
Topics

• Addressing schemes and software protection models

• Hardware/software protection support

• Kernel access GATEs

• Per-CPU/per-thread memory

• System calls dispatching

• Case study: LINUX (Kernels 2.4/2.6/3.x/..)

MS degree in Computer Engineering

University of Rome Tor Vergata

Lecturer: Francesco Quaglia

Linear addressing

Whatever memory slice available

for software execution (physical vs logical)

Linear address (<offset>)

Segmentation

Segment A

Segment B

Segment C

Address space (a linear one)

address = <seg.id,offset> (es. <A,0x10)

Combining segments in a linear address space

Segment A

Segment B

Segment C

Address specification = <seg.id,offset> (es. <B,offset>)

Need to know where B is

located in the linear address

space (this is the “base” of B)

Then the linear address is

<base+offset>

Virtual memory

Kernel mode (code + data/stack)

user mode (code + data/stack)

Linear addressing + mapping to actual storage (if existing)

RAM

Segmentation based addresses

• Code relies on addresses formed by <segment number,

offset>

• If segment numbers are not specified by the machine

instruction, some default segment is used for each target

datum

• Modern processors (system processors) are equipped such in a

way to support segmentation efficiently, in combination with

linear addressing and virtual memory (say paging)

• The whole architecture is therefore requested to handle a

complex address mapping scheme such as

 segmented addr  linear addr  paged addr  physical addr

“System” processors vs segmentation

• “system” processors (those oriented to host

operating system software) rely on hardware

components that allow fast and transparent

access to segmentation information (e.g.

segment specific information)

• These are

CPU registers

Main memory tables (directly pointed by

registers)

Segmentation with paging

Segment number offset

HW supported

translation

PDE page offset PTE

• both are logical

addresses

• the offset value may

differ

2-level paging example
Determination of the

linear address relying on

<base,offset>

x86 memory access modes

• Real mode

 Offers backward compatibility towards 286!!

 a 16-bit segment register keeps the target segment ID

 16-bit (general) registers keep the segment offset

 Targeted addresses are physical, and are computed as

 PhysicalAddress = Segment * 16 + Offset

 Around 1MB (2^20B) of memory is allowed

 Minimal support for separating chunks of memory in the

addressing scheme

 No segment specific protection information!!

 Not suited for modern software systems!!!

x86 memory access modes

• Protected mode

 a 16-bit segment register keeps the target segment ID

(using 13 bits)

 32-bit (general) registers keep the segment offset

 The base of the segment in linear addressing is kept into a

table in memory

 Targeted addresses are linear and are computed as

 address = TABLE[segment].base + offset

 Up to 4GB of linear (either physical or logical) memory is

allowed

 3-bit for control (protection) are kept in the segment

register …. much better for OS software!!!

x86 memory access modes
• Long mode (x86-64)

 a 16-bit segment register keeps the target segment ID

(using 13 bits)

 64-bit (general) registers keep the segment offset

(limited to 48-bit global addressing in canonical form)

 The base of the segment in linear addressing is kept into

a table in memory

 Targeted addresses are linear and are computed as

 address = TABLE[segment].base + offset

 Up to 2^48 B (256 TB) of linear memory is allowed

 3-bit for control (protection) are kept in the segment

register

x86 segment tables

• The are two table types keeping segments information:

Global Descriptor Table (GDT) and Local Descriptor

Table (LDT)

• Typically GDT and LDT are kept in main memory, and are

directly accessible via pointers maintained by CPU registers

• GDT determines the mapping of linear addresses at least for

kernel mode (namely kernel level segments) ... nowadays it is

the unique used segment table in most operating systems

• LDT determines the mapping of linear addresses for user

mode (namely user level segments), if not done via GDT

• These addresses are then used to access physical memory via

page tables (if paging is activated)

GDT organization

generic

entry

Segment base within

linear addressing

FLAGS

To be composed with

segment-offset upon access

Segment protection and

usage rules

Segmentation vs paging

• Segmentation and paging typically have different targets

• Segmentation is a classical means for protecting code and data

• This protection mechanism is generally based on coarse grain

schemes (in fact, segments may have very large sizes, covering

up to the whole address space for the application)

• Paging (possibly coupled with virtual memory techniques) is

generally employed as a means for improving physical-

memory management efficiency

• Such “efficiency oriented” mechanism is based on a fine-grain

approach, namely it relies on the size of the page frame for the

specific hardware architecture (e.g. 4KB or 2/4MB for x86

architectures)

 Segmentation vs multi-cores/multi-threading

• … we know that paging schemes are still able to enforce

protection of memory (via control bits in page-table entries)

• So we may think that segmentation is somehow useless in

modern software systems

• This is a wrong concept, since as we will show segmentation

still plays a central role in multi-core architectures

• It also plays a central role in multi-thread programming

• …… in 1985 paging was already there in the hardware but

Intel further extended the segmentation support (e.g. in the

80386 processor)

• …. although the segmentation logic has been significantly

revised in x86-64 processors

The x86-64 revision

• Registers keeping track of segment IDs (also known as

selectors) are not all managed the same way by firmware on

board of the processor

• For some registers keeping segment IDs (hence for the

corresponding segments in the GDT table) a fixed base of

0x0 is enforced for the segments

• Protection bits in the segment table entries associated with

those segments IDs still work

• For a few registers keeping segment IDs the classical rule

relying on arbitrary base values for the segments is adopted

Segmentation based protection model (i)

• Each segment is associated with a given protection level (or

privilege level)

• Each routine having protection level h can invoke any other routine

having protection level h, within any segment (this can be achieved

via intra-segment and cross-segment jumps)

• Routines having protection level h can invoke routines having

protection level different from h via cross-segment jumps

• Cross-segment jumps always allow jumping from protection level

h to protection level h+i

• Each segment having protection level h is associated with a set of

access points, called GATEs, each one identified as <seg.id,offset>

• Any GATE is associated with a maximum level max=h+j starting

from which the GATE can be passed through

Segmentation based protection model (ii)

• If level(S)=h and max(GATE(S))=h+i then segment S

entails a GATE for accessing level h for modules

associated with protection level up to h+i

• Cross-segment jumps deny the access to the destination

if the source operates at protection level greater than the

maximum one associated with the gate

• Overall, cross-segment jumps deny the access to the

destination anytime we do not use a GATE as the

destination entry for the jump

Protection levels and jumps: the ring model

Level 0

Level 1

Level 2

Always admitted

Admitted depending on the max origin level associated with

the target GATE

User routine

Kernel routine A

Kernel routine B

<S1, offset1>

(S1: level 0 – offset1: max = 0)

<S1, offset2>

(S1: level 0 – offset2: max = 3)

S2 (level 2)

Admitted cross-segment

jumps

Non-admitted

cross-segment

jump

An example

Objectives of protection levels

• Denial of uncontrolled access to kernel level modules

• Kernel level access is controlled via specific “entry

points” (the GATEs), which are explicitly used as

destinations for jumps (more generally control flow

variations) originated while running at worse protection

levels

• In conventional operating systems, the entry points are

typically associated with:

 interrupt handlers (asynchronous invocations)

 software traps (synchronous invocations)

Ring scheme for x86 machines

x86 address composition with segmentation

• An address does not specify the segment ID

directly

• It can specify a Segment-Selector register

• This register keeps information on the actual

segment to which we are accessing

• An example:

 <selector-register,displacement>

x86 details on the segmentation support

CS: code segment register

SS: stack segment register

DS: data segment register

ES: data segment register

FS: data segment register

GS: data segment register

CS (Code Segment Register) points to the current segment. The 2 lsb identify the

CPL (Current Privilege Level) for the CPU (from 0 to 3).

SS (Stack Segment Register) points to the segment for the current stack.

DS (Data Segment Register) points to the segment containing static and global data.

For CS RPL is

called CPL

This register is only

writable by control

flow variation

instructions
added in

80386

x86 GDT entries (segment descriptors)

Access byte content:

Pr - Present bit. This must be 1 for all valid selectors.

Privl - Privilege, 2 bits. Contains the ring level (0 to 3)

Ex - Executable bit (1 if code in this segment can be executed)

…….

Flags:

Gr - Granularity bit. If 0 the limit is in 1 B blocks (byte granularity),

 if 1 the limit is in 4 KB blocks (page granularity)

….

This directly supports

protected mode

Accessing GDT entries

• Given that a segment descriptor is 8 bytes in size, its
relative address wihin GDT is computed by multiplying
the 13 bits of the index field of segment selector by 8

• E.g, in case GDT is located at address 0x00020000
(value that is kept by the gdtr register) and the index
value within segment selector is set to the value 2, the
address associated with the segment descriptor is
0x00020000 + (2*8), namely 0x00020010

This is not only a pointer but actually a packed struct

describing positioning and size of the GDT

Example code
#include <stdio.h>

struct desc_ptr {

 unsigned short size;

 unsigned long address;

} __attribute__((packed)) ;

#define store_gdt(ptr) asm volatile("sgdt %0":"=m"(*ptr))

int main (int argc, char**argv){

 struct desc_ptr gdtptr;

 char v[10];//another way to see 10 bytes packed in memory

 store_gdt(&gdtptr);

 store_gdt(v);

 printf("comparison is %d\n",memcmp(v,&gdtptr,10));

 printf("GDTR is at %x - size is %d\n",gdtptr.address, gdtptr.size);

 printf("GDTR is at %x - size is %d\n",((struct desc_ptr*)v)->address,

 ((struct desc_ptr*)v)->size);

}

Access scheme

Caching of descriptors

(1 cache register per segment

 selector – non-programmable)

Cache line filled upon selector

update

Making explicit usage of segments while coding

#include <stdio.h>

#define load(ptr,var) asm volatile("mov %%ds:(%0), %%rax":"=a" (var):"a" (ptr))

#define store(val,ptr) asm volatile("push %%rbx; mov %0, %%ds:(%1); pop %%rbx“\

 ::"a" (val), "b" (ptr):)

int main (int argc, char**argv){

 unsigned long x = 16;

 unsigned long y;

 load(&x,y);

 printf("variable y has value %u\n",y);

 store(y+1,&x);

 printf("variable x has value %u\n",x);

}

explicit reference

to the data segment

register (DS)

Code/data segments for LINUX

Can we read/write/execute?

Is the segment present?
x86-64 directly forces base to 0x0 for

the corresponding segment registers

x86-64 selector management details

CS

SS

DS

ES

FS

GS

Base = 0x0

Privilege level is still there

and working

Arbitrary Base

Segment selectors update rules

• CS plays a central role, since it keeps the CPL

(Current Privilege level)

• CS is only updated via control flow variations

• All the other segment registers can be updated

if the segment descriptor they would point to

after the update has DPL => CPL

• Clearly, with CPL = 0 we can update

everything

LINUX GDT on x86

Beware

these

TSS

• TSS (Task State Segment): the set of linear addresses associated

with TSS is a subset of the linear address space destined to kernel

data segment

• each TSS (one per CPU-core) is kept within the int_tss array

• the Base field within the n-th core TSS register points to the n-th

entry of the int_tss array (transparently via the TSS segment)

• Gr=0 while Limit=0x68, given that TSS is 104 bytes in size

• DPL=0, since the TSS segment cannot be accessed in user mode

x86 TSS structure

Although it could be ideally

used for hardware based

context switches, it is not in

Linux/x86

It is essentially used for

privilege level switches (e.g.

access to kernel mode), based

on stack differentiation

x86-64 variant

room for 64-bit

stack pointers has been created

sacrificing general registers

snapshots

Loading the TSS register

• x86 ISA (Instruction Set Architecture)
offers the instruction LTR

• This is privileged and must be executed at

CPL = 0

• The TSS descriptor must be filled with a

source operand

• The source can be a general-purpose

register or a memory location

• Its value (16 bits) keeps the index of the

TSS descriptor into the GDT

GDT replication

• By the discussion on TSS we might have already

observed that different CPU-cores in a multi-core/multi-

processor system may need to fill a given entry of the

GDT with different values

• To achieve this goal the GDT is actually replicated in

common operating systems, with one copy for each

CPU-core

• Then each copy slightly diverges in a few entries

• The main (combined) motivations are

 performance

 transparency of data access separation

Actual architectural scheme

RAM memory

CPU-core 0 CPU-core 1

gdtr

gdtr

The two tables may differ in a few entries!!

Replication benefits: per-CPU seamless

memory accesses

RAM memory

CPU-core 0 CPU-core 1

gdtr

gdtr

GS segment = X GS segment = X

Base is B Base is B’

Same displacement within segment X seamlessly leads the two cores to

access different linear addresses

Per-CPU memory

• No need for a CPU-core to call CPUID (…

devastating for the speculative pipeline …) to

determine what memory portion is explicitly

dedicated to it

• Fast access via GS segment displacing for per-CPU

common operations such as

 Statistics update (non need for LOCKED

CMPXCHG)

 Fast control operations

Per-CPU memory setup in Linux

• Based on some per-CPU reserved zone in the linear

addressing scheme

• The reserved zone is displaced by relying on the

GS segment register

• Based on macros that select a displacement in the

GS segment

• Based on macros that implement memory access

relying on the selected displacement

An example

DEFINE_PER_CPU(int, x);

int z;

z = this_cpu_read(x);

The above statement results in a single instruction:

 mov ax, gs:[x]

To operate with no special define we can also get the

actual address of the per-cpu data and work

normally:

 y = this_cpu_ptr(&x)

TLS – Thread Local Storage

• It is based on setting up different segments

associated with FS and GS selectors

• Each time a thread is CPU-dispatched, kernel

software restores its corresponding segment

descriptors into TLS#1, TLS#2 and TLS#3 within

the GDT

• We have system calls allowing us to change the

segment descriptors to be posted on TLS entries

Segment management system calls (i)

Segment management system calls (ii)

x86-64 control registers

• CR0-CR3 or CR0-CR4 (on more modern

x86 CPUs)

• CR0: is the baseline one

• CR1: is reserved

• CR2: keeps the linear address in case of a

fault

• CR3: is the page-table pointer

CR0 structure vs long mode

Long mode uses a combination of this and

the EFER (Extended Feature Enable Register)

MSR (model specific register)

Interrupts/traps vs kernel access

• Interrupts are asynchronous events that are not correlated with

the current CPU-core execution flow

• Interrupts are generated by external devices, and can be masked

(vs non-masked)

• Traps, also known as exceptions, are synchronous events,

strictly coupled with the current CPU-core execution (e.g.

division by zero)

• Multiple executions of the same program, under the same input,

may (but not necessarily do) give rise to the same exceptions

• Traps are (actually have been historically) used as the

mechanism for on demand access to kernel mode (via system

calls)

Management of trap/interrupt events

• The kernel keeps a trap/interrupt table

• Each table entry keeps a GATE descriptor, which provides

information on the address associated with the GATE (e.g.

<seg.id,offset>) and the GATE protection level

• The content of the trap/interrupt table is exploited to determine

whether the access to the GATE can be enabled

• The check relies on the current content of CPU registers, the

segment registers, which specify the current privilege level

(CPL)

• In principle, it may occur that a given GATE is described

within multiple entries of the trap/interrupt table (aliasing),

possibly with different protection specifications

Summary on x86 control flow variations

• intra-segment: standard jump instruction (e.g. JMP <displacement>

on x86 architectures)

 firmware only verifies whether the displacement is within the

current segment boundary

• cross-segment: long jump instructions (e.g. LJMP <seg.id>,

<displacement> on x86 architectures)

Firmware verifies whether jump is enabled on the basis of

privilege levels (no CPL improvement is admitted)

Then, firmware checks whether the displacement is within the

segment boundaries

• cross-segment via GATEs: trap instructions (e.g. INT <table

displacement> on x86 architectures)

Firmware checks whether jumping is admitted depending on the

privilege level associated with the target GATE as specified

within the trap/interrupt table

An overview

Seg 0 – level = 0

Seg 1 – level  0

Seg i – level  n

Not always admitted

(requires consulting the

 Trap/interrupt table

 +

Segment Tables)

Always admitted

(requires anyway consulting

 the segment Tables)

Move across

segments

GATE details for the x86 architecture (i)

• The trap/interrupt table is called Interrupt Descriptor

Table (IDT)

• Any entry keeps

 The ID of the target segment and the segment

displacement

 the max level starting from which the access to the

GATE is granted

• IDT is accessible via the idtr register which is a packed

structure keeping the linear address of the IDT and the size

(number of entries, each made up by 8 or 16 bytes,

depending on whether extended 64-bit mode is active)

• The register is loadable via the LIDT machine instruction

GATE details for the x86 architecture (ii)

• We know the current privilege level is kept within CS

• If protection information enables jumping, the segment ID

within IDT is used to access GDT in order to check whether

jumping is within the segment boundaries

• If check succeeds the current privilege level gets updated

• The new value is taken from the corresponding entry of

GDT (this value corresponds to the privilege level of the

target segment)

• The GATE description also tells whether the activated code

is interruptible or not

Conventional operating systems

• For LINUX/Windows systems, the GATE for on-demand access

(via software traps) to the kernel is unique

• For i386 machines the corresponding software traps are

 INT 0x80 for LINUX (with backward compatibility in x86-64)

 INT 0x2E for Windows

• Any other GATE is reserved for the management of run-time errors

(e.g. divide by zero exceptions) and interrupts

• They are not usable for on-demand access via software (clearly

except if you hack the kernel)

• The software module associated with the on-demand access GATE

implements a dispatcher that is able to trigger the activation of

the specific system call targeted by the application

Data structures for system call dispatching

• There exists a “sytem call table” that keeps, in any entry, the

address of a specific system call

• Such an address becomes the target for a subroutine activation by

the dispatcher

• To access the correct entry, the dispatcher gets as input the

number (the numerical code) of the target system call

(typically this input is provided within a CPU register)

• The code is used to identify the target entry within the system call

table

• Then the dispatcher invokes the system call routine (as a “jump

sub-routine” – CALL instruction on x86)

• The actual system call, once executed, provides its output (return)

value within a CPU register

The trap-based dispatching scheme

User level

define input and

access GATE (trap)

dispatcher

Kernel level

System call table

System call

code

system call

activation

return from

trap

retrieve system call

return value

retrieve the reference to

the system call code

Trap vs interruptible execution

• Differently from interrupts, trap management is typically

configured so as not to entail/enable automatically resetting

the interruptible-state for the CPU-core

• Any critical code portion associated with the management of

the trap within the kernel requires explicit set of the

interruptible-state bit, and the reset after job is complete (e.g.

via CLI e STI instructions in x86 processors)

• For SMP/multi-core machines this may not suffice for

guaranteeing correctness (e.g. atomicity) while handling the

trap

• To address this issue, spinlock mechanisms are adopted, which

are base on atomic test-end-set code portions (e.g., generated

via the x86 LOCK prefix on standard compilation tool chains)

Test-and-set support

• Modern instruction sets offer a single instruction to

atomically test-and-set memory, this is the CAS (Compare

And Swap) intruction

• On x86 machines the actual CAS is called CMPXCHG

(Compare And Exchange)

• ... but we already discussed of this while dealing with

memory consistency!!

System call software components

• User side: software module (a) providing the input

parameters to the GATE (and to the actual system call) (b)

activating the GATE and (c) recovering the system call return

value

• kernel side:

 dispatcher

system call table

 actual system call code

• Addition of a new system call means working on both sides

• Typically, this happens with no intervention on the dispatcher

in all the cases where the system call format is compliant

with those predefined for the target operating system

Linux along our path

• Kernel 2.4 : highly oriented to expansibility

modifiability

• Kernel 2.6 : more scalable

• Kernel 3.0 (or later) : more structured and

secure

LINUX system calls support:

path starting from kernel 2.4

Predefined system call formats: the classical 2.4 way

• Macros for standard system call formats are in include/asm-

xx/unistd.h (or asm/unistd.h)

• Here we can find:

 Numerical codes associated with system calls (as seen by user

level software), hence displacement values within the system

call table at kernel side

 The standard formats for the user level module triggering

acces to the system GATE (namely the module that activates the

system call dispatcher), each for a different value of the number

of system call parameters (from 0 to 6)

• Essentially the above file contains ASM vs C directives and

architecture specific compilation directives

• This file represents a meeting point between ANSI-C programming

and machine specific ASM language (in relation to the GATE access

functionality)

System call numerical codes – 2.4.20
/*

 * This file contains the system call numbers.

 */

#define __NR_exit 1

#define __NR_fork 2

#define __NR_read 3

#define __NR_write 4

#define __NR_open 5

#define __NR_close 6

#define __NR_waitpid 7

#define __NR_creat 8

#define __NR_link 9

#define __NR_unlink 10

#define __NR_execve 11

#define __NR_chdir 12

………

#define __NR_fallocate 324

User level tasks for accessing the gate GATE

1. Specification of the input parameters via CPU

registers (note that these include the actual system call

parameters and the dispatcher ones)

2. ASM instructions triggering the GATE (e.g. traps)

3. Recovery of the return value of the systems call (upon

returning from the trap associated with GATE

activation)

Code block for a standard system call with no

parameter (e.g. fork())

#define _syscall0(type,name) \

type name(void) \

{ \

long __res; \

__asm__ volatile ("int $0x80" \

 : "=a" (__res) \

 : "0" (__NR_##name)); \

__syscall_return(type,__res); \

}

Assembler instructions

Tasks preceding the assembler

code block

Tasks to be done after the

execution of the assembler

code block

Managing the return value and errno

/* user-visible error numbers are in the range -1 - -124:

 see <asm-i386/errno.h> */

#define __syscall_return(type, res) \

do { \

 if ((unsigned long)(res) >= (unsigned long)(-125)) { \

 errno = -(res); \

 res = -1; \

 } \

 return (type) (res); \

} while (0)

 Case of res within the

interval [–1, -124]

Note: why the do/while(0) construct?

It is a C construct that allows to

• #define a multi-statement

operation

• put a semicolon after and

• still use within an if statement

Code block for a standard system call with

one parameter (e.g. close())

#define _syscall1(type,name,type1,arg1) \

type name(type1 arg1) \

{ \

long __res; \

__asm__ volatile ("int $0x80" \

 : "=a" (__res) \

 : "0" (__NR_##name),"b" ((long)(arg1))); \

__syscall_return(type,__res); \

}

2 registers used for the input

Code block for a system call with six parameters

(max admitted by the standard) – i386 bit case
#define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,

\

 type5,arg5,type6,arg6) \

type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,type6

arg6) \

{ \

long __res; \

__asm__ volatile ("push %%ebp ; movl %%eax,%%ebp ; movl %1,%%eax ; int

$0x80 ; pop %%ebp" \

 : "=a" (__res) \

 : "i" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \

 "d" ((long)(arg3)),"S" ((long)(arg4)),"D" ((long)(arg5)), \

 "0" ((long)(arg6))); \

__syscall_return(type,__res); \

}

We use 4 general purpose registers (eax,ebx,ecx,edx) plus the

additional registers ESI e EDI, and the ebp register (base pointer for

the current stack frame, which is saved before overwriting) and a

local integer variable “i”

i386 calling conventions for system calls

/*

 * 0(%esp) - %ebx ARGS

 * 4(%esp) - %ecx

 * 8(%esp) - %edx

 * C(%esp) - %esi

 * 10(%esp) - %edi

 * 14(%esp) - %ebp END ARGS

 * 18(%esp) - %eax

 * 1C(%esp) - %ds

 * 20(%esp) - %es

 * 24(%esp) - orig_eax

 * 28(%esp) - %eip

 * 2C(%esp) - %cs

 * 30(%esp) - %eflags

 * 34(%esp) - %oldesp

 * 38(%esp) - %oldss

*/

Ring and baseline CPU

state information

(firmware saved onto

the system stack)

The stack layout representation

complies with the traditional

stack based passage of

parameters

x86-64 calling conventions for system calls

/*

 * Register setup:

 * rax system call number

 * rdi arg0

 * rcx return address for syscall/sysret, C arg3

 * rsi arg1

 * rdx arg2

 * r10 arg3 (--> moved to rcx for C)

 * r8 arg4

 * r9 arg5

 * r11 eflags for syscall/sysret, temporary for C

 * r12-r15,rbp,rbx saved by C code, not touched.

 *

 * Interrupts are off on entry.

 * Only called from user space.

 */

x86-64 system call re-indexing

• x86-64 Linux has re-indexed the system calls

available in the kernel

• A new table of defines describes the codes

associated with these system calls

• Such a table is available to user code programmers

via:

 /local/include/linux/asm-x86/unistd_64.h

• However both the two different indexing mechanisms still

work …. we will se how they can co-exist in a while!!

Details on passing parameters

• Once gained control, the dispatcher will take a complete

snapshot of CPU registers

• The snapshot is taken within the system level stack

• Then the dispatcher will invoke the system call as a

subroutine call (e.g. via a CALL instruction in x86

architectures)

• The actual system call will retrieve the parameters according

to the ABI

• The taken snapshot can be modified by the dispatched upon

the system call return (e.g. for delivering the return value)

registers

System stack

upon triggering

dispatcher

Stack pointer

Base pointer

Stack pointer
PC

Base pointer

Stack pointer
PHASE 1 PHASE 2

PHASE 3

Dispatcher execution
system call

execution

An example

Sys call NR

Sys call NR
Sys call NR

Simple examples for adding system calls to

the user API

Provide a C file which:
• includes unistd.h

• contains the definition of the numerical codes for the new system

calls

• contains the macro-definition for creating the actual standard

module associated with the new system calls (e.g. _syscall0())

#include <unistd.h>

#define _NR_my_first_sys_call 254

#define _NR_my_second_sys_call 255

_syscall0(int,my_first_sys_call);

_syscall1(int,my_second_sys_call,int,arg);

Limitations

• The system call table has a maximum number of entries (resizing

requires reshuffling the whole kernel compilation process … why?

Let’s discuss the issue by face)

• A few entries are free, and can be used for adding new system calls

• With Kernel 2.4.25:

The maximum number of entries is specified by the macro
#define _NR_syscalls 270

This is defined within the file include/linux/sys.h

As specified by

 include/asm-i386/unistd.h, the available system call

numerical codes start at the value 253

Hence the available code interval (with no modification of the table

size) is in between 253 an 269

An example for gcc version 3.3.3

(SuSE Linux)

#include <stdio.h>

#include <asm/unistd.h>

#include <errno.h>

#define __NR_pippo 256

_syscall0(void,pippo);

main() {

 pippo();

}

Overriding the fork() i386 system call

#include <unistd.h>

#define __NR_my_fork 2 //same numerical code as the original

#define _new_syscall0(name) \

int name(void) \

{ \

 asm("int $0x80" : : "a" (__NR_##my_fork)); \

 return 0; \

} \

_new_syscall0(my_fork)

int main(int a, char** b){

 my_fork();

 pause(); // there will be two processes pausing !!

}

“int 0x80” system call path performance implications

• One memory access to the IDT

• One memory access to the GDT to retrieve the

kernel CS segment

• One memory access to the GDT (namely the

TSS) to retrieve the kernel level stack pointer

• A lot of clock cycles waiting for data coming

from memory (just to control the execution flow)

• Asymmetric delays in asymmetric hardware (e.g.

NUMA)

• Unreliable outcome for time-interval measures

using system calls, see gettimeofday()

The x86 revolution (starting with Pentium3)

• CS value for kernel code cached into an apposite MSR

(Model Specific Register)

• Kernel entry point offset (the target EIP/RIP) kept into an

MSR

• Kernel level stack/data base kept into an MSR

• Entering kernel code is as easy as flushing the MSRs

values onto the corresponding original registers (e.g. CS,

DS, SS …. recall that the corresponding bases are

defaulted to 0x0)

• No memory access for activating the system call

dispatcher

• This is the fast system call path!!

Fast system call path additional details

SYSENTER instruction for 32 bits - SYSCALL instruction for 64 bits

 based on (pseudo) register manipulation

• CS register set to the value of (SYSENTER_CS_MSR)

• EIP register set to the value of (SYSENTER_EIP_MSR)

• SS register set to the sum of (8 plus the value in

SYSENTER_CS_MSR)

• ESP register set to the value of (SYSENTER_ESP_MSR)

SYSEXIT instruction for 32 bits - SYSRET instruction for 64 bits

 based on pseudo register manipulation

• CS register set to the sum of (16 plus the value in

 SYSENTER_CS_MSR)

• EIP register set to the value contained in the EDX register

• SS register set to the sum of (24 plus the value in

 SYSENTER_CS_MSR)

• ESP register set to the value contained in the ECX register

MSR and their setup

/usr/src/linux/include/asm/msr.h:

101 #define MSR_IA32_SYSENTER_CS 0x174

102 #define MSR_IA32_SYSENTER_ESP 0x175

103 #define MSR_IA32_SYSENTER_EIP 0x176

/usr/src/linux/arch/i386/kernel/sysenter.c:

36 wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);

37 wrmsr(MSR_IA32_SYSENTER_ESP, tss->esp1, 0);

38 wrmsr(MSR_IA32_SYSENTER_EIP,

 (unsigned long) sysenter_entry, 0);

rdmsr and wrmsr are the actual machine instructions for

reading/writing the registers

The syscall() construct (Pentium3 – kernel 2.6)

• syscall() is implemented within glibc (in

stdlib.h)

• It allows triggering a trap to the kernel for the execution of

a generic system call

• The first argument is the system call number

• The other parameters are the input for the system call code

• The actual ASM code implementation of syscall() is

targeted and optimized for the specific architecture

• Specifically, the implementation (including the kernel level

counterpart) relies on ASM instructions such as

sysenter/sysexit or syscall/sysret, which

have been made available starting from Pentium3

processors

An example for gcc version 4.3.3 (Ubuntu

4.3.3-5ubuntu4) – backward-compatible

#include <stdlib.h>

#define __NR_my_first_sys_call 333

#define __NR_my_second_sys_call 334

int my_first_sys_call(){

 return syscall(__NR_my_first_sys_call);

}

int my_second_sys_call(int arg1){

 return syscall(__NR_my_second_sys_call, arg1);

}

int main(){

 int x;

 my_first_sys_call();

 my_second_sys_call(x);

}

The system call table
• The kernel level system call table is defined in specific files

• As an example, for kernel 2.4.20 and i386 machines it is

defined in arch/i386/kernel/entry.S

• As another example, for kernel 2.6.xx the table is posted on

the file arch/x86/kernel/syscall_table32.S

• As another example for kernel 4.15.xx and x86-64 the table

pointer is defined in /arch/x86/entry/syscall_64.c

• The .S files contains pre-processor ASM directives

• Any entry keeps a symbolic reference to the kernel level name

of a system call (typically, the kernel level name resembles the

one used at application level)

• The above files (or other .S) also contains the code block for

the dispatcher associated with the kernel access GATE

Table structure

ENTRY(sys_call_table)

 .long SYMBOL_NAME(sys_ni_syscall) /* 0 - old "setup()"

system call*/

 .long SYMBOL_NAME(sys_exit)

 .long SYMBOL_NAME(sys_fork)

 .long SYMBOL_NAME(sys_read)

 .long SYMBOL_NAME(sys_write)

 .long SYMBOL_NAME(sys_open) /* 5 */

 .long SYMBOL_NAME(sys_close)

 ……

 .long SYMBOL_NAME(sys_sendfile64)

 .long SYMBOL_NAME(sys_ni_syscall) /* 240 reserved for futex

*/

 ………

 .long SYMBOL_NAME(sys_ni_syscall) /* 252

sys_set_tid_address */

 .rept NR_syscalls-(.-sys_call_table)/4

 .long SYMBOL_NAME(sys_ni_syscall)

 .endr

New symbols need to be inserted here

Definition of system call symbols

• For the previous example, the actual system call specification will

be

 .long SYMBOL_NAME(sys_my_first_sys_call)

 .long SYMBOL_NAME(sys_my_second_sys_call)

• The actual code for the system calls (generally based exclusively

on C with compilation directives for the specific architecture) can

be included within new modules added to the kernel or within

already exiting modules

• The actual code can rely on the kernel global data structures and

on functions already available within the kernel, except for the

case where they are explicitly masked (e.g. masking with

static declarations external to the file containing the system

call)

Compilation directives for kernel side

systems calls

• Specific directives are used to make the system call code compliant

with the dispatching rules

• Compliance is assessed on the basis of how the input

parameters are passed/retrieved

• The input parameters passage by convention historically took place

via the kernel stack

• The corresponding compilation directive is asmlinkage

• This directive is now mapped to the current ABI

• Hence for the previous examples we will have the following system

call definitions
 asmlinkage long sys_my_first_sys_call() { return 0;}

 asmlinkage long sys_my_second_sys_call(int x) {

 return ((x>0)?x:-x);}

The actual dispatcher (trap driven activation – i386

kernel 2.4)

ENTRY(system_call)

 pushl %eax # save orig_eax

 SAVE_ALL

 GET_CURRENT(%ebx)

 testb $0x02,tsk_ptrace(%ebx) # PT_TRACESYS

 jne tracesys

 cmpl $(NR_syscalls),%eax

 jae badsys

 call *SYMBOL_NAME(sys_call_table)(,%eax,4)

 movl %eax,EAX(%esp) # save the return value

ENTRY(ret_from_sys_call)

 cli # need_resched and signals atomic test

 cmpl $0,need_resched(%ebx)

 jne reschedule

 cmpl $0,sigpending(%ebx)

 jne signal_return

restore_all:

 RESTORE_ALL

Manipulating

the CPU

snapshot in

the stack

The actual dispatcher (syscall driven activation –

kernel 2.4)
ENTRY(system_call)

 swapgs

 movq %rsp,PDAREF(pda_oldrsp)

 movq PDAREF(pda_kernelstack),%rsp

 sti

 SAVE_ARGS 8,1

 movq %rax,ORIG_RAX-ARGOFFSET(%rsp)

 movq %rcx,RIP-ARGOFFSET(%rsp)

 GET_CURRENT(%rcx)

 testl $PT_TRACESYS,tsk_ptrace(%rcx)

 jne tracesys

 cmpq $__NR_syscall_max,%rax

 ja badsys

 movq %r10,%rcx

 call *sys_call_table(,%rax,8) # XXX: rip relative

 movq %rax,RAX-ARGOFFSET(%rsp)

 .globl ret_from_sys_call

ret_from_sys_call:

sysret_with_reschedule:

 GET_CURRENT(%rcx)

 cli

 cmpq $0,tsk_need_resched(%rcx)

 jne sysret_reschedule

 cmpl $0,tsk_sigpending(%rcx)

 jne sysret_signal

sysret_restore_args:

 ……….

#define PDAREF(field) %gs:field

Part of the stack switch

work originally one

via firmware is moved

to software

User vs kernel GS segment

Virtual Dynamic Shared Object (VDSO)

• Kernel also setups system call entry/exit points for user processes

• Kernel creates a single page (or a few) in memory and attaches it

to all processes' address space when they are loaded into

memory.

• This page contains the actual implementation of the system call

entry/exit mechanism

• For i386 the definition of this page can be found in the file
/usr/src/linux/arch/i386/kernel/vsyscall-

sysenter.S

• Kernel calls this page virtual dynamic shared object (VDSO)

• Originally exploited for making the fast system call path

available (in relation to a few services)

VDSO and the address space

text

data bss

heap

stack

VDSO

User accessible memory

Environmental

software is allowed

to know where

VDSO is located

Kernel posts

code here

SYNOPSIS

#include <sys/auxv.h>

void *vdso = (uintptr_t) getauxval(AT_SYSINFO_EHDR);

DESCRIPTION

The "vDSO" (virtual dynamic shared object) is a small

shared library that the kernel automatically maps into the

address space of all user-space applications. Applications

usually do not need to concern themselves with these

details as the vDSO is most commonly called by the C

library. This way you can code in the normal way using

standard functions and the C library will take care of using

any functionality that is available via the vDSO.

Application exposed facilities

The actual VDSO

The kernel level target is ENTRY(sysenter_entry)

Performance effects

• The VDSO exploits flat (linear) addressing proper of

operating system memory managers in order to bypass

segmentation and the related operations

• It therefore reduces the number of accessed to memory in

order to support the change to kernel mode

• Studies show that the reduction of clock cycles for system

calls can be of the order of 75%

• This is in the end typical for any usage of the fast system call

path

The current picture

• VDSO is now used to replace the old facilities supported via

the vsyscall section, say support for specific system calls
(e.g. query system calls such as gettimeofday())

• VDSO is randomized (in terms of positioning into the

address space) so security gets increased

• The system call mechanism in the wide, which relies on
sysenter/syscall and sysexit/sysret, is in

charge of the dynamic linker (ld-linux.so)

Back to the coexistence of slow and

fast system call paths

• Slow path

 Still based on int 0x80

 Still accessing IDT/GDT (which is the reason why the

target entry still requires to be populated)

 The kernel level system call dispatched accesses the i386

system call table

• Fast path

 Base on the syscall instruction (no IDT/GDT access)

 The kernel level dispatcher (different from the previous

one) accesses the x86-64 system call table

Kernel software organization

• About the 90% of the actual code for system calls is

embedded within a few main portions of the kernel archive

• These are contained in the following directories

 kernel (process and used management)

 mm (basic memory management)

 ipc (interprocess communication management)

 fs (virtual file system management)

 net (network management)

Kernel compiling

• You can exploit make

• It executed a set of tasks (compilation, assembly and linking tasks)

which are specified via a Makefile

• This file can specify differentiated actions to be done (possibly

exhibiting dependencies) which are described within a field called

target

• Each action can be specified by the following syntax:

 action-name: [dependency-name]*{new-line}

 {tab} action-body

• Further, we can define variables via the syntax:

 variable-name = value

• Any variable can be accessed via the syntax:

 $(variable-name)

Standard compilation steps (old style)

1. make config

 this triggers a configuration script which is used for

tailoring compilation to the specific machine and user

needs

2. make dep

 which determines the software modules dependencies

3. make bzImage

 which creates a bootable image of the kernel and logs it

as

 arch/i386/boot/bzImage

make config (or menuconfig)

make

make modules

make modules_install (ROOT)

make install (ROOT)

mkinitrd (or mkinitramfs) –o initrd.img-<vers> <vers>

update-grub

OR

grub-mkconfig -o /boot/grub/grub.cfg (ROOT)

Standard compilation steps (current tyle)

About ‘config’

• The possibilities

– allyesconfig (likelihood of conflicting modules)

– allnoconfig (likelohood of non-sufficient services in

the kernel image)

– Answer to the individual questions you may be

asked for

– Retrieve a good configuration file (depending on

you machine/settings) on the web

– Reuse the configuration files(s) you find in the

/boot directory of your root file system (likely

works when recompiling the same kernel version

you already have)

Role of initrd

• It is a RAM disk

• It can be (temporary) mounted as the root file

system and programs can be run from it

• A different root file system can be then mounted

from a different device

• The previous root (from initrd) can then be moved

to a directory and can be subsequently unmounted

• With initrd system startup can occur in two phases

– the kernel initially comes up with a minimum

set of compiled-in drivers

– additional modules are loaded from initrd

make config (or menuconfig)

make

make modules

make modules_install (ROOT) (writes into

/lib/modules)

make install (ROOT) (writes into /boot: the kernel

image, the system map and the config file)

update-grub

OR

grub-mkconfig -o /boot/grub/grub.cfg (ROOT)

Step effects

“Extended” Kernel compilation (up to 2.4)

• Makefile updates

 1. setting of the EXTRAVERSION variable (non-mandatory)

 2. update of the CORE_FILES variable such in a way to

 include the directory that contains the added C files and to

 specify the object file name tageted by the compilation

 3. update the SUBDIRS variable so to include the new directory

• Put a specific Makefile within the directory that contains the

source code to be compiled, which should be structured as

 O_TARGET := object-file-name.o

export-objs := list of obj to be exported

obj-y := C files list (marked with .o)

include $(TOPDIR)/Rules.make

“Extended” Kernel compilation (from 2.4)

• Makefile updates

 1. setting of the EXTRAVERSION variable

(non-mandatory)

 2. use obj- directive to add a file or a

directory into the compilation tree

 3. the addition is within already available

makefiles (or new ones)

Kernel anatomy: the systems map

• It contains the symbols and the corresponding virtual

memory reference (as determined at compile/link time)

for:

• Kernel functions (steady state ones)

• Kernel data structures

• Each symbol is also associated with a tag that defines the

‘storage class’ as determined by the compiling process

• As an example, 'T' usually denotes a global (non-static

but not necessarily exported) function, 't' a function local

to the compilation unit (i.e. static), 'D' global data, 'd'

data local to the compilation unit. 'R' and 'r' same as

'D'/'d' but for read-only data

System map applications

• Kernel debugging

• Kernel run-time hacking

• The system map is also (partially) reported by the
(pseudo) file /proc/kallsysm

• The latter is exploited for run-time kernel

‘hacking’ via the modules’ technology

Just an example

2.6.5-7.282-smp #1 SMP ……. i686 i686 i386 GNU/Linux

 c03a8a00 D sys_call_table

2.6.32-5-amd64 #1 SMP ……… x86_64 GNU/Linux

 ffffffff81308240 R sys_call_table

Read/write data

Read-only data

