x86/kernel/syscall_table32.S  

• As another example for kernel 4.15.xx and x86-64 the table 

pointer is defined in /arch/x86/entry/syscall_64.c  

• The .S files contains pre-processor ASM directives  

• Any entry keeps a symbolic reference to the kernel level name 

of a system call (typically, the kernel level name resembles the 

one used at application level) 

• The above files (or other .S) also contains the code block for 

the dispatcher associated with the kernel access GATE 



Table structure 

ENTRY(sys_call_table) 

 .long SYMBOL_NAME(sys_ni_syscall) /* 0  -  old "setup()" 

system call*/ 

 .long SYMBOL_NAME(sys_exit) 

 .long SYMBOL_NAME(sys_fork) 

 .long SYMBOL_NAME(sys_read) 

 .long SYMBOL_NAME(sys_write) 

 .long SYMBOL_NAME(sys_open)  /* 5 */ 

 .long SYMBOL_NAME(sys_close) 

 …… 

 .long SYMBOL_NAME(sys_sendfile64) 

 .long SYMBOL_NAME(sys_ni_syscall) /* 240 reserved for futex 

*/ 

 ……… 

  .long SYMBOL_NAME(sys_ni_syscall) /* 252 

sys_set_tid_address */ 

 

 

 .rept NR_syscalls-(.-sys_call_table)/4 

  .long SYMBOL_NAME(sys_ni_syscall) 

 .endr 

New symbols need to be inserted here 



Definition of system call symbols 

• For the previous example, the actual system call specification will 

be 
  

  .long SYMBOL_NAME(sys_my_first_sys_call) 

  .long SYMBOL_NAME(sys_my_second_sys_call) 

 

• The actual code for the system calls (generally based exclusively 

on C with compilation directives for the specific architecture) can 

be included within new modules added to the kernel or within 

already exiting modules 

 

• The actual code can rely on the kernel global data structures and 

on functions already available within the kernel, except for the 

case where they are explicitly masked (e.g. masking with 

static declarations external to the file containing the system 

call)  



Compilation directives for kernel side 

systems calls 

• Specific directives are used to make the system call code compliant 

with the dispatching rules 

• Compliance is assessed on the basis of how the input 

parameters are passed/retrieved 

• The input parameters passage by convention historically took place 

via the kernel stack 

• The corresponding compilation directive is asmlinkage 

• This directive is now mapped to the current ABI 

• Hence for the previous examples we will have the following system 

call definitions 
   asmlinkage long sys_my_first_sys_call() { return 0;} 

   asmlinkage long sys_my_second_sys_call(int x) {  

   return ((x>0)?x:-x);} 



The actual dispatcher (trap driven activation – i386 

kernel 2.4) 

ENTRY(system_call) 

 pushl %eax   # save orig_eax 

 SAVE_ALL 

 GET_CURRENT(%ebx) 

 testb $0x02,tsk_ptrace(%ebx) # PT_TRACESYS 

 jne tracesys 

 cmpl $(NR_syscalls),%eax 

 jae badsys 

 call *SYMBOL_NAME(sys_call_table)(,%eax,4) 

 movl %eax,EAX(%esp)  # save the return value 

ENTRY(ret_from_sys_call) 

 cli    # need_resched and signals atomic test 

 cmpl $0,need_resched(%ebx) 

 jne reschedule 

 cmpl $0,sigpending(%ebx) 

 jne signal_return 

restore_all: 

 RESTORE_ALL 

Manipulating  

the CPU  

snapshot in  

the stack 



The actual dispatcher (syscall driven activation – 

kernel 2.4) 
ENTRY(system_call) 

 swapgs 

 movq %rsp,PDAREF(pda_oldrsp)  

 movq PDAREF(pda_kernelstack),%rsp 

 sti 

 SAVE_ARGS 8,1 

 movq  %rax,ORIG_RAX-ARGOFFSET(%rsp)  

 movq  %rcx,RIP-ARGOFFSET(%rsp)  

 GET_CURRENT(%rcx) 

 testl $PT_TRACESYS,tsk_ptrace(%rcx) 

 jne tracesys 

 cmpq $__NR_syscall_max,%rax 

 ja badsys 

 movq %r10,%rcx 

 call *sys_call_table(,%rax,8)  # XXX:  rip relative 

 movq %rax,RAX-ARGOFFSET(%rsp) 

 .globl ret_from_sys_call 

ret_from_sys_call:  

sysret_with_reschedule: 

 GET_CURRENT(%rcx) 

 cli  

 cmpq $0,tsk_need_resched(%rcx) 

 jne sysret_reschedule 

 cmpl $0,tsk_sigpending(%rcx) 

 jne sysret_signal 

sysret_restore_args: 

 ………. 

#define PDAREF(field) %gs:field 

Part of the stack switch  

work originally one  

via firmware is moved  

to software 



User vs kernel GS segment 



Virtual Dynamic Shared Object (VDSO) 

• Kernel also setups system call entry/exit points for user processes 

• Kernel creates a single page (or a few) in memory and attaches it 

to all processes' address space when they are loaded into 

memory.  

• This page contains the actual implementation of the system call 

entry/exit mechanism  

• For i386 the definition of this page can be found in the file 
/usr/src/linux/arch/i386/kernel/vsyscall-

sysenter.S  

• Kernel calls this page virtual dynamic shared object (VDSO) 

• Originally exploited for making the fast system call path 

available (in relation to a few services) 



VDSO and the address space 

text 

data bss 

heap 

stack 

VDSO 

User accessible memory 

Environmental 

software is allowed 

to know where 

VDSO is located 

Kernel posts 

code here 



SYNOPSIS          

#include <sys/auxv.h>  

 

void *vdso = (uintptr_t) getauxval(AT_SYSINFO_EHDR);  

 

DESCRIPTION          

 

The "vDSO" (virtual dynamic shared object) is a small 

shared library that the kernel automatically maps into the 

address space of all user-space applications. Applications 

usually do not need to concern themselves with these 

details as the vDSO is most commonly called by the C 

library. This way you can code in the normal way using 

standard functions and the C library will take care of using 

any functionality that is available via the vDSO.  

Application exposed facilities 



The actual VDSO 

The kernel level target is  ENTRY(sysenter_entry) 



Performance effects 

• The VDSO exploits flat (linear) addressing proper of 

operating system memory managers in order to bypass 

segmentation and the related operations 

• It therefore reduces the number of accessed to memory in 

order to support the change to kernel mode 

• Studies show that the reduction of clock cycles for system 

calls can be of the order of 75% 

• This is in the end typical for any usage of the fast system call 

path 



The current picture 

• VDSO is now used to replace the old facilities supported via 

the vsyscall section, say support for specific system calls 
(e.g. query system calls such as gettimeofday())  

• VDSO is randomized (in terms of positioning into the 

address space) so security gets increased 

• The system call mechanism in the wide, which relies on 
sysenter/syscall and sysexit/sysret, is in 

charge of the dynamic linker (ld-linux.so) 



Back to the coexistence of slow and 

fast system call paths 

• Slow path  

 Still based on  int 0x80 

 Still accessing IDT/GDT (which is the reason why the 

target entry still requires to be populated) 

 The kernel level system call dispatched accesses the i386 

system call table 

• Fast path 

 Base on the syscall instruction (no IDT/GDT access) 

 The kernel level dispatcher (different from the previous 

one) accesses the x86-64 system call table 



Kernel software organization 

• About the  90% of the actual code for system calls is 

embedded within a few main portions of the kernel archive 

• These are contained in the following directories 

 kernel (process and used management) 

 mm (basic memory management) 

 ipc (interprocess communication management) 

 fs (virtual file system management) 

 net (network management) 



Kernel compiling 

• You can exploit make 

• It executed a set of tasks (compilation, assembly and linking tasks) 

which are specified via a Makefile 

• This file can specify differentiated actions to be done (possibly 

exhibiting dependencies) which are described within a field called  

target 

• Each action can be specified by the following syntax:  

  action-name: [ dependency-name]*{new-line} 

  {tab} action-body 

• Further, we can define variables via the syntax: 

  variable-name = value 

• Any variable can be accessed via the syntax: 

    $(variable-name) 



Standard compilation steps (old style) 

1.  make config  

     this triggers a configuration script which is used for 

tailoring compilation to the specific machine and user 

needs 

2.  make dep  

     which determines the software modules dependencies 

3. make bzImage  

    which creates a bootable image of the kernel and logs it 

as  

            arch/i386/boot/bzImage 



make config (or menuconfig) 

make  

make modules 

make modules_install (ROOT) 

make install (ROOT) 

mkinitrd (or mkinitramfs) –o initrd.img-<vers> <vers> 

 

update-grub 

OR 

grub-mkconfig -o /boot/grub/grub.cfg (ROOT) 

Standard compilation steps (current tyle) 



About ‘config’ 

• The possibilities 

– allyesconfig (likelihood of conflicting modules) 

– allnoconfig (likelohood of non-sufficient services in 

the kernel image) 

– Answer to the individual questions you may be 

asked for 

– Retrieve a good configuration file (depending on 

you machine/settings) on the web 

– Reuse the configuration files(s) you find in the 

/boot directory of your root file system (likely 

works when recompiling the same kernel version 

you already have)  



Role of initrd 

• It is a RAM disk 

• It can be (temporary) mounted as the root file 

system and programs can be run from it 

• A different root file system can be then mounted 

from a different device  

• The previous root (from initrd) can then be moved 

to a directory and can be subsequently unmounted  

• With initrd system startup can occur in two phases 

–  the kernel initially comes up with a minimum 

set of compiled-in drivers  

– additional modules are loaded from initrd 



make config (or menuconfig) 

make  

make modules 

make modules_install (ROOT) (writes into 

/lib/modules) 

make install (ROOT) (writes into /boot: the kernel 

image, the system map and the config file) 

 

update-grub 

OR 

grub-mkconfig -o /boot/grub/grub.cfg (ROOT) 

Step effects 



“Extended” Kernel compilation (up to 2.4) 

• Makefile updates 

 1. setting of the EXTRAVERSION variable (non-mandatory) 

 2. update of the CORE_FILES variable such in a way to    

       include the directory that contains the added C files and to          

       specify the object file name tageted by the compilation 

 3. update the SUBDIRS variable so to include the new directory 

• Put a specific Makefile within the directory that contains the 

source code to be compiled, which should be structured as 

    O_TARGET := object-file-name.o 

export-objs := list of obj to be exported 

obj-y := C files list (marked with .o)  

include $(TOPDIR)/Rules.make 



“Extended” Kernel compilation (from 2.4) 

• Makefile updates 

 1. setting of the EXTRAVERSION variable 

(non-mandatory) 

 2. use obj- directive to add a file or a 

directory into the compilation tree 

   3. the addition is within already available 

makefiles (or new ones) 
 



Kernel anatomy: the systems map  

• It contains the symbols and the corresponding virtual 

memory reference (as determined at compile/link time) 

for: 

• Kernel  functions (steady state ones) 

• Kernel data structures   

• Each symbol is also associated with a tag that defines the 

‘storage class’ as determined by the compiling process 

• As an example, 'T' usually denotes a global (non-static 

but not necessarily exported) function, 't' a function local 

to the compilation unit (i.e. static), 'D'  global data, 'd'  

data local to the compilation unit. 'R' and 'r' same as 

'D'/'d' but for read-only data 



System map applications 

• Kernel debugging 

• Kernel run-time hacking 

• The system map is also (partially) reported by the 
(pseudo) file /proc/kallsysm 

• The latter is exploited for run-time kernel 

‘hacking’ via the modules’ technology 



Just an example 

2.6.5-7.282-smp #1 SMP ……. i686 i686 i386 GNU/Linux 

  

 c03a8a00 D sys_call_table 

2.6.32-5-amd64 #1 SMP ……… x86_64 GNU/Linux 

 

 ffffffff81308240 R sys_call_table 

Read/write data 

Read-only data 


