
PhD in

Computer Science, Control and Geoinformation

PhD Cycle

XXXVII

Innovative Solutions for Speculative Parallel Discrete Event
Simulation on Multi-core Shared-memory Machines

Federica Montesano

A.Y. 2023/2024

Tutor: Prof. Francesco Quaglia

Coordinator: Prof. Francesco Quaglia

“I don’t know if we each have a destiny, or if we’re all just floating
around accidental-like on a breeze, but I, I think maybe it’s both.
Maybe both is happening at the same time.”

— from the movie Forrest Gump

1

Ackowledgements

During these intense years, I have sometimes felt overwhelmed by self-doubt, but

I mostly felt that I was constantly learning and growing, both as a student and

as a person. This would not have been possible without the people around me. I

want to thank my advisor, Professor Francesco Quaglia, that with his passionate

guidance and positive attitude helped me grow as a student and as a researcher.

The environment I found myself in was always free of judgement and focused on

teaching me how to become a good researcher, I am deeply grateful for that and

I hope I have done it justice. I want to thank Romolo, who has shown incredible

patience since my master’s thesis and has supported me throughout the PhD. His

advice and encouragement helped me overcome many challenges and grow both

personally and professionally. He certainly made my experience more enjoyable,

and I hope that working with me didn’t disrupt his sleeping schedule more than

it already is. Thanks to Alessandro, whose witty and cheerful attitude made it so

easy for me to gain trust of him and calm my nerves during stressful situations.

He never failed to offer valuable advice to improve my work and provided immense

support during the final phase of my PhD.

Outside of the academic environment, there is one person that has always been

there when I needed him. Thanks to Luca, with whom I shared everything long

before the PhD years and who has always encouraged me to do my best. Thanks for

proving me wrong everytime I doubted myself, and thanks for patiently listening

to my presentations about the same topics over and over again. I finally want to

thank my family, that supported me throughout this experience without putting

pressure on me.

2

Abstract

The continuous evolution of hardware has led to the breakdown of
Moore’s and Dennard’s laws, and therefore to the establishment of
multi-core shared-memory architectures. This evolution has made a
paradigm shift in the design and optimization of High Performance
Computing (HPC) applications necessary. In fact, the increasing num-
ber of cores, together with the increasing gap between CPU and mem-
ory performance, has highlighted significant bottlenecks of memory due
to both data movement and memory bandwidth. These issues have
been further exacerbated by Non Uniform Memory Access (NUMA)
architectures. This thesis addresses challenges and opportunities posed
by the evolving architectures, in the context of Parallel Discrete Event
Simulation (PDES). The focus of this thesis is to provide innovative
solutions for speculative PDES in order to fully exploit the parallelism
of modern multi-core shared-memory machines. We focus on modern
speculative PDES systems characterized by fine-grain sharing of simu-
lation objects across threads, enabling dynamic workload distribution
and load balancing improvement. We tackle the new challenges in-
troduced by this paradigm related to memory management, spanning
from memory hierarchy awareness and locality awareness, to operat-
ing systems services overhead, to consistency of global data structures
accesses. We consider cache and NUMA locality awareness for event
processing in order to reduce the costs of cache misses. We tackle

effective memory management techniques for the incremental check-
pointing facility, exploiting traditional operating systems services and
then developing a new operating system service to further improve the
mechanism. Finally, we discuss an effective mechanism to access the
committed global state of the simulation through state-swapping with
close-to-zero delay to enable output collection. By integrating these
optimizations into our target platform, we show significant improve-
ments in the scalability and performance of PDES platforms. This
thesis highlights the importance of considering the underlying hard-
ware, emphasizing memory locality, the operating system’s impact,
and workload balancing. The outcomes of this thesis fill some gaps
in the literature, presenting innovative solutions for speculative PDES
exhibiting a fine-grain sharing of resources, and addressing the evolving
demands of modern computational workloads.

4

Table of Contents

Ackowledgments . 2
Abstract . 3

List of figures . 11
List of tables . 12
List of Code . 13
List of Algorithms . 14

1 Introduction 15
1.1 Context . 15
1.2 Parallel Discrete Event Simulation 19
1.3 Challenges . 23
1.4 Contributions . 26
1.5 List of Published Papers 30

2 Preliminaries 33
2.1 Memory Hierarchy . 33

2.1.1 Cache memory 36
2.1.2 Main Memory . 39

2.1.2.1 NUMA architecture 40
2.2 Shared-memory Architectures 41

2.2.1 Cache Coherency 42

5

2.3 Virtual Memory . 43
2.3.1 The Translation Lookaside Buffer 45

2.4 Discrete Event Simulation Systems 47
2.5 Parallel Discrete Event Simulation Systems 49

2.5.1 Time Warp . 52
2.5.1.1 Local Virtual Time 53
2.5.1.2 Global Virtual Time 55
2.5.1.3 State Saving and Causality Violations Re-

covery . 58
2.5.1.4 Reverse computation 60

2.6 Reshuffle of the PDES Architecture 60
2.7 Simulation Models and Benchmarks 65

2.7.1 PHOLD . 65
2.7.2 Personal Communication System 66
2.7.3 Tuberculosis . 68

3 State-of-the-art 69
3.1 Memory Locality . 70
3.2 Checkpointing . 78
3.3 State Trajectory Inspection 84

4 Spatial/Temporal Locality-based Load-sharing 90
4.1 Baseline Architectural Concepts 91

4.1.1 Distance between Threads 91
4.1.2 Simulation Object Memory Layout 91

4.2 Locality Aware Scheme 92
4.3 Workload Management Scheme 98
4.4 Multi-view Event Pool Management 103

6

4.5 Dynamic Window Management 107
4.6 Dynamic NUMA Placement of Simulation Objects . . . 110
4.7 Experimental Evaluation 113

4.7.1 Test-bed Environment 113
4.8 Benchmark Applications 114

4.8.1 Preliminary Experimental Evaluation for Parame-
ters Setup . 116

4.9 Results . 119
4.9.1 Results with PHOLD 119
4.9.2 Results with PCS 120
4.9.3 Results with TBC 128

4.10 Final Remarks . 128

5 Memory Aware and Lightweight Mechanisms for
Incremental Checkpointing 131
5.1 Write-tracking Mechanism via mprotect() 134
5.2 Decision Model for the Memory Aware Incremental Check-

pointing . 137
5.2.1 Estimating Costs of the Buddy-based Approach . . 142

5.3 Experimental Evaluation 143
5.3.1 Test-bed Environment 143

5.4 Benchmark Application 145
5.5 Results . 146

5.5.1 Considerations 149
5.6 Lightweight Operating System Service for Incremental

Checkpointing . 151
5.6.1 Write-tracking Mechanism via LKM 153

7

5.6.2 Dirty-page Address Logging Device 160
5.7 Experimental Evaluation 164

5.7.1 Test-bed Environment 164
5.8 Preliminary Experimental Evaluation 165

5.8.1 Results . 166
5.9 Benchmark Application 168

5.9.1 Results . 169
5.10 Final Remarks . 172

6 Effective Access to the Committed Global State 175
6.1 System Architecture . 180
6.2 Execution Contexts . 183
6.3 Memory Safety of Simulation Object States 189
6.4 State-swapping Activities Distribution 193
6.5 Experimental Evaluation 197

6.5.1 Test-bed Environment 197
6.6 Benchmark Application 198

6.6.1 Compared Solutions and Metrics 199
6.7 Results . 201
6.8 Final Remarks . 205

7 Conclusions 207

8

List of figures

2.5.1 Example of a Causality Violation in speculative PDES 51
2.5.2 Example of a Rollback Procedure after a Causality

Violation . 52
2.5.3 Example for Explaining the GVT 56

4.2.1 Joint exploitation of temporal and spatial locality at
cache level. 95

4.2.2 Joint exploitation of temporal and spatial locality at
NUMA level. 96

4.4.1 Visual representation of the multi-view shared event
pool. 105

4.5.1 Scheme of the state machine for managing W (through-
put denotes the event rate). 111

4.8.1 Evaluation of different pipe-size values for the PCS
model run with 40 threads. 117

4.8.2 Evaluation of different window-size values for the PCS
model run with 40 threads. 118

4.9.1 Speedup with respect to PHOLD sequential execution
with different event granularities. 120

9

4.9.2 Throughput of PHOLD with different event granu-
larities and thread counts. Each label represents the
speedup relative to the sequential execution for a given
event granularity and thread count. 121

4.9.3 Execution speed with ρ = 0.25. 122
4.9.4 Execution speed with ρ = 0.5. 122
4.9.5 Execution speed with ρ = 1. 122
4.9.6 Results with PCS. 122
4.9.7 Execution speed . 124
4.9.8 Event throughput for an individual simulation run . . 124
4.9.9 Results with PCS with 20% of hot-spot cells. 124
4.9.10 Execution speed . 126
4.9.11 Event throughput for an individual simulation run . . 126
4.9.12 Workload skew between the two NUMA nodes 126
4.9.13 Average cumulative number of migrations. 126
4.9.14 Results with PCS with moving 20% of hot-spot cells. . 126
4.9.15 TBC execution speed 127

5.1.1 Illegal Write Access after Memory-protection
via mprotect() . 135

5.1.2 Write-tracking after Memory-protection via mprotect()135
5.1.3 The buddy pages mechanism exploiting write-protection136
5.5.1 Simulation execution speed 148
5.5.2 Checkpoint sizes . 149
5.6.1 Write-tracking after Memory-protection

via track_memory() 153
5.6.2 Page-fault Not Caused by Write-protection 155

10

5.6.3 Page-fault Caused by Write-protection 156
5.6.4 Logging Device Architecture 162
5.6.5 Logging Device Architecture 163
5.8.1 Latency of protection and page-fault handling with dif-

ferent memory sizes (log-scale on the y-axis) 166
5.8.2 Latency of memory-write protection (and unprotec-

tion) via mprotect(...) vs our custom LKM syscalls
with different memory sizes 167

5.9.1 Throughput of Incremental State Saving in PCS via
mprotect(...) vs LKM facilities on varying check-
point periods and varying inter-arrival times 170

6.1.1 Target timeline of activities along wall-clock-time. . . 182
6.2.1 State diagram for the management of contexts 189
6.3.1 N -bit structure of the per-simulation object lock—N

is set to 64 in our x86-64 oriented implementation. . . 191
6.7.1 PCS model - NC-D distribution 202
6.7.2 PCS model - CSA-D distribution 203
6.7.3 Efficiency w.r.t. original USE 204
6.7.4 Relative speedup w.r.t. original USE 205

11

List of tables

4.7.1 Hardware Platforms 114
4.9.1 Average rollback frequency of PCS 123
4.9.2 Average rollback length of PCS 123
4.9.3 Average rollback frequency of TBC 127
4.9.4 Average rollback length of TBC 127

12

List of Code Examples

6.1 Register setup for the CSR context. 185

13

List of Algorithms

4.3.1 Simulation Main Loop 99
4.3.2 Locality-based Load-sharing Management Functions . . 100
5.2.1 Memory Partitioning Algorithm 141
6.3.1 Simulation Object Locking Algorithm 191
6.3.2 Usage of the potential_locked_object Variable Kept

in Thread-local-storage. 192
6.4.1 Algorithm executed in the CSR context—N is the num-

ber of simulation objects, with identifiers in [0, N − 1]. . 195

14

Chapter 1

Introduction

1.1 Context

In the post-Moore era [64, 87, 88, 121], it has become necessary not
only to run programs faster, but also to tailor them to the hardware on
which they run, in order to fully exploit modern machines’ capabilities.
Furthermore, over the years, the number of processing units, namely
cores, has increased, and consequently multi-core machines have be-
come the reference for developing and executing applications. These
kinds of machines have become a staple in both academic research and
industry to reach higher performance along the path of exascale com-
puting.
However, the growing amount of parallelism has not been counterbal-
anced by the increase of memory speed, leading to the well-known
memory-wall problem [76, 135]. In fact, the performance gap between
the processing unit, namely CPU, and main memory, namely RAM,

15

has been continuously growing, with memory latency remaining a sig-
nificant bottleneck for application performance [9].
Furthermore, since 2005 Dennard’s scaling has broken down [24, 26,
138], and this pushed the manufacturers to focus on multi-core pro-
cessors, in order to improve the performance of parallel applications,
also exploiting hyperthreading, i.e. the possibility of running two or
more threads in parallel inside a single CPU-core, in particular on In-
tel processors [135]. Therefore, the evolution of multi-core machines
has led to the rise of massively parallel applications, as well as new
programming models focused on parallelism, like Compute Unified
Device Architecture (CUDA) in the context of accelerated general-
purpose processing, or Cilk and OpenMP, that also support shared-
memory computing. The shared-memory computing paradigm, along
with multi-processor/multi-core machines, has received much attention
among researchers since the 1990s, due to the widespread adoption of
programming models like Posix Threads and OpenMP in modern ap-
plications. The main characteristic of shared-memory systems is that
the entire memory available is accessible in parallel by all the process-
ing units. Consequently, in a shared-memory architecture, caches play
a crucial role due to the impact that cache coherency protocols can
have on performance, which is one reason why it is hard to develop
scalable applications on these architectures [37, 125].
Memory coherency and the other above-mentioned problems related
to the performance gap between CPUs and memory are exacerbated
by Non-Uniform Memory Access (NUMA) architectures, due to their
natural asymmetry and the distance between NUMA nodes. This is
because data might be distributed unevenly across the memory banks

16

placed on distant NUMA nodes, so at each memory access the latency
increases, not to mention the pressure on the interconnection between
the NUMA nodes. In order to hide this performance gap, industries
have designed and produced faster and smaller on-chip caches, to re-
duce memory latency, assuming that parallel applications use memory
efficiently in terms of spatial and temporal locality, which is a risky
assumption. In fact, many modern scientific computing applications
such as graph processing and sparse linear algebra, require a huge
amount of memory, but lack of memory awareness and/or locality,
leading to performance degradation due to inefficient data movement
[61, 77, 145]. Similarly, Discrete Event Simulation (DES) applications,
which are widely used in fields such as network modelling, as well as
manufacturing systems and biological systems modelling, healthcare
systems management, also face substantial memory access challenges
due to their irregular and dynamic memory access patterns. Allow-
ing memory reuse through the consideration of the memory hierarchy
and the NUMA architecture can increase the overall efficiency of an
application, and this is particularly relevant in the context of High Per-
formance Computing (HPC) applications running on top of multi-core
shared-memory machines.
As a matter of fact, these machines turn out to be effective for running
simulation applications, in particular Discrete Event Simulation (DES)
and Parallel Discrete Event Simulation (PDES), which is a method of
running DES models on top of multi-processor/multi-core machines
[39]. More details about this kind of applications will be discussed in
the next section, to allow better comprehension of the target platforms.

17

Along with the hardware evolution of multi-core shared-memory ma-
chines to allow HPC applications to run more efficiently, an architec-
tural shift of PDES systems has also become necessary [35, 41]. In
fact, in earlier times, most of the high performance computing appli-
cations, including DES and PDES systems, consisted of cluster-based
applications, in which nodes communicated via message passing facil-
ities [16, 80, 112, 123]. Consequently, the focus of many optimizations
has been towards the distribution of the workload among the cluster-
ing nodes to reduce the communication overhead and delay, but the
advent of multi-core machines imposed a reshuffle of PDES systems
running on top of them, to fully exploit the inherent parallelism. We
point out that optimizing PDES applications on multi-core machines
is orthogonal to the optimization of cluster-based PDES, since we can
consider each clustering node as a multi-core machine, so it is anyhow
a relevant aspect to take into account when optimizing cluster-based
or distributed applications. Other than that, further optimizations
of PDES running on top of multi-core shared-memory machines have
been necessary, taking into account the actual memory layout of these
kinds of machines [54, 118]. All of this required a shift on how a
PDES system should be devised, since in earlier times it was not com-
mon to share data between the processing units, but instead PDES
applications typically relied on data partitioning and message passing
communication. This thesis will present innovative solutions for spec-
ulative PDES on multi-core shared-memory machines. We will discuss
the PDES paradigm and how its evolution has been fundamental in
the field of both simulation and HPC in the next section.

18

1.2 Parallel Discrete Event Simulation

Over the years, many solutions and techniques have been integrated in
PDES platforms with the aim of improving its capabilities to exploit
parallelism of multi-core machines and improving overall performance
and scalability. In order to understand the motivations towards these
improvements and the goals of this thesis, we are going to provide some
basic concepts about PDES.
One basic feature of a PDES system is the concept of Simulation Ob-
ject (SO), also called Logical Process (LP), which allows representing a
part of the simulation state. In this thesis the terms simulation object
and LP will be used interchangeably.
Clearly, in a PDES platform there are several simulation objects, and
each one of them is an autonomous entity representing a portion of the
simulated system as a set of variables completely disjoint among each
other. In this paradigm, events destined to different simulation objects
can be executed in parallel by different worker threads. The execution
of events is managed through event handlers, which are software com-
ponents responsible for the processing logic (therefore, the update of
the state) associated with each event. Each event carries a timestamp,
and the event handler ensures that operations are applied consistently,
maintaining causality within the simulation. This paradigm is suit-
able across a wide range of application domains, such as agent-based
simulation systems [1, 124, 134], demographic [10, 68, 81, 82, 153] and
urban traffic systems [53, 126], and networking applications to model

19

large-scale systems [12, 22, 54, 70, 94, 113, 118]. The literature high-
lights the broad interest in PDES systems to address complex systems.
We particularly focus on PDES systems that enable speculative exe-
cution of events across multiple simulation objects. Speculative execu-
tion allows events to be processed out of their strict chronological order
across different simulation objects, provided no causality violations oc-
cur (e.g., no event with lower timestamp is received after the execution
of an event with larger timestamp). Speculation is a well-known ap-
proach used, for example, in the context of computer architectures and
microprocessors [130], and of database systems [62, 114].
In PDES, speculative processing is also referred to as optimistic syn-
chronization (originally coordinated via the Time Warp protocol) [38,
57], since it assumes that causality violations will not occur, in con-
trast to conservative synchronization, in which causality violations are
completely avoided. In optimistic PDES, some recovery mechanism
from causality violations must be considered. We will thoroughly dis-
cuss this issue in subsequent chapters, but some control mechanisms
for identifying such violations and recover from them are the well-
known techniques of rollback, either through checkpointing or through
reverse computation. On the one hand, reverse computation tech-
niques provide an anti-handler for each event handler, which reverses
the computation of each operation and neutralizes its effects, ensuring
that the state of the application is the same as it was prior to the com-
putation. On the other hand, checkpointing consists of periodically
saving the state of the simulation in order to support a possible state
recovery, by restoring the previously saved state during the rollback
procedure. This can either be done by saving the entire state of the

20

simulation at a certain time instant, namely full state saving, or by
saving only the actually modified portions of the state since the last
checkpoint, namely incremental state saving. When using checkpoint-
ing techniques, it is crucial to ensure that memory is not wasted due
to periodically taken checkpoints. This is achieved by implementing a
fossil-collection mechanism, which consists of identifying and reclaim-
ing the so-called committed portions of the simulation state (referred
to as fossils). These are the states that can no longer be affected by
causality violations, allowing an efficient memory usage [151]. This is
why the notion of Global Virtual Time (GVT) is important – which
will be formally defined in Chapter 2 – as it represents a time bound-
ary to allow separating the committed portion of the simulation state,
where causality violations cannot occur, to a not yet committed one.
Finally, the GVT value is also referred to as the commit-horizon of the
simulation, and we will see how we can exploit it to optimize critical-
path operations.
We have introduced some basic concepts of speculative PDES to give
a general view of the applications we are targeting, we can now dis-
cuss how the paradigm has evolved over the years, to understand the
context of the optimizations addressed in this thesis and why they are
necessary. In fact, over the years, we have witnessed an evolution of
speculative PDES architecture in terms of the workload distribution of
LPs across worker threads, motivated by the above discussed evolution
of multi-core shared-memory machines [12, 54, 94, 118].
In earlier times, traditional PDES systems presented a workload distri-
bution scheme based on long-term binding: in this scheme, a simulation
object was bound to a specific worker thread for a medium/long-term

21

period of time, that is the non-minimal wall-clock-time period between
two subsequent re-assignments of the object to another thread. So, ba-
sically in this kind of architecture, worker threads process events from
a subset of simulation objects for a medium/long amount of time, until
a workload rebalancing occurs. This architecture failed to fully exploit
the inherent parallelism of multi-core shared-memory machines, due
to the partitioning of simulation objects across worker threads and the
periodic rebalancing needed. This is why a new fine-grain sharing of
simulation resources was developed, allowing processing events des-
tined to any simulation object by any worker thread. This created a
workload scheme based on a short-term binding, lasting no more than
a single event execution. In speculative PDES, this technique has the
advantage of bringing the computing power of the multi-core machine
close to the commit-horizon of the simulation. In fact, in this scheme
each worker thread picks at any time the unprocessed event with min-
imal timestamp destined to any simulation object, regardless of any
previous partitioning.
However, while workload-balancing through data partitioning with
long-term binding schemes can be accordingly scaled with the increas-
ing number of cores, the short-term based schemes with fine-grain shar-
ing of resources need proper synchronization and coordination across
the threads in order to maintain consistency throughout the entire sys-
tem, and they also should guarantee that no threads block each other
while accessing shared data structures. It should also be guaranteed
that the threads do not wait for each other due to potential causality
constraints between events. These challenges have been effectively ad-
dressed in prior research [56, 72, 73], culminating into the development

22

of a new speculative PDES platform, called USE [54], that leverages
the capabilities of multi-core shared-memory machines, becoming a
reference platform for speculative PDES running on top of these kind
of machines. In the following sections, we will delve into the challenges
relative to this PDES paradigm and outline our approach to addressing
these issues.

1.3 Challenges

The importance of shared-memory architectures in the context of HPC
applications should be clearer, as well as the challenges involved in
developing systems that scale effectively on these architecture [37].
Along with this, we described how the evolution of PDES systems has
been a necessary step towards the better exploitation of multi-core
shared-memory machines [54].
However, some of the limitations of this kind of PDES platform are:

1. Frequent accesses to the global event pool by all the worker threads
in the system;

2. Lack of memory hierarchy awareness and locality awareness of the
overall load-sharing scheme;

3. Non-negligible overhead of operating systems’ services due to mem-
ory updates coordination across cores;

4. Possible interference when accessing shared data structures in or-
der to identify a committed portion of the state.

23

Frequently accessing the shared event pool imposes synchronization
costs and also pollutes the caches, failing to exploit locality. Other
than that, the event pool is typically a linked-list data structure, whose
traversing can become expensive (point 1). Moreover, the general lack
of memory hierarchy awareness (e.g. for what concerns event process-
ing) inhibits the exploitation of the caches and the overall memory
hierarchy (point 2). In fact, the fine-grain sharing of resources allows
the worker threads to constantly switch from one simulation object to
another, potentially leading to relevant problems when cache-misses
occur. In particular, NUMA-unawareness incurs in more costs when
cache misses occur, due to the interconnection network and the latency
of remote nodes.
Furthermore, PDES systems exhibiting fine-grained sharing of resources,
can suffer from a kind of "side effect" overhead, e.g. when exploit-
ing operating systems services to support classical speculative PDES
operations, such as the checkpointing for state recovery from causal-
ity violations (point 3). In fact, as mentioned, state saving (namely
checkpointing) techniques are necessary, but it is also relevant to reduce
the amount of memory saved, that is why incremental checkpointing is
used. The crucial problem is the identification of the modified portions
of the state, and this is why memory protection services of common op-
erating systems can be exploited. The challenging aspect regards the
nature of memory protection services, and their kernel-side activities,
i.e. Memory Management Unit (MMU) coordination, coupled with the
fully-shared workload of PDES systems, since, due to the data shar-
ing, memory protection mechanisms can cause large overhead, making
a more accurate simulation’s state management necessary.

24

In addition to efficient management of simulation object states, critical-
path operations, such as the identification of a committed global state,
are non-trivial in these types of systems (point 4). This problem has
been previously tackled in [21] using a state-swapping approach, that
is temporarily swapping the current state of a simulation object with a
past committed one, but it targets PDES platforms exhibiting a par-
titioned workload among threads (namely, not fully-shared). In order
to support the operation on fully-shared PDES platforms, we have to
devise accurate mechanisms to avoid any possible interference caused
by different worker threads running regular simulation operations on
the same simulation object targeted by the state-swapping operation.
To summarize, the challenges that will be the main objectives of this
thesis are as follows:

• Cache locality awareness and NUMA awareness,

• The intrusiveness of operating systems services in terms of mem-
ory coordination activities,

• The possible interference and the coordination of the state-swapping
for critical-path operations.

In the next section, we will present the contributions of this thesis,
which aim to address the described challenges.

25

1.4 Contributions

The limitations described in the previous section play a central role
in the limited scalability of speculative PDES on multi-core shared-
memory machines. In fact, memory locality, and more in general
memory awareness, is known to be a core aspect enabling scaled up
performance.
Optimizations of parallel applications, targeting several memory-related
aspects, have been widely investigated through the years, spanning
from algorithms to reduce contention in multi-processor shared-memory
systems [79], to collision avoidance between transactions [31] and the
exploitation of Linux kernel’s services as a support mechanism for
scheduling transactions [69] in the context of transactional memory,
to the enhancement of spatial locality of tasks in parallel applications
[50]. Focusing on PDES, some optimizations targeted different aspects
of PDES systems: to cite some of them, we can find buffers’ man-
agement strategies [43], synchronization mechanisms through transac-
tional memory [49], and data structures design for the event pool [30].
We aim to propose some innovative solutions for speculative PDES on
multi-core shared-memory machines, tackling several memory-related
aspects, spanning from memory locality-awareness for event process-
ing, memory awareness in terms of the reduction of intrusiveness and
overhead of operating systems’ services associated to speculative PDES
operations, i.e. the checkpointing operation, to the reduction of the
intrusiveness and the delay of critical-path operation, i.e. identification
of the committed global state to perform online output collection.

26

Our approach tackles these aspects from different perspectives:

1. Memory hierarchy awareness in terms of cache and NUMA lo-
cality, in order to improve simulation performance in terms of
throughput and execution time [86];

2. Write-access awareness and coalescing of written memory pages,
favouring spatial locality of memory pages when using operating
systems’ memory protection services to support checkpointing, in
order to reduce the costs associated to these services [74];

3. Lightweight management of the simulation objects’ states to re-
duce the overhead and intrusiveness of the above-mentioned oper-
ating systems’ memory protection services, related to cross-CPUs
interactions [85];

4. Reduction of the intrusiveness and delay of the state-swapping op-
eration used to identify a committed global state of the simulation
to do output collection [75].

To briefly illustrate the listed points, the point 1 in the list is tackled
through a multi-level NUMA-aware event processing scheme, in or-
der to favour spatial and temporal locality when processing events in a
PDES platform running on top of a multi-core shared-memory machine
that presents a fully shared workload scheme. We enabled this locality-
aware load-sharing scheme exploiting a (virtual time) window-based
approach to control the amount of speculative events processed, as a
trade-off factor between the locality-aware processing of events and the
risk of causality violations (and rollbacks). We have also provided for

27

a NUMA-aware support, allowing the migration of simulation objects
among nodes for workload balancing purposes. The results obtained
from this scheme showed higher performance in terms of throughput of
the simulation execution, compared to the simulator described in [54],
which does not implement any locality-aware event processing scheme.
Points 2 and 3 target the exploitation of operating systems’ memory
protection services to support a classical speculative PDES operation,
that is incremental checkpointing, first focusing on a novel incremental
checkpointing support compared with the state-of-the-art (point 2),
consisting on the exploitation of memory protection services of com-
mon operating systems, and then focusing on performance improve-
ments of the memory protection service itself (point 3). In particular,
we first considered a write-operations correlation model to improve spa-
tial locality through the coalescing of memory pages when accessing
the simulation objects’ states to take the checkpoint (point 2) exploit-
ing memory protection services. From this mechanism we achieved
higher throughput with respect to the state-of-the-art approaches, and
also compared to single-page approaches (namely, without coalescing
pages).
We further improved the incremental checkpointing operation leverag-
ing Linux Kernel Modules techniques, and managing memory pages
in a more lightweight manner to tackle the above-mentioned overhead
(see point 3 in the list) of the operating systems’ memory protection
services related to cross-CPU coordination, that make the costs non-
negligible in PDES platforms exhibiting a fully-shared workload and
presenting large state of the simulated model. Through this scheme,
we reduced the intrusiveness of operating system services and improved

28

the performance of the incremental checkpointing facility in terms of
latency and throughput.
Finally, the point 4 in the list addresses the reduction of intrusive-
ness and delay in scenarios where we may need to inspect a past state
of the simulation along its trajectory during execution. This prob-
lem, known as access to the committed global state, has been tackled
through state-swapping, to align with state-of-the-art approaches. We
tackled the scenario of a PDES platform running on top of a multi-core
shared-memory machine that exhibits a fully-shared workload, which
complicates the identification of the committed global state. This is
due to potential interference among worker threads targeting the same
simulation object for the state-swapping activity and regular simula-
tion execution. We also addressed the delay of the state-swapping
operation, which is a crucial point in PDES applications to enable on-
line output collection. The results obtained by the solution proposed
in this thesis show a reduced latency of the overall operation, regard-
ing both the state-swapping and the output collection, compared to a
classical synchronous approach to perform the operation.
While some solutions have dealt with common aspects to the ones tack-
led in this thesis, i.e. load-balancing and LPs scheduling mechanisms
[25, 107, 146, 148], window-based protocols [6, 90], cache locality aware-
ness [141, 147], state-swapping for identifying a committed global state
[21], they are only devised for traditional PDES architectures, either
cluster-based or presenting long-term binding, so do not target at all
the evolved PDES platforms on multi-core shared-memory machines
that exhibit a fully-shared workload, and do not deal with the above-
mentioned limitations regarding NUMA architectures. Therefore, we

29

aim to fill this gap by improving memory management for specula-
tive PDES on multi-core shared-memory machines, tackling memory
hierarchy awareness and exploiting the Linux kernel’s capabilities, em-
bedding the devised solutions in a state-of-the-art speculative PDES
platform.
All the approaches have been implemented and integrated into the
open source Ultimate-Share-Everything (USE) speculative simulation
platform [54], and all the solutions will be thoroughly discussed, with
a particular focus on the analysis of the obtained results and on the
Linux kernel based facilities exploited.
We will further discuss some works in Chapter 3, highlighting how this
thesis stands out with respect to the state-of-the-art.

1.5 List of Published Papers

The papers covering the aforementioned topics, which will be further
discussed in relation to the state-of-the art, aim to propose solutions
that fill the gaps in the existing literature, then validated through
experimental data. They are listed below in chronological order of
publication:

• Montesano Federica, Marotta Romolo, and Quaglia Francesco.
"Spatial/temporal locality-based load-sharing in speculative dis-
crete event simulation on multi-core machines." Proceedings of
the 2022 ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation. 2022.

30

• Marotta Romolo, Montesano Federica, and Quaglia Francesco.
"Effective access to the committed global state in speculative par-
allel discrete event simulation on multi-core machines." Proceed-
ings of the 2023 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation. 2023.

• Marotta Romolo, Montesano Federica, Pellegrini Alessandro, and
Quaglia Francesco "Incremental Checkpointing of Large State Sim-
ulation Models with Write-Intensive Events via Memory Update
Correlation on Buddy Pages." 2023 IEEE/ACM 27th Interna-
tional Symposium on Distributed Simulation and Real Time
Applications (DS-RT). IEEE, 2023.

• Montesano Federica, Marotta Romolo, and Quaglia Francesco,
"Lightweight Operating System Services for Incremental Check-
pointing in Speculative Discrete Event Simulation on Linux Plat-
forms",2024 IEEE 30th International Conference on Parallel
and Distributed Systems (ICPADS) IEEE, 2024.

• Montesano Federica, Marotta Romolo, and Quaglia Francesco.
2024. Spatial/Temporal Locality-Based Load-sharing in Specu-
lative Discrete Event Simulation on Multi-core Machines. ACM
Trans. Model. Comput. Simul. 35, 1, Article 2 (January
2025), 31 pages.

Along with the thesis development, the participation to several PhD
Symposia from different conferences brought to the production of some
papers describing the aspects tackled during the PhD, which helped
me incrementally refining the idea behind the thesis. These are:

31

• Montesano Federica. "Towards the Optimization of Memory and
Data Management in Speculative PDES on Multi-Core Machines."
Proceedings of the 38th ACM SIGSIM Conference on Princi-
ples of Advanced Discrete Simulation. 2024.

• Montesano Federica. "Full-Stack Revision of Memory and Data
Management in PDES on Multi-Core Machines." Proceedings of
the 33rd International Symposium on High-Performance Par-
allel and Distributed Computing. 2024.

• Montesano Federica, "Towards the Improvement of Memory Man-
agement in PDES Systems on Multi-core Shared-memory Ma-
chines", 2024 IEEE/ACM 28th International Symposium on
Distributed Simulation and Real Time Applications (DS-RT).
IEEE, 2024.

32

Chapter 2

Preliminaries

We now introduce some theoretical concepts in order to better un-
derstand the issues described in the previous chapter regarding the
capabilities of multi-core shared-memory machines in the context of
HPC, and why some optimizations are needed. We then proceed to
introduce the Discrete Event Simulation (DES) paradigm, and con-
sequently Parallel Discrete Event Simulation (PDES), to outline the
focus of the innovative solutions proposed in this thesis. We highlight
how the evolution of the PDES paradigm has uncovered several issues
that need to be addressed in order to fully exploit the aforementioned
machines.

2.1 Memory Hierarchy

The importance of considering memory hierarchy when designing ap-
plications has grown with advances in the performance of processing
units. In fact, we have already mentioned that the performance gap

33

between CPUs and memory has been increasing for years, and it is even
more evident in multi-core machines as the number of cores grow. The
increase in core count has lead to higher contention for shared memory
resources. This makes the memory access pattern more critical to over-
all performance. Hence, designers of memory hierarchies have focused
on reducing the access time, determined by the cache miss rate, miss
penalty and cache access time, but more recently much focus has been
put towards energy consumption, since it has been found that in some
architectures caches can account for 25% to 50% of total energy con-
sumption, while data movement to/from main memory can account
for 62.7%, on average, of total energy consumption for a wide set of
applications [9].
Other than that, advances in specialized memory technologies, like
High Bandwidth Memory (HBM) and Non-Volatile Memory (NVM),
provide new opportunities and challenges for memory hierarchy de-
sign. These technologies offer improvements in bandwidth and power
efficiency, but they also necessitate more sophisticated memory man-
agement techniques to fully leverage their benefits [8, 60, 78].
What we are interested in is how memory hierarchy, up until the RAM
level, affects the performance of a parallel application.
Ideally, we would like to have zero latency, infinite capacity and infinite
bandwidth to support applications accessing memory in parallel. Other
than that, we would like to minimize the costs associated to memory
accesses. Unfortunately, these requirements oppose each other, since a
larger memory is typically slower, due to the time needed for searching
for the required location. Furthermore, modern machines present a

34

shared-memory architecture, which exacerbate these costs due to mul-
tiple cores accessing data simultaneously, as we already mentioned in
Chapter 1 and will further discuss in Section 2.2.
The idea behind the organization of memory in a hierarchical way is
based on the different latencies of each component: whenever a mem-
ory area located on some level h is touched, it is moved to a higher
cache level h + 1. The reason why this is beneficial lies in a principle
called locality of reference [27].
The locality of reference is a principle followed by processors, according
to which a set of memory locations is more likely to be accessed in a
short period of time. It is based on the predictability of the proces-
sor’s behaviour. The two main types of locality are spatial locality and
temporal locality:

• Temporal locality refers to the reuse of a memory area in a short
period of time,

• Spatial locality, also known as data locality, refers to the use of a
set of memory areas in relatively close locations.

Hierarchical memory takes advantages of the locality of reference prin-
ciple. In fact, by having multiple cache levels (e.g., L1, L2, LLC) that
store copies of frequently accessed data, processors can quickly retrieve
data from faster memory rather than repeatedly accessing slower main
memory. This approach reduces the average latency for memory ac-
cesses, which is especially important in high-performance applications.

35

Given the significant energy consumption from memory accesses, con-
sidering spatial and/or temporal locality is becoming increasingly im-
portant.
In the next subsections, we will describe the main characteristics of
the memory system, starting from the caching hierarchy, moving on
to the main memory, with a particular consideration of Non-Uniform-
Memory-Access (NUMA) architectures, to have a broad comprehen-
sion of the challenges of designing memory-aware applications on a
multi-core shared-memory machine.

2.1.1 Cache memory

Cache memory is one of the layers in the memory hierarchy, it is closer
to the CPU and has lower latency than RAM. In fact, it stores recently
(and frequently) accessed data in order to allow faster access from the
CPU, in compliance with the locality principle. So, key features of the
caches are speed, being faster than RAM, and proximity, since it is
located closer to the CPU (or on the CPU itself in some cases). The
goal of using caches is to reduce the access time and the traffic to/from
RAM in terms of interconnection pressure, in order to increase overall
CPU utilization and system scalability. However, in order to achieve
this, we must accurately design our applications to take into account
these hardware components.
The cache itself is organized in a hierarchical manner:

• L1 cache: it is the first level of cache, typically placed inside the
processor. It is the fastest level of cache but also the smallest, its

36

size is typically of 64KB, while its access time is on the order of
1 ns.

• L2 cache: it is the second level of cache, it might be placed inside
the processor or not. If it is not present, it can be shared between
processors in some architectures. Its size is about 256KB, and its
access time ranges from 3 to 10 ns.

• Last Level Cache (LLC): it is typically shared between all/some
processors, depending on the architecture. It is used to increase
the performance of the previous levels of cache. Its size ranges
from 4 to 64 MB, while its access time ranges from 10 to 20 ns.

Each cache level stores data in fixed-size blocks called cache lines. A
cache line typically contains 32 to 128 bytes of data, and when the
processor accesses data, it loads entire cache lines from the memory
hierarchy. Caches are designed based on whether their content is shared
across the levels or unique to specific levels. In an inclusive cache, for
example, all cache lines in a higher-level cache are guaranteed to also
reside in a lower-level cache. Conversely, in an exclusive cache, each
cache level contains unique data, so a higher-level cache can contain
cache lines not present in a lower-level cache.
To understand how the cache works and how to improve performance
using caches, we must consider the flow of activities of the memory
controller when memory is accessed. When a CPU accesses memory
and finds some data in the cache (at any level), it is referred to as
a cache hit. When, instead, the required data is not present in the
cache, it is referred to as a cache miss. There are various types of

37

cache misses, based on the reason why the miss occurred and on the
type of access, e.g. conflicting access on the same location, or first
access to a memory location. An inclusive cache has the benefit of
having a lower miss latency, because it is more likely that some data
missing from a higher level cache is present in some lower level cache.
However, one drawback is that its capacity is limited by the LLC’s. On
the contrary, an exclusive cache suffers from more overhead to solve
cache misses, but its capacity is determined combining the capacity of
the entire hierarchy.
Anyway, when a cache miss occurs, the required data must be brought
into the cache from either a lower cache level or from the RAM, and
it is managed through replacement policies. A typical replacement
policy implemented is the Least Recently Used (LRU): basically, the
controller evicts the least recently accessed block from the cache to
make room for the new data brought from a lower level. Modern
processors, of course, implement an approximation of the LRU policy,
taking into account the design features of different architectures [48,
150].
We have discussed how caches work when a CPU wants to read data,
but since it might also want to write data, we need to understand how
different levels of cache are kept consistent with each other. There are
two main strategies:

• Write-through: when the CPU writes data to the cache, it also
issues the update through the hierarchy up to main memory,

• Write-back: when the CPU writes data to the cache, it only up-
dates the copy in the cache. When a cache line is about to be

38

replaced, it is written back to main memory.

On the one hand, having a multi level cache allows reducing the access
time because it is more likely to find data in some cache level, improv-
ing performance, CPU utilization and energy efficiency; on the other
hand, it adds complexity to the overall memory organization, and if
data is not found in any of the cache level it increases latency for cache
misses. Furthermore, as the number of cache levels increases, higher
costs are associated to the cache coherency protocols. So it is par-
ticularly relevant to know how caches work to design and implement
parallel applications on multi-core shared-memory machines, in order
to fully exploit their capabilities.
In the next subsection, we will describe the last memory level of interest
for this thesis, that is main memory, namely RAM.

2.1.2 Main Memory

Main memory is also referred to as Random Access Memory (RAM).
Unlike caches, it holds larger amounts of data and communicates di-
rectly with secondary storage (e.g., SSDs or HDDs).
The general characteristics of RAM are the increased speed with re-
spect to the disk (or secondary storage), even though it is slower than
the caches, and the larger capacity. The types of RAM are: Dynamic
RAM (DRAM), which is the most commonly used for RAM systems
due to its overall costs; Static RAM (SRAM), typically used for caches;
Double Data Rate (DDR), used for improving speed and efficiency in
modern RAM designs.

39

As we mentioned at the beginning of this dissertation, RAM has be-
come a bottleneck in modern applications due to the widening perfor-
mance gap vs the CPU, one reason being the increasing capacity [76].
In fact, in multi-core architectures, main memory must serve multi-
ple cores simultaneously, leading to contention and requiring memory
controllers to manage accesses efficiently both in terms of latency and
of bandwidth. On the one hand, efficient memory access ensures that
data is fetched and returned to the CPU faster, directly improving
application performance. On the other hand, DRAM bandwidth is
limited, and excessive data movement can saturate it, and this is espe-
cially relevant in Non-Uniform Memory Access (NUMA) architectures,
as we will further describe.
The previously mentioned aspects are especially relevant in multi-core
shared-memory systems, in which multiple cores compete for DRAM
access, and the complete disregard of memory access patterns exac-
erbates contention and leads to performance degradation. They are
also relevant in NUMA architectures, due to their natural asymmetry,
since remote memory accesses generate more delay and more pressure
on the interconnection network than local ones.

2.1.2.1 NUMA architecture

In a NUMA architecture, RAM is organized in multiple memory banks,
namely nodes, at different distance from each other, on which the pro-
cessors are placed. The address space is shared between the processors,
meaning that each processor can access all the memory available, but
processors are placed in a way such that they manage a local memory

40

and a remote memory. This implies that each processor has faster ac-
cess to its local memory and slower access to remote memory banks.
The nodes in the NUMA architecture are connected through an inter-
connection network, in order to allow remote memory accesses. On the
one hand, this allows decoupling memory accesses across processors,
on the other hand accessing remote nodes not only make the processors
experience a longer latency, but it also creates pressure on the intercon-
nection network. This is why memory placement, locality-awareness
and load-balancing are crucial aspects to be tackled for parallel appli-
cations running on top of these systems.
NUMA architectures are a particular design of shared-memory archi-
tectures, discussed in the next section.

2.2 Shared-memory Architectures

In shared-memory architectures, all processors have access to the en-
tire address space available [37]. This allows them to communicate
directly through shared-memory, instead of communicating through
message-passing. As mentioned in the previous subsection, NUMA
is a particular type of shared-memory system, in which the latencies
of processors accessing memory depend on their placement in the ar-
chitecture. We note that the shared-memory paradigm can also be
implemented in Uniform Memory Access (UMA) systems.
Anyway, a shared-memory architecture needs some mechanism to co-
ordinate memory updates in order to maintain consistency across pro-
cessors, and this is achieved through cache coherency protocols, such

41

as MESI or MOESI).
The main advantage of shared-memory systems is the ease of commu-
nications between processors, due to the avoidance of message passing
facilities [59]. However, data sharing forces to devise some synchroniza-
tion mechanism in order to avoid data races across processors. Fur-
thermore, scalability becomes an issue, since with increasing number of
cores memory contention’s overhead becomes non-negligible. Careful
design is needed in order to solve or reduce the impact of these issues.

2.2.1 Cache Coherency

Cache coherency ensures that multiple copies of data stored in vari-
ous caches (in multi-processor/multi-core systems) remain consistent.
The reason why it is necessary resides in the nature of shared-memory
systems. In shared-memory systems, multiple processors or cores can
access and modify the same memory locations, leading to potential
inconsistencies if updates are not propagated correctly.
Some challenges related to the cache coherency protocols are: possi-
bility of stale data (e.g. if one core modifies a memory block, other
cores might still operate on outdated cached copies), write propagation,
(since changes made in one cache must be visible to other caches and
the main memory) and scalability (since as the number of cores grows,
maintaining coherency becomes increasingly complex and resource-
intensive). As mentioned, popular coherency models are MESI and
MOESI [93], and the main drawbacks of any cache coherency model
are the possible latency due to invalidation or synchronization delays,
and the bandwidth bottlenecks from frequent communication between

42

caches [32, 47, 140]. Hence, these issues must be taken into account
when designing parallel applications in shared-memory machines.

2.3 Virtual Memory

Virtual memory has been devised to create an abstraction of the mem-
ory view, such that the processors can manage a larger contiguous
address space regardless of the actual physical memory available. In
order to effectively manage memory, there is a Memory Management
Unit (MMU), that maps virtual addresses to physical addresses.
The way virtual memory has been traditionally devised is through
paging or through segmentation. On the one hand, paging divides vir-
tual memory into fixed-size memory blocks, namely pages, that will
be mapped into physical pages, namely frames. Traditionally, the
minimum page size is 4KB. The mappings of virtual addresses into
physical addresses is maintained into a page table, which is organized
in a multi-level manner in modern operating systems in order to cope
with the many optimizations of the processor architecture. The actual
address mapping, and also other auxiliary information regarding the
usage and management of the page, are kept in the lowest page table
level, namely page table entry (PTE). The advantage of paging is the
reduced external fragmentation rate due to the fixed-size. The disad-
vantages are the latency of the look-up activity into the page table,
and the possibility of internal fragmentation, e.g. when the page is not
fully utilized.
Segmentation, on the other hand, divides memory into variable-sized

43

chunks of memory, namely segments, based on the logical division of
code, data, stack segments. One advantage of segmentation is the low
latency of accesses, but it suffers from external fragmentation, due to
the different size of the segments.
Segmentation and paging are two ways of implementing memory pro-
tection, which controls access permissions to specific locations, allow-
ing or forbidding a process from accessing particular memory regions.
These two methods can be combined. Protection mechanisms are used
for security purposes, or to prevent unauthorized access to kernel-level
memory areas. To support such a mechanism, each page is equipped
with attributes describing the protection level, namely read-only, write-
only and execute-only, and any combination of the three describes the
possible management of the pages.
Typically, pages are retrieved and loaded to main memory only when
accessed, exploiting memory hierarchy as described above. However,
we have discussed how cache misses can occur when pages are not
present in any cache level, but it can also happen that a page is not
present in RAM. In that case, a page fault occurs, and the page has to
be fetched from secondary storage. One problem arising from frequent
page faults is the thrashing phenomenon, in which the CPU spends
more time swapping pages than actually executing tasks.
Particularly relevant, in the context of page accessing optimizations,
page fault management included, is the role of the Translation Looka-
side Buffer, as we will describe in the next subsection.

44

2.3.1 The Translation Lookaside Buffer

The Translation Lookaside Buffer (TLB) is a cache that stores the
recently accessed virtual-to-physical address mappings, namely PTEs.
In a multi-core system, there is one TLB for each hyperthread. Obvi-
ously, its goal is to speed up memory translation for frequently accessed
pages, since at each access the MMU first queries the TLB, and if nec-
essary (e.g. in case of a TLB miss) it consults the page table. There
are many optimizations to avoid TLB thrashing, namely frequent TLB
misses, both hardware and software side (e.g. enlarging the TLB size
or prefetching the address mappings).
The TLB can have a considerable impact on performance on multi-core
shared-memory machines, and it is tightly bound to memory permis-
sions management. In fact, it not only stores the virtual-to-physical
address mappings, but it also records metadata related to the PTEs,
such as the permissions.
As stated in the previous section, permissions determine the capacity of
an application to perform certain operations on a given memory page,
preventing illegal accesses. If a memory access violates the permis-
sions, e.g. a write operation on a non-writeable memory page occurs,
a page fault is triggered, namely a protection fault. When memory
permissions are changed, the Linux kernel carries out many activities,
one of them being the invalidation of all the TLB entries relative to
the page, or range of pages, targeted by the fault. This is referred to
as TLB shoot down or TLB flushing, and it has to be done in order
to maintain the consistency of the mapping across all cores, since an
update of the page table occurred (namely, the permissions changed).

45

In fact, changing the permissions of a memory area means updating
the metadata relative to the PTEs in the page table, so the previously
stored information in the TLB might become outdated, possibly caus-
ing incorrect translations. That is why the TLB shoot down is needed.
As long as the system is single-core, it is enough to only flush the lo-
cal TLB, but in a multi-core machine, the coordination mechanism is
more complex. In fact, in such a system, the kernel must notify all the
cores to flush their local TLBs for the affected pages, and this is done
via the Inter-Processor-Interrupt (IPI) architecture. After the IPIs are
sent, each core processes them by invalidating the range of pages in
its local TLB and then resuming its previous activity. However, this
can cause performance degradation due to the overhead involved in
the synchronization process, which requires communication and coor-
dination across cores. Furthermore, as the number of cores increases,
the TLB shoot down mechanism can become a bottleneck of applica-
tions exhibiting particularly memory intensive operations, leading to
poor performance. In order to mitigate the effects of the TLB shoot
down by software approaches, a lazy invalidation mechanism might be
adopted, with the risk of having incorrect translations in the meantime,
or batching the page table updates (e.g. the permission changes) in
order to reduce the number of shoot down signals. Otherwise, kernel
level facilities might be leveraged in order to have a finer-grain invali-
dation mechanism, directly operating at page table level.
We note that there are many other reasons why a TLB shoot down
might be needed, e.g. after a page is swapped out, or when a context
switch occurs.

46

Given this overview of memory systems, we can dive into the discus-
sion on the discrete event simulation paradigm, target of the solutions
presented in this thesis.

2.4 Discrete Event Simulation Systems

Simulation is a paradigm that enables the imitation of real-world sce-
narios or phenomena to study their evolution and collect results for
data analysis without requiring an analytical solution of the system.
It allows testing what-if scenarios by only changing the configuration of
the system. To achieve this, a simulation model is defined to represent
the target phenomenon, along with the data structures and variables
that constitute the model’s state. The simulation kernel, instead, is
the component that drives the model execution and takes care of sev-
eral aspects such as the correctness of the simulation.
Simulation applications fall into two categories, depending on how the
phenomenon evolves through time: continuous simulation and discrete
simulation. The former one refers to evolution of the simulated appli-
cation along a continuous time axis. To determine a system change,
mathematical formulas (i.e. time series analysis, differential equations)
are used. The latter, which is the one of interest for this thesis, is
called Discrete Event Simulation (DES), and refers to the fact that the
progress is based on events that occur at discrete points in time (the
timestamp of an event), rather than continuously. The system’s state
only changes when an event occurs, and to enable event execution, a

47

DES implementation consists of a set of event-handler functions (call-
backs), that are executed by the simulation kernel allowing the state of
the simulation to change. In order to correctly support the progress of
simulation along discrete time steps, causality management is needed,
and a virtual clock is adopted. In fact, we highlight that it is impor-
tant to distinguish virtual time, which is an abstract notion of time
relative to simulation execution, from Wall-clock Time (WCT), which
is the elapsed time measured by the machine. So, in order to guaran-
tee a causally consistent model execution, events must be processed in
timestamp order.
In fact, a DES system is equipped with an event list, namely a prior-
ity queue, that contains the events to be processed ordered by their
timestamp. The simulation engine picks an event from the event list
and processes it, moving the virtual clock forward. When executing an
event, other events might be generated, and they are inserted in the
event list for future processing. Hence, the event list ensures that the
events are processed in time order, maintaining logical consistency in
the simulation model.
DES is useful for several reasons, allowing to model complex systems,
especially when the state does not change in a continuous manner, but
can be described by the occurrence of events. DES is used in a broad
range of applications:

• Manufacturing/Logistics: to optimize supply chain, resource al-
location, and inventory management.

• Healthcare: staffing and resource management, patient flow, and
emergency scenarios simulations.

48

• Transportation: to analyse traffic patterns, congestion, crossroads
management, and optimize routes.

• Telecommunications: for network traffic management, peak traf-
fic and network congestion, resource allocation (e.g. in cloud
providers), and server optimization.

• Finance: for risk analysis for investments, financial markets, and
fraud detection.

Along the path of hardware evolution, simulation also required exe-
cuting very large and complex models. Hence, due to the establish-
ment of multi-processors/multi-core systems, DES systems had to keep
up, and so the Parallel Discrete Event Simulation (PDES) paradigm
was devised, allowing simulations to be run in parallel across multi-
ple processors or computing nodes. In fact, parallel simulation can be
executed by multiple processing units residing on the same machine,
or across multiple nodes geographically distributed, in a cluster-based
manner. One of the goals of parallelizing the simulation is to reduce
the overall execution time compared to a sequential DES execution,
namely to achieve higher speedup.
In the next section, we will discuss the PDES paradigm.

2.5 Parallel Discrete Event Simulation Systems

As already mentioned in Chapter 1, in a PDES system the model’s
state is partitioned into many Logical Processes, namely LPs, and
they communicate with each other by exchanging messages (namely

49

events). Each LP represents a portion of the simulation state, and con-
sists of a set of private variables completely disjoint to the other LPs.
Therefore, an LP is an independent entity that implements its own
event-handlers to execute events, generates events destined to other
LPs (or to itself) and updates its own state. A parallel implementa-
tion of the DES model involves executing multiple LPs, and therefore
their event handlers, in parallel across multiple processors, cores, or
interconnected machines. [12, 16, 35, 39, 41, 54, 80, 94].
Each LP maintains its state to keep track of the changes caused by
event execution, and does not interfere with the other LPs’ states,
since the communication among LPs happens via message exchange
(e.g. when it generates events destined to some LP). Events destined
to each LP must be processed in virtual time order, this is why each
LP keeps a Local Virtual Time (LVT) variable, which represents the
current virtual time for that LP, in order to avoid any causality viola-
tion. Moreover, each LP has a queue of events to process, ordered by
timestamp, similarly to what would happen in the case of sequential
DES systems. This guarantees that for each LP, causality of event
processing is preserved.

However, while in sequential event processing it is enough to have a
timestamp ordered queue of events in order to guarantee causality, in
parallel event processing some synchronization mechanisms to guaran-
tee global causality and consistency are needed. There are two main
categories of synchronization algorithms: conservative and optimistic.
The former one guarantees that no event is processed out of order, and
so that no causality violation ever happens. In fact, if an LP contains

50

LP1

LP2

LP3

3

6 15

6

2 11

13

Message

11

18

8

Straggler Message!

Figure 2.5.1: Example of a Causality Violation in speculative PDES

an unprocessed event et and it can guarantee that no event will be
received with timestamp t′ < t, then it can safely process et. This re-
quires having a lookahead, which is a simulation attribute that defines
the minimum temporal distance in the future before an LP can gen-
erate events, ensuring correct causality. The latter method, instead,
allows processing events out-of-order regardless of causality violations.
But since it is likely to receive out-of-order messages violating causal-
ity, i.e. as shown in Figure 2.5.1, the simulation engine must support
the reconstruction of a correct state in order to possibly recover from
causality violations. In the above-cited figure, we can see how causality
violations can occur: in particular, each LP is processing its events in
timestamp order, and it is sending/receiving messages to/from other
LPs. When LP2 receives the event with timestamp equal to 8, its
local time is set to 15, since it is the timestamp of the last executed
event. Hence, it receives an out-of-timestamp order message, called
straggler, which causes a causality violation. In the next subsection,
we will thoroughly discuss optimistic simulation, implemented by the
Time Warp algorithm.

51

LP1

LP2

LP3

3

6 15

6

2 11

Rollback Execution at
timestamp ts = 6

13

Message

11

18

8

8

Rollback Execution at
timestamp ts = 2

Figure 2.5.2: Example of a Rollback Procedure after a Causality Violation

2.5.1 Time Warp

The Time Warp algorithm was introduced by Jefferson in 1985 in or-
der to implement virtual time [57]. Virtual time is a paradigm used
to organize and coordinate distributed systems by defining a shared
notion of time and synchronization among them. We have already
specified that at each LP, events are handled in timestamp order. The
main idea of Time Warp is based on processing an event as it occurs,
assuming it is in global order, updating the state and generating events
destined to other LPs. If the processing turns out to be incorrect (e.g.
an LP receives a straggler message as in Figure 2.5.1), a rollback proce-
dure is executed in order to re-align simulation execution to a causally
consistent state prior to the straggler event. Then all the processed
events after the causality violation occurrence are cancelled, and their
effects are neutralised, before re-processing events in the correct time
order. This scheme is exemplified in Figures 2.5.1 and 2.5.2. When in-
troducing causality violations, we described Figure 2.5.1 to show what
a straggler message is. In Figure 2.5.2, we show how to recover from

52

causality violations, as just hinted. In particular, in this figure, LP2

has received a straggler message, so in order to re-align its state to a
correct one, there is a rollback execution to, for example, timestamp 6.
It is also necessary to neutralise the effects of sending and executing
the event with timestamp 11 on LP3, since it occurred in a no more
valid trajectory, this is why there is also a rollback execution for LP3.
This figure also shows that cascade rollbacks can happen.
Many implementations of Time Warp came in succession over the
years, considering PDES running on top of shared-memory multi-
processor/multi-core machines [13, 17, 38, 96]. Time Warp variants,
such as Bounded Time Warp, have also been compared to conserva-
tive synchronization algorithms to further characterise Time Warp’s
performance [29].
In the next subsections, we will discuss the virtual time paradigm,
namely Local Virtual Time and Global Virtual Time, and the state
recovery mechanisms, namely checkpointing and rollback.

2.5.1.1 Local Virtual Time

As previously mentioned, each LP maintains a local view of virtual
time, known as Local Virtual Time (LVT), which measures the pro-
gression of event processing for that individual LP independently of
the others. Each LP has an input queue where all received events from
other LPs are stored in increasing order of their timestamps and are
progressively picked for processing. This is an ideal execution, in which
it is assumed that no out-of-order messages are received. However, we

53

mentioned that this might not be the case because of different pro-
cessing rates of the LPs, so when an LP is picking an event from the
input queue, it is actually assuming that it will not receive any other
message with a lower timestamp than the one it will be processing,
as envisaged by the optimistic algorithm. As long as this assumption
holds, the execution proceeds correctly, but if it does not hold, it en-
counters a causality violation, and the event causing the violation is
called a straggler (see Figure 2.5.1). In order to solve this problem,
the LP has to roll back to a past state with a virtual time lower than
the timestamp of the straggler event, possibly cancel intermediate side
effects and then execute forward to re-align the simulation state, as
already described in Figure 2.5.2.
In a parallel and distributed environment, rollbacks can have cascaded
effects due to LPs sending messages to others. In fact, it might hap-
pen that the LP in a rollback phase, has sent some messages to other
LPs before receiving the straggler message, causing side effects in their
execution, and so on. All the in-transit and received messages must be
either cancelled/unsent or their effects must be reversed. Time Warp
manages this without freezing the simulation. For every event, there
exists an anti-event or anti-message, which is a copy of the original
event except for the sign. In fact, a correctly processed event has a
positive sign (+), while an anti-event has a negative sign (-). When
an LP sends a message, a positive copy of that message is sent to the
receiver’s input queue, while the negative copy is maintained by the
sender and used in case of rollbacks. In fact, if a causality violation
occurs, after the rollback operation, the side effects of that violation
must be reversed, and there are two situations that might occur:

54

• The original event ex was sent but not yet processed. If the
timestamp associated with the received anti-message is greater
than LV Tx, the original event has not yet been executed along
the LPx’s trajectory, so it is enough to discard ex. In this case,
no rollback is necessary, but the anti-event is enqueued, causing a
message annihilation, leaving the receiver unaware that the event
ever existed.

• The original event ex was sent, and it has been partially or totally
processed but the receiver. So, if the anti-message has a times-
tamp t′ such that t′ ≤ LV Tx (the = refers to the case of exactly
processing the event relative to the anti-message), the state of
LPx has already been subjected to some changes, and some side
effects have occurred. So a rollback is necessary on LPx and the
anti-message annihilates the original event, and this also happens
in a cascade manner for other LPs if necessary.

The operation of rollback is crucial in optimistic synchronization, and
there exists two main approaches to tackle this issue: state saving,
which is the one of interest for this thesis and can be full, incremental
or hybrid approaches combining the two (see [36, 90, 103–106, 115–
117, 129, 131, 149]), and reverse computation [15, 19].

2.5.1.2 Global Virtual Time

The local virtual time management just described manages the advance
of time as seen from the LP’s perspective, but in order to coordinate

55

LPx

LPy

5 8 12

3 10

9

15

Figure 2.5.3: Example for Explaining the GVT

multiple LPs in terms of simulation progress, to guarantee the simu-
lation termination and to manage the resources of every LP, we must
define a global control mechanism. This is called Global Virtual Time
(GVT) [42], and it is defined as follows, and depicted in Figure 2.5.3:

Definition 2.1. The GVT is defined as the minimum between (i) all
virtual times in all virtual clocks currently in the system, and (ii) the
virtual times of all messages in transit and not yet processed.

Since the GVT never decreases, it serves as a bound for the virtual
time to which any LP can roll back at some point. The GVT is gener-
ally considered a measurement of simulation progress, since in the case
of successful event processing it increases, and it is viewed as a commit
horizon, since it is not possible to roll back to a time lesser than the
current GVT.
A fundamental aspect regarding the usage of the GVT in Time Warp
is memory reclamation, in order to reduce the memory usage for saving
the state. In particular, any message relative to an already processed
event, whose timestamp is lower than the GVT can be discarded, as
it is impossible to receive an event with lower timestamp. As for the

56

past states in the state queue, all but one saved state before the GVT
for each process can be discarded, and their memory can be reclaimed:
this is known as fossil collection. Hence, the GVT is fundamental in-
formation used to recognize and discard obsolete data that is no longer
useful for the simulation, and also to commit the events produced in
the speculative execution, guaranteeing simulation progress. Over the
years, many optimizations regarding the computation of the GVT have
been studied, especially to exploit shared-memory machines [55, 95].
Furthermore, the GVT computation is fundamental for another core
aspect characterizing speculative PDES, that is the identyfication of
the committed global state. In fact, a committed state, namely Sx, of
any simulation object ox always has virtual time lower than or equal
to the last computed GVT. However, the same object might have a
current state S ′x with virtual time larger than the GVT value. State S ′x
cannot be used for inspecting the execution trajectory of that simula-
tion object and for producing output data, since it is still susceptible to
possible inconsistencies due to out-of-order processing of events, which
can always occur beyond GVT. Hence, when we compute a new GVT
value, we would need to observe a past state of ox in order to perform
a correct inspection of the execution trajectory of the simulation ob-
ject. This is relevant in the context of online output collection and/or
predicate detection.

57

2.5.1.3 State Saving and Causality Violations Recovery

Along with the definition of virtual time and the notions of local vir-
tual time and global virtual time, the Time Warp paradigm has been
conceived to manage possible causality violations. In fact, in the pre-
vious subsections it has been mentioned that out-of-order processing
of events across LPs might give rise to out-of-timestamp order errors,
causing violations solvable by a rollback procedure to a past state for
the target LPs.
In order to support the rollbacks, we must periodically save the state of
the LPs, and this is particularly relevant in optimistic PDES. Several
approaches have been studied over the years, from full state saving, i.e.
periodically saving the entire state of each LP (see [36, 90, 103, 104,
106, 115, 129]), to incremental state saving, i.e. periodically saving
only the modified portions of the states (see [98, 116, 120, 149]), to
reversible computing, i.e. implementing a reverse-event for each event
handler (see [15, 19]).
The state saving technique, in general, refers to the activity of saving a
copy of the state of any LPi after the execution of the event et, occur-
ring at timestamp t, and this is called checkpoint. Obviously, taking
a checkpoint after every event execution is not only a time-consuming
operation, but it also affects memory usage, so the sparse state sav-
ing technique is usually adopted. In this way, the checkpoint is taken
periodically. On the one hand, it allows reducing the memory used;
on the other hand, if a causality violation occurs and rollback must be
performed, the realignment phase might be longer, e.g. if the period
between two checkpoints is too large. In fact, we mentioned that after

58

restoring a state, we must re-align the state of the simulation by exe-
cuting the already processed events, straggler included. This operation
is called coasting forward and consist of re-processing the events in a
silent manner, without re-generating events. Many works focused on
effective policies to tune the checkpoint period (see [103, 106, 115]).
A state saving technique that allows reducing the memory footprint
is the incremental state saving. The crucial aspect of the incremen-
tal state saving is to identify the portions of the LP’s state that have
been modified during the event execution, in order to build a check-
point that is useful to restore the state during the rollback procedure
[98, 116, 120, 149]. This is used to reduce the size of the taken check-
point and save clock cycles with respect to the full state saving. When
a rollback must be performed, in this case, the chain of incremental
checkpoints is traversed backwards to identify the correct state from
which to begin re-aligning the simulation’s trajectory. At the same
time, the incremental checkpoint can be taken periodically as well,
to optimize the trade-off between the checkpoint cost and the state
restoration cost.
Furthermore, a series of incremental checkpoints can be alternated with
infrequent full checkpoints, which helps to discard obsolete logs pre-
ceding the last computed Global Virtual Time (GVT) in a speculative
simulation run. In particular, an infrequent full log with a timestamp
less than (or equal to) the GVT value enables the discarding of all the
preceding incremental checkpoints—since the restoration of some state
will find all the requested parts to be restored by backward traversing
the incremental checkpoint chain up to that full checkpoint at worst.

59

2.5.1.4 Reverse computation

For the sake of completeness, we briefly describe the second main ap-
proach to recover from causality violations, called reverse computation
[14]. This is based on the idea that for each event e there is a re-
verse event er capable of restoring the previous state, by executing in
reverse order the operations of e. Of course, this is an effective and sim-
ple approach when events execute basic operations such as arithmetic
operations, but it can be become more difficult for events presenting
if-else structure or non-reversible operations, especially if they involve
memory pointers.
However, many solutions can be devised to take care of these problems,
one of them described in [19], but they will not be further discussed,
since it is out of the scope of the thesis.
In the next section, we will discuss why and how PDES architectures
have been evolved over the years.

2.6 Reshuffle of the PDES Architecture

Having described all the building blocks of DES and PDES, we can
now focus on the software architecture and on its development and
evolution through the years.
Classical PDES architectures consisted on the partitioning of the sim-
ulation in multiple kernel instances, each of them managing a subset
of LPs. The programming model is referred to as multiple sequential
executions on different machines. This partitioning was devised in or-
der to exploit cluster-based machines, where multiple nodes operating

60

independently were interconnected via a network. Over the years, a
reshuffle of the architecture has been necessary due to the establish-
ment of multi-processor/multi-core machines [12, 13, 35, 38, 41]. This
favoured the transition from distributed memory systems to shared-
memory systems. According to this shift, the system consists of mul-
tiple simulation kernels, each of them managing multiple cores, lever-
aging the multi-thread paradigm, in which each worker thread (WT)
executes the simulation (the terms "worker thread", "thread", and "core"
are used interchangeably in this thesis). This scheme applies to a sin-
gle or multiple machines. The exploitation of finer-grained parallelism
allows increasing the parallelism and avoiding the overhead needed
for inter-node communication, thanks to the exploitation of shared-
memory machines architectures [94, 118].
However, a further observation has to be made: in fact, in both the
above-described cases, the binding between a WT and a set of LPs is
long-term, meaning that a WT executes events destined to one of its
own subset of LPs and manage its states, until there are processable
events. Conversely, an explicit rebalancing is required to change the
binding between a WT and one or more LPs. This is inherently limiting
the performance of PDES, since it does not fully exploit the comput-
ing power of the underlying hardware for simulation operations. Other
than that, such a paradigm fails to exploit the capabilities of multi-core
shared-memory machines, not allowing WT to actually share data and
access shared data. Specifically, the long-term binding approach can
lead to inefficient load-balancing, since each WT might have a different
amount of events to process destined to their subset of LPs, leading to
uneven workloads. Moreover, in such a system each WT could access

61

the entire memory available, but it is instead restricted to accessing
the subset of LPs bound to them.
The opposite idea to the long-term binding paradigm used by tra-
ditional PDES systems implements a fine-grain sharing of resources,
and it is called share-everything PDES. This avoids any partitioning
of simulation objects among threads and creates a new scheme based
on a short-term binding. It introduces a fundamental shift towards
the workload distribution of PDES systems, since it allows any thread
to dispatch any simulation object in the system at any time along
simulation execution, enabling effective load-balancing and finer-grain
sharing of resources. Hence, in the so-called short-term binding, the
time period of the binding is equal to the processing time of an indi-
vidual event [56].
The share-everything paradigm is therefore based on the idea that all
the threads running the simulation can actually share data, in particu-
lar individual events destined to any LP. This is referred to as fine-grain
sharing. In this paradigm, the LPs are not the main work unit, as it was
in the previously described paradigm, but rather a container of work
units, namely the events. The core concept is to deliver the comput-
ing power of the underlying machine to the next minimum timestamp
event to be processed, fully exploiting multi-core shared-memory ma-
chines. This method ensures that the system continuously processes
events without the risk of a bottleneck caused by the WT-LP binding,
thereby enabling greater parallelism and speed. In order to do so, in
[54] a non-blocking global queue of events has been devised, as well
as non-blocking algorithms to manage the scheduling and dispatching
of events, and the housekeeping tasks such as fossil collection. The

62

non-blocking data structure allows threads to freely access and process
events in a non-sequential, concurrent manner, without halting each
other, while the fossil collection, still managed in a non-blocking man-
ner, guarantees the correct deletion of obsolete states efficiently. So, as
a first step to evolve the entire PDES paradigm, the evolution of the
pending queue of event has been necessary, also considering NUMA
architectures [72, 73, 110].
This enabled higher efficiency due to the improved load-balancing, that
also allows having lower rollback probability due to the continuous pro-
cessing of events in the proximity of the commit horizon. Moreover, it
avoids over-speculation and the divergence of virtual time across LPs.
Another important characteristic of this simulation platform regards
the memory layout. In particular, the platform described in [54] sup-
ports models developed using the C programming language, and ex-
ploits the compile time interception of the calls to the malloc library
API via the –wrap flag. This is done in order to make chunks hosted
on a specific memory area available for use by an individual simulation
object. In its turn, this memory area resides in a set of pages mapped
in the address space of the PDES engine via the mmap(..) system
call. At the level of the PDES engine, it is therefore possible to of-
fer an API to set the state of the memory allocation system in order
keep track, through Thread Local Storage (TLS) variables, of the sim-
ulation objects being executed. The allocation system can also select
object-specific mapped memory areas for delivering the chunks. This
mechanism allows to effectively manage the simulation objects states
at page level.
However, the limitations of PDES platforms devised following this

63

paradigm can be disclosed as follows:

• They present a global pool of events that is shared among threads,
and it has to be traversed and updated by each WT in the sim-
ulation. Even if the pool is managed by a non-blocking algo-
rithm, that reduces the synchronization overhead, the cost of the
traversal grows linearly with the number of events. It is therefore
necessary to reduce the frequency of accessing it.

• The memory hierarchy is not taken into account for event pro-
cessing. In particular, frequently switching between LPs’ states
when picking events to process increases the costs of cache misses,
especially considering NUMA architectures.

• Operating systems’ services might add non-negligible overhead,
for example in the context of the MMU’s internal operations. In
fact, memory management entails cross-core coordination at ker-
nel level when memory updates occur, as we discussed in Section
2.3, which involves also to broadcast TLB shoot downs. The main
point regards the invalidation of multiple TLBs due to the mem-
ory permission changes performed by the operating systems’ pro-
tection services. This multiple invalidation causes non-negligible
overhead due to the fine-grain sharing of resources. We also note
that this activity is endemic due to the kernel level activities per-
formed by the memory protection services (namely, the IPIs to
signal and coordinate all the TLBs).

• Accessing shared data structures also presents critical aspects with
respect to the identification of a committed global state of the

64

simulation. In fact, fine-grained sharing of resources makes it
more complicated to distinguish portions of state still susceptible
to causality violations from the committed ones.

Overall, these limitations indicate that the PDES platforms based on
this paradigm face some scalability challenges, that can hinder their
ability to fully exploit the potential of multi-core shared-memory ar-
chitectures.
In the next section, we will present the simulation models that repre-
sent the target for evaluating the solutions proposed in this thesis.

2.7 Simulation Models and Benchmarks

A simulation model is the representation of the target real-world sce-
nario/phenomenon to be studied. In the evaluation of the solutions
devised in this thesis, the target models of our experimental evaluation
consist of a synthetic benchmark, PHOLD, and two real-world models,
Personal Communication System (PCS) and Tuberculosis (TBC).

2.7.1 PHOLD

PHOLD is a synthetic benchmark [40], in which the execution of an
event leads to updating the state of the target simulation object, which
keeps track of statistics such as the number of processed events and
the average simulation time advancement. It also leads to executing a
classical CPU busy-loop for the emulation of a given event granularity.
There are two types of events:

65

• Regular events, whose processing generated new events of any
type,

• Diffusion events that do not generate new events when being pro-
cessed.

The number of diffusion events generated by regular events, denoted as
Fan-out, can be set as a parameter. This model do not represent any
real-world scenario, but rather it abstracts an event-driven system with
minimal complexity. It is usually used to test scalability and overhead
of PDES platforms.

2.7.2 Personal Communication System

The Personal Communication System (PCS) application models a cel-
lular network for personal communication [20, 58]. Each simulation
object models the evolution of an individual hexagonal cell. Each cell
can handle a number of N channels, modelled via power regulation and
interference/fading phenomena. The records associated with channels
are dynamically allocated/released upon start/end of calls, and are
kept in a list that is managed by the object simulating the cell. Upon
call setup, power regulation is performed, which involves scanning the
aforementioned list of records to compute the minimum transmission
power allowing the current call setup to achieve the threshold-level
signal-to-interference-ratio (SIR). Each record is released when the cor-
responding call ends or is handed off to towards and adjacent cell. In
the latter case, a similar call-setup procedure is executed at the des-
tination cell. Data structures keeping track of fading coefficients are

66

also updated while scanning the list, according to a model defining
meteorological conditions and their variations. The set of configurable
parameters includes:

• τA, which is the inter-arrival time of subsequent calls to any target
cell,

• τD, which expresses the expected call duration,

• τH , which expresses the residual residence time of a mobile device
into the current cell.

These parameters affect the channel utilization factor, defined as ρ =
τD

τA·N . The value ρ impacts on the granularity of events, since the more
the busy channels, the more power-management records are allocated
and consequently scanned/updated while processing events. At the
same time, higher values of the channel utilization factor lead to higher
memory requirements for the state footprint of individual simulation
objects. Also, CPU and memory demands are bounded depending on
the number N of per-cell managed channels. In fact, when a call-setup
operation is requested due to a call or handoff (switching between cells)
arrival, if all the channels are already busy, then the call is dropped,
mimicking the real world scenario where communication is interrupted
whenever the base station has no available resources.
This model is useful for resource allocation optimization or traffic anal-
ysis, and in this thesis it has been also used to model memory intensive
executions for testing the proposed solutions, as we will see in the next
chapters.

67

2.7.3 Tuberculosis

The Tuberculosis (TBC) model has been developed at the Barcelona
Supercomputing Center to simulate the spread of tuberculosis in the
Barcelona area [81]. It is based on agents, namely individuals, cir-
culating in an area represented by several simulation objects. Each
simulation object models a region of the geographical area of interest,
and the presence of agents in the region is recorded through the in-
formation stored in the state of the simulation object that models the
region. Specifically, the object maintains a record for each agent cur-
rently residing in the corresponding region. The different agents model
individuals that may be in one of the five possible states, based on the
evolution of TBC infection: healthy, infected, sick (i.e. with active
TBC), under treatment and cured (i.e. completed treatment). The
status variables of individuals refer mainly to their status in the TBC
infection cycle and the time spent in these phases. Other individuals’
parameters are age, native or immigrant origin, possible risk factors
(e.g. smoking) and possible immunosuppression (mainly AIDS). This
model is useful to study the spread of the infection among the popu-
lation, and also to help to plan treatment protocols and strategies.
In this thesis, it has been used for further testing the locality-aware
solution presented in Chapter 4.

68

Chapter 3

State-of-the-art

Provided a broad overview of the systems we are targeting, and the
challenges emerged due to the evolution of both the hardware and the
simulation platforms, we can now dive into the literature. We will de-
scribe what has already been tackled regarding speculative PDES sys-
tems on multi-processor/multi-core shared-memory machines, which
aspects have been dealt with in a more limited manner and how we
aim to fill the gap.
We will focus on aspects previously described as critical regarding spec-
ulative PDES running on top of multi-processor/multi-core shared-
memory machines, such as memory hierarchy and locality awareness,
incremental checkpointing optimization and reduced delay of critical-
path operations such as the identification of a committed global state,
highlighting the differences between state-of-the-art approaches and
the solutions presented in this thesis.

69

3.1 Memory Locality

Memory management of speculative PDES systems has been a chal-
lenge since its inception. In particular, some efficient mechanisms to
handle allocation/deallocation and reclamation of buffers were needed,
especially in the context of PDES running on top of shared-memory
machines. The work in [43] tackles this issue, and it also discusses
strategies for reducing memory overhead and avoiding bottlenecks caused
by buffer contention in shared-memory environments. It further fo-
cuses on rollback efficiency and memory reuse, namely fossil collec-
tion. Still regarding memory reuse, the work in [136] aims to reduce
the number of message copies to exchange data between threads, by de-
veloping a reversible memory allocation mechanism to reduce memory
pressure and also avoid copying the message contents. These works
focus on memory management from the allocation and reclamation
points of view, which is still orthogonal to the proposal of this thesis,
even though the cited works do not target NUMA architectures.
The work in [118] discusses how the setup of intra-node facilities,
based on shared-memory, can allow multiple Message Passing Interface
(MPI) ranks running on a same machine to reduce their communica-
tion overhead. This is relevant in the context of the evolution of PDES
systems discussed in Section 2.6, exploiting multi-processor/multi-core
shared-memory machines to achieve higher performance, especially for
large-scale simulation. Along this path, the proposal in [143] intro-
duces an architecture for speculative PDES where multiple threads

70

running on a shared-memory machine support a communication mech-
anism based on operating systems’ top/bottom half primitives with
reduced intrusiveness. This aims to support a dynamic adaptation
to different workloads requirements/fluctuations, improving flexibility
and scalability. Additional studies have been focused on the anal-
ysis of general architectural redesigns when shifting optimistic PDES
(Time-Warp based) to shared-memory multi-processor/multi-core ma-
chines (see [38, 147]). Experimental results have shown that opti-
mistic PDES on multi-processor/multi-core shared-memory machines
can achieve higher performance under certain constraints, such as bal-
anced workload. Both works also discuss some strategies to tackle
challenging issues such as rollbacks and fossil collection, that have been
also mentioned earlier as potential bottlenecks of PDES platforms. The
first work, [38], provides a baseline for better understanding optimistic
PDES on multi-core shared-memory machines, while the work in [147]
provides further improvements and challenges related to memory hi-
erarchy awareness. This shows that optimising PDES platforms on
multi-core shared-memory machines is still a topic of interest.
Other proposals have been oriented to the definition of new approaches
for event processing, like cross-state events involving multiple simula-
tion objects [97], or the inclusion of state attributes that are accessible
to other simulation objects through the exploitation of the transac-
tional memory support [17]. The first work aims to reduce the causal-
ity violations costs, by explicitly tracking the state changes relative to
event execution across simulation objects, instead of solely rely on the
timestamps for detecting the causality violation. Despite aiming to
reduce causality violations, which is also one of our objectives, we do

71

not explicitly track state changes, but we leverage the locality of refer-
ence principle to effectively process events. The second work enhances
the Time Warp paradigm for multi-core shared-memory machines to
improve resources utilization by exploiting transactional memories.
This thesis proposal differs from all these studies, since none of them
is oriented to the short-term binding of simulation objects to worker
threads, namely the evolution of PDES systems that brought to the
development of the share-everything platform described in Chapter 2
[54]. Moreover, the above-cited works do not consider cache-aware
association of simulation objects to threads, NUMA-aware placemen-
t/access of/to simulation objects’ states and batch-processing of events
of specific simulation objects along any thread. These are instead the
main aspects dealt with in part of the thesis, namely for what concerns
memory hierarchy awareness and cache/NUMA locality awareness for
event processing (see Chapter 4).
As for solutions oriented to load sharing in multi-core machines, in
combination with long-term binding of simulation objects to worker
threads, we can find model-based approaches. In [142] the authors
allow the calculation of an effective distribution of simulation objects
among threads under the hypothesis that the future of the simulation
run will have similarities with respect to the last observed execution
phase. In particular, the authors allow dynamically redistributing sim-
ulation objects across threads, also considering, in the migration deci-
sion, information related to rollbacks, in order to minimize the costs
of the speculative execution. For this scenario, the literature also of-
fers approaches where the state of the simulation object is dynamically

72

migrated across the different NUMA nodes in the shared-memory ma-
chine [96] to allow a more effective management of the virtual pages
used not only for the live state image of the simulation object, but
also for the event buffers and for recoverability. The aim is to reduce
memory latency of optimistic PDES due to the lack of awareness of
NUMA architectures, devising a memory affinity mechanism based on
Linux kernel facilities to allow reduced overhead for load balancing.
However, none of the previous solutions has been tailored to short-
term binding of simulation objects to worker threads, which is instead
a core aspect we tackled in this thesis. This type of binding has been
investigated in [54]. As we already mentioned, in [54], the authors
exploit a fully-shared event pool in order to enable any worker thread
to CPU-dispatch any simulation object at any time along the simula-
tion execution. Hence, a simulation object is kept locked by a specific
worker thread only for the time interval related to the processing of an
individual event. In this work, the accesses to the shared event pool
have been based on a non-blocking algorithm, which favours scalabil-
ity [73]. The major limits of this work are related to the fact that
spatial locality, or more in general memory hierarchy awareness, is not
taken into account. Hence, a worker thread can continuously switch
across different simulation objects, with no attempt to reuse the same
memory areas. Also, the accesses are NUMA unaware, hence they can
generate both delay, because of the latency for accessing remote NUMA
nodes, and excessive pressure on the NUMA interconnection, limiting
performance and scalability. As we pointed out, these are the baseline
problems we tackle in part of the thesis, specifically in Chapter 4, in
combination with the reduction of the amount of memory locations

73

accessed by a worker thread when managing the shared event pool.
The work in [148] provides an improvement for load-balancing in PDES
on top of multi-processor/multi-core shared-memory machines. It com-
bines a classical medium/long-term binding scheme based on persis-
tence, namely past data related to the workload, and work-stealing.
The stealing operation is put in place if the last rebalance has led to
imperfect partitions. This might occur because of errors in the pre-
diction of the future workload, that will be actually generated by the
simulation objects when the rebalance occurs. In this solution, the sim-
ulation objects are still grouped and remain bound to a specific worker
thread, up to some steal operation or a periodic rebalance. Hence, the
core ideas of this approach are still not suited for locality improvement
with fine-grain sharing of the workload among worker threads. Addi-
tionally, spatial locality is not taken into account by the authors, hence
they do not explicitly address the improvement of cache and NUMA
usage, which are instead core aspects in this thesis.
The work in [141], provides a solution for improving the efficiency of
cache usage in speculative PDES systems. This solution is based on
redirecting cache-adverse operations, like checkpointing, which leads to
the invalidation of other information kept into the cache, to a specific
cache partition. In fact, operations like state saving/restoring, access
data on a periodic basis, and they might cause eviction of cached data
related to the actual working set of the application logic, causing a
performance drop. In practice, this solution offers the advantage of
keeping some zone of the cache less affected by cache replacement
caused by write intensive operations related to data that are likely not
re-accessed for a while (like it occurs for a checkpoint), reducing the

74

costs of cache misses. The work in [14], provides an analysis showing
how checkpointing and reverse computation have different impacts on
speculative PDES performance on a shared-memory machine because
of their different effects on the caches and on the TLB architecture,
particularly analysing the cache coherency impact on this kind of archi-
tecture. These proposals are however not tailored to the optimization
of cache management in the context of fine-grain sharing of simulation
objects among worker threads, and are also not tailored to the improve-
ment of the effectiveness of memory accesses in NUMA architectures
when cache misses occur. Furthermore, they focus on cache-adverse
operations such as the checkpointing, rather than more broad cache-
awareness for what concerns forward event processing. These aspects
are instead central for this thesis.
As for the enhancement of spatial and temporal locality, the work in
[33] has introduced an event execution strategy called demand-driven
PDES: it exploits the inherent locality patterns of event execution
according to which only some parts of the model are actively send-
ing/receiving messages at certain time periods. The authors, there-
fore, identify idle threads (with no events to process) and temporarily
de-schedule them from the CPU until they become active (with events
to process) again. However, this work refers to platforms based on
long-term binding, so it is not suitable for platforms exhibiting fine-
grain sharing of resources, since in the latter scheme worker threads
are always busy executing events for any available simulation object.
Furthermore, the authors explicitly de-schedule some threads, there-
fore directly operating on the lifecycle of threads to avoid the idleness.
In the solution proposed in this thesis, the lifecycle of worker threads

75

is not touched, but it is instead adopted a multi-level data structures
scheme to pick events to process to satisfy spatial locality at some
cache level.
As a matter of fact, the approach presented in this thesis is related to
classical mechanisms that have been used in operating systems in or-
der to CPU-schedule the different threads. In more detail, the perfect
load sharing approach, which has been used in Linux1, enables a same
thread to consume its residual ticks according to a batching scheme.
This enables the thread to exploit the caching system in a more effec-
tive manner, compared to the scenario where multiple threads that still
have ticks to spend on the CPU are dispatched in an alternate manner.
The proposal in this thesis also exploits a kind of batch-processing for
enabling a worker thread to process events of the simulation objects,
reducing the alternance and favouring also temporal locality (namely,
a touched memory area is likely to be touched again soon). How-
ever, since we are targeting optimistic PDES platforms, the solution
presented in this thesis also takes into account aspects that are not
considered at the level of the operating system technology, like the
need for avoiding timestamp order violations as much as possible, in
order to reduce the incidence of rollbacks.
As an additional point, this thesis also provides a multi-view mecha-
nism for handling the globally shared event pool, which allows reducing
the amount of memory areas touched by a thread while selecting the
events to be processed. In fact, as previously stated, the global queue
of events is a bottleneck due to the frequent scan operations needed to
pick an event to process. We want to reduce the likelihood of having to

1Available at https://mirrors.edge.kernel.org/pub/linux/kernel/v2.4/

76

https://mirrors.edge.kernel.org/pub/linux/kernel/v2.4/

scan the global queue with our locality-aware scheme. Several works
have been proposed which try to optimize the usage of event-pool data
structures, either shared or not, in the field of PDES systems (see,
e.g., [30, 107, 110, 111, 137]). Also, hardware transactional memory
has been exploited in speculative PDES on multi-core machines, par-
ticularly for consistent management of the accesses to a shared event
pool by the worker threads [49]. However, the multi-view approach
has not been considered by previous studies. Furthermore, this thesis
is still aligned with the trend related to non-blocking management of
shared data structures on multi-core machines. This enables provid-
ing the advantages of increased locality of the operations by threads,
avoiding at the same time the penalty due to thread blocking phases
when managing the shared event pool.
Considering the general field of parallel computing, there are works
that focus on spatial locality by making each thread work on a re-
duced size portion of data, sometimes automatically selected at the
compilation level [50]. This work specifically targets programs writ-
ten in Cilk. Other solutions, such as the ones tailored to task-level
parallelism (i.e. OpenMP), separate tasks in hot (already partially
processed by a thread) and cold (not yet processed) ones, and make
threads process their hot tasks with higher priority when they be-
come ready again for processing (see, e.g. [128]). One of the goals
of the work in [128] is to effectively manage task priorities, in order
to avoid having tasks being blocked by lower priority tasks, improv-
ing the overall utilization. Other works cope with the reduction of
shared-data access conflicts, which can have negative effects on the

77

caching hierarchy [79], aiming to improve the efficiency of synchroniza-
tion mechanisms on multi-processor/multi-core shared-memory archi-
tectures. Data-sharing access conflicts have also been considered in
the case of applications relying on transactional memory [31]. In this
work, the authors devised an approach to detect and solve transaction
conflicts, aiming to minimize the likelihood of conflict via a scheduling
mechanism, and providing a resolution scheme that prevents unneces-
sary re-execution of transactions. All the solutions described do not
tackle the combination of spatial and virtual time locality, as instead it
is considered in this thesis suited for speculative PDES. Furthermore,
we highlight that in the context of optimistic PDES targeting fine-
grained sharing of resources, the combination of spatial and temporal
locality for processing events on NUMA architectures have not been
tackled.

3.2 Checkpointing

As discussed in Chapter 2, speculative PDES some recovery mecha-
nisms are needed in order to solve possible causality violations. This
has been traditionally tackled through state saving techniques, or through
reverse computation. Since the focus of part of this thesis is to propose
solutions for the checkpoint operation, we will analyse what has been
done over the years in this context.
Several works have investigated how to exploit infrequent (e.g. peri-
odic) checkpointing techniques to optimize the tradeoff between the
cost of checkpointing and the cost of restoring a state that was not

78

checkpointed [36, 90, 103, 104, 106, 115, 129]. Other authors have
proposed the usage of acceleration based on hardware support to ex-
ecute the memory copy operations required to pack the state of the
simulation object in the checkpoint buffer [44, 109]. All these solutions
target the case of non-incremental checkpointing; hence, they can be
considered orthogonal to the solution we provide in this thesis.
Regarding works targeting incremental checkpointing, [149] and [98]
propose techniques based on binary-level instrumentation, while the
work in [116] proposes the usage of operator-overloading schemes in
the context of object-oriented programming. The objective of these
works is to support the fine-grain identification of write accesses to the
state of the simulation object in order to save reduced zones of the state
layout. These solutions can be extremely useful for scenarios of (very)
reduced volumes of write accesses to the object state. In contrast, as
part of this thesis, we investigate the opposite scenario of incremental
checkpointing, also for the case of non-minimal size zones updated by
the execution of the events. We note that the approach proposed in
this thesis also scales well with a reduced size of the state updated,
this is because the amount of state updated must be considered in the
context of the checkpoint interval. This means that even though an
event can update a small portion of the state, large portions of the
state can be updated in a whole checkpoint interval made of multiple
events.
While the instrumentation-based approach enables the identification

79

of dirtied memory areas at granularity lower than page size, its disad-
vantages come from the likelihood of multiple executions of the write-
tracking probe for a same memory zone. More in detail, the tram-
polines and the code blocks for determining the dirtied memory areas
are executed each time a memory-update instruction takes place, in-
dependently of whether the target memory has already been recorded
as a dirty zone to be checkpointed. This leads to spending CPU-cycles
for executing useless memory-write tracking activity, a problem that
becomes even more relevant when the incremental checkpoint is taken
infrequently, after a large number of processed simulation events.
Still for incremental checkpointing, the solution in [11] provides sup-
port for identifying all the memory updates through the reliance on
Performance Monitoring Units (PMUs) offered by modern processors.
Differently from this proposal, we can keep track of all the memory
writes targeting a specific page, or a group of pages, via the intercep-
tion of a single memory update, after which the write protection is
eliminated, rather than the interception of all the occurring memory
updates. Moreover, we can further scale down the costs of managing
memory updates through an approach based on buddy pages.
Other works have studied how to compare or mix incremental and non-
incremental checkpointing [91, 99, 117, 131]. This has been done via
the reliance on performance models, that can indicate the convenience
of one or another technique in a specific phase of the execution of
the simulation. This thesis is still orthogonal to these techniques and
could be exploited for building model variations to assess the best-
suited technique (the one proposed in this thesis or a different one) to
be used during any phase of the model execution.

80

Rollback and state reconstruction have also been supported using re-
verse computation techniques [15, 19], where backward execution steps
are used to rebuild the past state image that is requested when a
timestamp-order violation is detected. In the proposal in [15], the
backward steps are executed via the implementation of reverse event
handlers, while in the proposal in [19], they are executed via the run-
time generation of machine instructions for the reversing of memory
updates. These techniques have one major target: reducing the need
for large memory (for saving state information) while still enabling the
possibility of restoring a past state. However, as also discussed in [19],
they need to be integrated with checkpointing to avoid problems such
as the excessive number of backward steps for state reconstruction.
Therefore, this thesis is still orthogonal and likely combinable with
these solutions.
Regarding the management of incremental checkpointing in speculative
simulation via the exploitation of operating system write-protection
mechanisms, the work in [120] provides an approach for High-Level
Architecture (HLA) federations. In this work, the authors present
a solution where speculative execution is supported transparently for
the case of federate simulators designed to exploit the HLA conser-
vative (non-speculative) interface. Differently from what we propose
in this thesis, this solution has been mainly oriented to the compile-
time/runtime identification of the operating system pages that in the
address space are part of the federate state (rather than the Run-Time-
Infrastructure of HLA) and need to be write-protected for supporting
incremental checkpointing. However, each page is treated indepen-
dently of the others regarding write access interception and memory

81

copy for checkpointing. Differently, in this thesis, we address the costs
related to the management of operating system services, in particular
to the reduction of the number of SIGSEGV signals (caused by illegal
accesses in write mode) to be processed, after calling the mprotect()
system-call, thanks to the exploitation of a correlation model of mem-
ory updates based on buddy-pages.
The reliance on operating system services for page write protection
has been largely exploited in the context of checkpointing (full or in-
cremental) for fault tolerance (e.g. [3, 52, 63, 65, 101, 102]). However,
several of the proposed solutions leave the operating system kernel
with the task of opening the write permission to pages (e.g. after
a copy-on-write event). At the same time, most of these solutions
have the principal target of reducing the intrusiveness for materializ-
ing the checkpoints (namely, the page copies) on stable storage. In
this thesis, we cope with a different scenario since the checkpoints sup-
porting rollback for out-of-timestamp order event processing in spec-
ulative simulation do not need to be transferred to stable storage. In
fact, the out-of-timestamp order processing of events does not lead
to main memory loss, as instead it occurs in the case of faults. The
work in [89] exploits operating systems’ memory protection services to
track memory writes, devising a framework that captures all dynamic
memory allocations in order to manage the checkpointing request for
fault-tolerance purposes in large-scale scientific applications through
checkpoint-restart. Despite leveraging a similar technique as we do
in part of this thesis, the scope of the work is quite different. In fact,
while the work in [89] uses memory protection services to track written
memory pages and to analyse the access patterns in order to support

82

asynchronous checkpointing across multiple nodes in a distributed sys-
tem, in this thesis we use memory protection services to track written
pages, and we also devise a buddy-pages scheme to correlate the writ-
ten pages and avoid redundancies of the state saving facility. The goals
of the works are therefore different, as we aim to reduce the costs as-
sociated to the checkpoint saving phase by grouping multiple pages
through a correlation model. In fact, as part of the solution adopted
for improving the incremental checkpointing, we exploit the memory
access profile, and the correlation of memory writes on different buddy
pages, to optimize the incremental checkpointing operations. This is
fundamental in speculative simulation because of the intrinsic need for
(frequent) state restoration, hence relatively frequent checkpoints, in
the event of out-of-timestamp order speculative event processing.
Additionally, we not only leverage existing operating system services,
but we also focus on providing innovative operating system services
oriented to the lightweight and scalable tracking of page updates. In
particular, while the literature approaches oriented to fault tolerance
are based on determining if any thread of an application has accessed
whichever page of the address space in write mode [89], and therefore
they require mechanisms like IPI in order to support the cross-CPU
coordination when protecting pages from updates by multiple threads,
the solution proposed in this thesis is suited for tracking write-accesses
by a specific thread to pages destined to host the state of a specific
simulation object. Hence, we avoid at all the coordination of the dif-
ferent MMUs of the CPUs on-board of the machine when a checkpoint
interval is started for a given simulation object. At the same time we
support the cross-thread sharing of the accesses to the pages hosting

83

the state of a specific simulation object while still tracking memory-
write accesses, which is relevant when the objects are re-assigned to
threads (e.g., for load balancing/sharing) along their checkpoint inter-
vals.
For scenarios where the frequency of checkpoints needs to be higher,
such as, for example, the reliance on checkpointing for automatic er-
ror recovery in server-side applications, the work in [144] provides an
approach in which the hot pages of an address space are checkpointed
prior to their actual write access. The solution proposed in this thesis
has some points in common with the solution in [144], since we also rely
on anticipated page-level marking/checkpointing vs the actual write.
However, we also provide support for optimizing the opening of mem-
ory write permissions based on the notion of buddy pages. This is
done by relying on the correlation of the memory write accesses along
sequences of simulation events (see Chapter 5).
As a further optimization of the incremental checkpointing in spec-
ulative PDES, in this thesis we provide for innovative Linux Kernel
Modules techniques, to tackle the memory tracking at the level of the
PTEs. The goal is to reduce the intrusiveness of the aforementioned
mprotect() system-call in terms of cross-CPU coordination (see also
Chapter 2).

3.3 State Trajectory Inspection

A crucial aspect of speculative PDES systems, discussed in Chapter 2,
regards the computation of the Global Virtual Time (GVT), that has

84

been extensively studied over the years, (see [42, 45, 55, 100, 132]) in
order to optimize its computation and adapt it to the emerging shared-
memory platforms.
This topic, and the other ones covered by the literature regarding
load-balancing and state management in speculative PDES (see Sec-
tions 3.1 and 3.2), are preparatory to one aspect that has been dealt
with in a limited manner in the PDES community, that is the access to
the committed portion of the execution trajectory, as also mentioned
in Chapter 2, e.g., in order to determine specific properties that are
matched (or not matched) by the model that is being simulated and/or
to produce output data on-line.
In fact, the management of output data produced along the execution
of simulations, as well as the dynamic evaluation of predicates and the
representation of statistics, and their variations, related to the simula-
tion trajectory represent increasingly relevant aspects. They are among
the core aspects to be managed when exploiting simulation in complex
scenarios like the one of providing a support for making decisions in
a pandemic like COVID-19 [71]. In this area, some recent works have
focused on exploiting mechanisms for an effective rendering and for the
on-line analysis of simulation data [34, 67, 68, 119]. These solutions
are suited for processing data after they have already been produced.
Compared to these proposals, the presented approach in this thesis
is orthogonal since we provide mechanisms operating at the level of
the speculative PDES engine in order to support the on-line data pro-
duction process with low overhead and high timeliness, in particular
considering the need for accessing state information that belongs to
the past committed portion of the speculative simulation run and is

85

no longer materialized into the states of the simulation objects.
The work in [152] provides a solution for the reduction of the storage
and processing cost related to data management in agent-based simu-
lations in the Cloud. This solution avoids storing of large amounts of
raw output data by exploiting stream data processing, which is used
to generate the result dataset along the simulation model execution.
Like the aforementioned literature studies, this work is still focused
on the management of data after their production, while part of this
thesis is focused on effective mechanisms for the production of data,
in particular when considering speculative simulation and considering
the relation between current/committed state images and their mem-
ory layouts.
As for the management of simulation output streams, the work in
[4] presents a solution for enabling a speculative simulation engine to
support applications where the handler that executes events with no
assurance of their causal consistency can also produce output data, for
example by relying on the standard printf() function. In this solu-
tion, the output data are then annihilated or are actually reversed on
the standard output channel for their commit, depending on whether
the execution trajectory of the simulation object that produced them
is finally committed, or is rolled back. This solution is essentially
oriented to transparency, and has the major objective of enabling a
simulation model developer to use standard libraries for output data
production when writing the simulation software that will be processed
optimistically. In this thesis, we tackle a different scenario, where the
production of output data does not take place in the handler that pro-
cesses the events. Output data are instead produced by a different

86

handler, which receives in input a past and committed state snapshot
of a simulation event. In this scenario, there is no cost for producing
output data that are eventually retracted, which makes it more suited
for extremely reduced intrusiveness of the output activities with re-
spect to actual simulation processing. We also tackle an effective way
of identifying and access the committed global state to allow output
collection, as we will discuss in Chapter 6.
The global state identification has been a relevant problem in dis-
tributed systems for decades, and in work [7] it is thoroughly described.
In particular, while in [7] the authors focus on the identification of a
committed global state in the context of a distributed system based on
message-passing, we are in the context of speculative PDES, and the
committed global state refers to a state which is considered safe (i.e.
not subject to rollback). Similarly to what proposed in this thesis, [7]
needs to rely on snapshotting the state of the application to maintain
consistency across the nodes in the system, the proposed solution in
this thesis leverages common checkpointing support to inspect the com-
mitted global state. The work in [7] gives some fundamental concepts
on the relevance of accessing a committed global state, even though in
the context of speculative PDES we have to consider several challenges
related to the speculative nature of event processing and also related
to the multi-core shared-memory machines we are targeting, that allow
us to exploit a fine-grain sharing of resources.
In order to effectively access the committed global state for trajectory
inspection, we must make sure that the state being accessed cannot
suffer from causality violations, so its virtual time must be lower than
the current GVT value. Since we also want to guarantee progress of the

87

simulation, freezing the simulation in order to wait for a simulation ob-
ject’s state to be outdated is not a feasible approach. In the literature,
state-swapping has been studied in order to tackle this problem [21].
In this work, the authors provide a heuristic mechanism for identifying
a committed consisted global state (i.e., with no events not recorded
in the history which has generated some other event that is instead
recorded in the same history), and provide an algorithm for making
the worker threads reconstruct the local state of each object which
belongs to the consistent global state. This algorithm is based on the
above-mentioned state-swapping, which allows temporarily swapping
the current state S ′x of a simulation object with a committed one Sx

which is rebuilt in memory (possibly in the same memory area where
S ′x stands) using common approaches for state recovery in speculative
PDES. In this solution, Sx is typically the closer state that has been
passed through by ox before the new GVT value. This enables the
alignment of the inspected state to the latest committed logical time
of the simulation. However, in the scenario tackled by the literature,
each simulation thread has its own set of managed objects (namely, the
long-term binding based approach). This implies that when thread
Ti needs to swap the state of the simulation object ox that it man-
ages, there will be no other thread capable of touching the state of
ox concurrently. This is because of the binding between threads and
simulation objects, that in this case guarantees that no interference
across threads will occur when swapping the states. Hence, it is not
suitable for modern speculative PDES platforms to be run on top of
multi-core shared-memory machines that support the full-sharing of
the workload among all the worker threads [54, 56]. In this scenario,

88

the realignment to the committed state value of an object ox needs to
avoid interference with respect to the regular operations carried out
on that object by some other worker thread. We note that similar
considerations apply to simulation engines that can run on a cluster
of shared-memory machines, where fine-grain workload sharing among
worker threads can be adopted within each node in the cluster.
Furthermore, in [21] there is no specific mechanism for contextually
moving all the threads to the management of the output data produc-
tion phase. These are crucial aspects for reducing the latency of output
production, which are instead the main targets in this thesis. As an
additional core aspect, the literature does not consider that a thread
which is faster than others in swapping its simulation objects states
can then resume processing the events of these objects before other
threads, possibly leading to over-optimism in their execution. We in-
stead tackle this issue in this thesis by exploiting the IPI architeture to
enable a prompt and simultaneous notification to all the threads that
it is time to do the state-swapping operation.
The work in [2] addresses issues concerning global termination condi-
tions in simulation applications. This is done via categorization of non-
trivial termination predicates, and via the introduction of algorithms
suited for detecting predicates in different categories. These algorithms
implicitly assume the availability of complete state histories of the sim-
ulation objects for evaluating the termination conditions. The solution
proposed in this thesis is instead focused on effective simulation-engine
mechanisms for managing the phase related to the re-construction of
some committed (global) state, for which the check of predicates can
be carried out on-the-fly.

89

Chapter 4

Spatial/Temporal Locality-based
Load-sharing

As mentioned in previous chapters, efficiently executing speculative
PDES applications on multi-core shared-memory machines presents
several challenges, for example related to workload distribution and
memory efficiency. Addressing these challenges is critical for improving
the performance and scalability of simulation systems, especially in the
context of PDES platforms exhibiting fine-grain sharing of resources,
such as the one described in [54]. In such systems, in fact, there
is a general lack of memory awareness in terms of access patterns
throughout the memory hierarchy, and this fails to exploit the inherent
characteristics of shared-memory machines. This is why we developed
an innovative event processing mechanism, based on a spatial/temporal
locality-based load-sharing scheme to process simulation events, also
leveraging a dynamic window-based approach to manage the batch
processing of events. We also consider NUMA awareness, devising a

90

simulation object migration scheme in order to effectively balance the
workload in unbalanced simulation models.

4.1 Baseline Architectural Concepts

4.1.1 Distance between Threads

We define a notion of distance between threads, that has a relevant role
on how we tackle memory locality and memory hierarchy awareness.
We denote with Di,j the distance between thread Ti and thread Tj,
which is clearly symmetric among the two threads. Also, we denote
as MaxD the maximum distance we have among two threads in the
PDES system, which corresponds to the distance between two threads
running on two processing units that only share the RAM level of the
memory hierarchy on UMA machines, or are pinned on distant NUMA
nodes in a NUMA machine. On the basis of the above considerations,
we also have that 0 ≤ Di,j ≤MaxD for any couple of worker threads
Ti and Tj.

4.1.2 Simulation Object Memory Layout

We consider a general memory usage approach for simulation objects,
where dynamic-memory allocation, e.g. the usage of malloc services,
is adoptable while handling the state layout of an object. Also, any
dynamic allocation request is served by a cached allocation sub-system
that pre-allocates the memory segments destined to host chunks of a

91

given simulation object’s state. Furthermore, the segment destined for
the allocation of chunks belonging to the state of a given object is based
on the mapping of specific virtual pages in the address space of the sim-
ulation application. Hence, different simulation objects will have their
states hosted by disjoint sets of virtual pages. This enables locating
an object state—its virtual pages—on a NUMA node X , or migrating
it to a NUMA node Y with no impact on the physical memory posi-
tioning of other simulation objects—just thanks to the disjointness of
the sets of pages hosting them. The NUMA-oriented version of Time
Warp presented in [96], already adopts a similar scheme for managing
the states of the objects, which we simply adhere to in this thesis.

4.2 Locality Aware Scheme

The above-defined notion of distance between worker threads takes
into account spatial aspects related to the memory locations that are
used while running the simulation. In particular, if one thread Ti has
touched a given area of memory recently, then any other thread Tj

whose distance from Ti is low will more likely find such memory area
hosted in higher-level caching components. This can favour process-
ing activities by Tj. At the same time, if the simulation object for
which Tj has picked its next event to be processed is no longer kept
into some caching component (e.g. because of cache replacement with
other data), then having this object currently located on the NUMA
node close to the processing unit where Tj is pinned can still favour the
processing activities of Tj, and at the same time can indirectly favour

92

the activities by other threads because of the reduction of NUMA in-
terconnection traffic.
Beyond that, one important aspect is how temporal locality affects
speculative PDES simulations. In particular, we want to avoid that
this kind of locality-aware processing makes logical clocks of simula-
tion objects managed by different threads diverge. If clocks diverge, we
might have synchronization issues due to the generation of rollbacks
along the speculative execution, and consequently performance degra-
dation [133].
In order to avoid this, we introduce a window W of simulation time
to decide the actions of a thread. Even though the use of a time
window has been considered in the literature [6, 28, 29, 90, 108], we
consider the window W according to a new perspective. In fact, the
role of our window based mechanism is to increase spatial locality, com-
bined with the afore-mentioned distance Di,j between threads, and the
NUMA placement of simulation objects. We do not exploit window
for throttling purposes, namely for stopping events’ injection into the
system, rather, we exploit it for scheduling simulation objects with
events’ timestamps still falling in the window range with higher prior-
ity compared to others. In Figure 4.2.1 we show a scheme of our idea
combining temporal locality along virtual time and spatial locality. In
this scheme, thread Ti starts processing the white events destined
to some simulation objects, leaving the blue events not processed in
the meanwhile, since they are destined to another simulation object,
event though they have a lower timestamp. This gives rise to a batch
processing of white events, and it likely avoids that the state of the
target simulation object is replaced in the higher level of the cache

93

hierarchy because of the switch to the processing of events, by thread
Ti, from another simulation object. This favours the likelihood of serv-
ing memory accesses though the higher levels of the caching hierarchy
along the batch of 3 white events. Now, let’s imagine that one white
event produces a yellow event, still falling in the window W . Also,
Ti has previously scheduled a simulation object to process another
yellow event, which is now committed since the GVT is ahead of
its timestamp. It is likely that the state of the target simulation ob-
ject is still present in some cache level. At the same time, another
thread Tj becomes available, and since it shares some high cache level
with the thread Ti, it can take advantages in terms of memory access
latency by picking the yellow event that falls within the window,
rather than picking the blue event. In other words, Tj can still benefit
from spatial locality favouring the access to the state of an object that
was previously fetched into a close cache component, before scheduling
other simulation objects not recently accessed by threads at lower dis-
tance from Ti. The just described scenario focuses on the scheduling of
simulation objects, in particular on the improvement in the exploita-
tion of simulation objects’ states that were recently fetched in close
cache components. As mentioned, we also tackle the optimization of
memory access due to cache misses, which is particularly relevant in
NUMA platforms. The window is also exploited to decide whether a
thread available for processing events has to schedule a simulation ob-
ject located on the same NUMA node on which the thread is pinned.
In Figure 4.2.2 we see this scenario: a thread Tj is available for event
processing, but, differently from the case in Figure 4.2.1, cannot ex-
ploit a simulation object that has been previously cached in a close

94

GVT GVT+W

T
i
 , T

j
 : Threads sharing the same cache

Simulation
time

Temporarily
unprocessed
events

Currently being processed

T
i

T
j

E E

Event being processed/to be
processed

Unprocessed event

Events destined to 3 different
simulation objects

Simulation object
evicted from pipe

i

E

To be processed

Previously processed

Figure 4.2.1: Joint exploitation of temporal and spatial locality at cache level.

caching component. Hence, it needs to schedule any other simulation
object, and this would translate to traversing the global event pool.
Instead, we see that Tj decides to schedule a simulation object to pro-
cess a blue event falling into the window W , because the simulation
object is placed on the same NUMA node the thread is running on,
leaving the white events unprocessed, since they are destined to a
simulation object on a far NUMA node, despite having lower times-
tamp. The expected benefit is the reduction of the actual latency for
event processing due to a reduction of the miss penalty. At the same
time, leaving the white events unprocessed can favour their picking
from another thread Ti pinned on that NUMA node. As mentioned,
we adopt a short-term binding of simulation objects to worker threads
to carry out a sort of batch processing, but in order to enable the

95

GVT GVT+W

Simulation
time

T
i, X

T
j, Y

T
i, X

 : Thread i running on NUMA node X

T
j, Y

 : Thread j running on NUMA node Y

Currently being processed

Event destined to a simulation object
on NUMA node X

Event destined to a simulation object
on NUMA node Y

To be processed

Figure 4.2.2: Joint exploitation of temporal and spatial locality at NUMA
level.

exploitation of spatial locality and the improvement of caching effec-
tiveness, worker threads do not just keep one simulation object bound
to them. Rather, they keep a set of simulation objects, whose events
have been processed by those threads recently. The objects’ manage-
ment is carried out via a pipe of simulation objects, denoted as pipei,
associated with each worker thread Ti. Each time the worker thread
picks an event destined to some simulation object from the shared
event pool, that simulation object is put into the associated pipe as
the standing element, independently of the object being already in the
pipe. In this way, the order according to which the simulation object
appears in the pipe, denotes the time distance according to which the
worker thread has managed that object, leading to fetch its state from
a higher level of the caching system. Since the pipe is represented with

96

an array in our implementation, and we will discuss how its size has
been parametrized, it has a bounded size value, which means that in
order to save a simulation object as a standing element, some other
element might be discarded. This implies that the discarded object is
no longer bound to the worker thread, and it might be managed by an-
other worker thread. As we can see in 4.2.1, this is what happens with
the object associated to the yellow events. We can further exploit
the knowledge of the recently evicted simulation objects from the pipe,
because it is possible that their state information might still be present
in a lower cache level. To keep these simulation objects into account,
to further improve the overall caching hierarchy access, each worker
thread Ti also manages an additional pipe, called evicted_pipei, in
which recently evicted simulation objects bound to Ti are put. This
works exactly like the pipe, but when an object is discarded from the
evicted pipe, it is simply eliminated because of the lack of space.
Of course, improving caching management and exploiting spatial/tem-
poral locality on these kinds of PDES platforms impose some con-
straints on the amount of batch processing actually beneficial. In fact,
as discussed in previous sections, the GVT computation is a crucial
problem in PDES systems, especially considering shared-memory ar-
chitectures and fine-grained workload sharing. To briefly recall, the ad-
vancement of the GVT is determined by the change of the state in the
shared event pool, and so represents overall simulation progress. Con-
sequently, we have a frequent move forward of the GVT, and therefore
a frequent move forward of the simulation time window [GVT, GVT +
W]. So, the core idea of our scheme is the one of processing at thread
Ti as many events as possible associated with the simulation objects in

97

pipei, as long as the timestamps fall within the interval [GVT, GVT +
W]. Clearly, when the GVT stops advancing, since we temporarily did
not process events destined to other simulation objects, the content of
the pipe needs to be updated. So, each worker thread Ti can either pick
a different simulation object from an evicted pipe associated to some
other worker thread Tj close to itself, or consider simulation objects
located on the same NUMA node it is pinned on.

4.3 Workload Management Scheme

In Algorithm 4.3.1, we show the simulation loop executed by each
worker thread. At the beginning of each iteration, the thread at-
tempts to pick an event from a simulation object that allows exploit-
ing spatial and temporal locality. This is done by invoking Local-
ityAwareSchedule() to extract a simulation object in the pipe.
If the function returns no event and no object, meaning that it is not
possible to exploit the locality aware scheme, the thread simply picks
the event with the smallest timestamp, following the classical rule, by
invoking SmallestTimestampSchedule(). Anyway, if an event
e is picked, associated with an object o, before processing the event a
call to UpdatePipes() is made, which updates the pipes (pipe and
possibly evicted_pipe) associated to the worker thread, listed in 4.3.2.
Then, a check on the event e’s timestamp must be done, because it
is possible that the event e is in the past with respect to the current
logical time of the object o. If this is the case, a rollback must be exe-
cuted. We will not discuss here how the rollback procedure is carried

98

out, since it does not concern the spatial/temporal locality scheme,
but it will be thoroughly discussed throughout the rest of the thesis.
At the end of each iteration, a call to GVTOperations() is made,
to manage the advancement of the simulation.

Algorithm 4.3.1 Simulation Main Loop
1: procedure SimulationLoop
2: while ¬ simulationComplete() do
3: event e, object o ← LocalityAwareSchedule()
4: if e = null then
5: e, o ← SmallestTimestampSchedule()
6: end if
7: if e ̸= null then
8: UpdatePipes(o)
9: if timestamp(e) < o.LocalVirtualTime then

10: Rollback(e, o)
11: end if
12: event new_events ← Execute(e)
13: InsertIntoPendingEventPool(new_events)
14: end if
15: GVTOperations()
16: end while
17: end procedure

The Algorithm 4.3.2 shows the workload management using the load-
sharing locality aware mechanism we developed. Every time a sim-
ulation object is chosen to process an event, it is temporarily locked
and then unlocked when the processing is finished. The locking ac-
tual implementation is based on try-lock primitives, which does never
lead a thread to actually block its computation if the object is not
available, e.g. if it has been already locked by another thread. So, the
function LockAndGetNextEvent() might return successfully an
event to process, locking the simulation object, or "null"; the function

99

Algorithm 4.3.2 Locality-based Load-sharing Management Functions
1: function LocalityAwareSchedule() return (event, object)
2: thread_id i ← GetCurrentThreadId()
3: bool found_obj ← T RUE
4: while W ̸= 0 ∧ found_obj do ▷ This loop should be executed if and only if the window is set
5: found_obj ← F ALSE
6: for k ← 0 to pipei.size do ▷ Iterate over each object in the pipe of the current thread
7: object o← pipei[k]
8: e←GetNextEvent(o) ▷ Obtain the next event of the object
9: if e ̸= null ∧ timestamp(e) ≤ Limit() then ▷ Check if the event timestamp belongs to the window

10: return (e, o) ▷ An event with timestamp in the window has been found
11: end if
12: end for
13: uint distance← 0 ▷ No object has an event with timestamp falling in the window
14: while distance < MaxD ∧ ¬found_obj do ▷ Scan the evicted pipes of other threads according to their distance
15: thread_id th_pool[] ← GetThreadsAtDistance(distance++)
16: for h← 0 to th_pool.size do ▷ Multiple threads might have the same distance from thread i
17: thread_id j ← th_pool[h]
18: found_obj← ChooseObjectFromOrderedSet(evicted_pipej) ▷ If returns TRUE, an object from
19: the evicted pipe of j has been added to the pipe of i
20: if found_obj then break ▷ A new object has been found
21: end if
22: end for
23: end while
24: if ¬found_obj then ▷ No objects have been found, so look for in the local NUMA node
25: object numa_objs[] ← GetAllObjectsFromLocalNumaNode() ▷ Retrieve objects bound the
26: local NUMA node
27: found_obj← ChooseObjectFromOrderedSet(numa_objs) ▷ If returns TRUE, an object from the
28: local numa node has been added to the pipe of i
29: end if
30: end while
31: SquashPipe(i) ▷ No object has been found in any pipe, so release any object in the pipe of the current thread and return
32: to the main simulation loop
33: return (null,null)
34: end function
35: function Limit() return simtime_t
36: return GVT+W
37: end function
38: function ChooseObjectFromOrderedSet(object objs[]) return bool
39: for k ← 0 to objs.size do ▷ Look for an object having the next event falling within the current window
40: ox ← objs[k]
41: e← LockAndGetNextEvent(ox)
42: if e ̸= null ∧ timestamp(e) ≤ Limit() then ▷ An event has been found
43: UpdatePipes(ox) ▷ insert the object in the pipe of the current thread
44: return T RUE
45: end if
46: Release(ox)
47: end for
48: return false
49: end function
50: function UpdatePipes(object o) return void
51: thread_id i ← GetCurrentThreadId()
52: if o ̸= null then
53: object o′ ← pipei.insert_or_update(o) ▷ insert the object in the pipe of the current thread, or update the pipe
54: putting the object as the standing element
55: UpdateEvictedPipe(i, o′)
56: end if
57: end function
58: function SquashPipe(thread_id i) return void
59: while pipei.size > 0 do
60: o← pipei.removeAt(0)
61: UpdateEvictedPipe(i, o)
62: end while
63: end function
64: function UpdateEvictedPipe(thread_id i, object o) return void
65: if o ̸= null then ▷ an object has been evicted from pipei

66: Release(o)
67: evicted_pipei.insert_or_update(o)
68: end if
69: end function

100

Release() is used to unlock the simulation object. The function
Limit() always returns the value of GVT + W, and it determines the
simulation time bound up to which an event can be processed accord-
ing to the locality scheme (cache or NUMA based). It is important
to note that the value returned by Limit() is volatile, because the
real GVT value can be moved forward by some thread while another
thread has executed Limit().
The function LocalityAwareSchedule() is the core of the local-
ity aware scheme. When a thread Ti calls it, it tries to pick an event
kept in pipei with the timestamp lower than the value returned by
Limit(). If this is not true, Ti tries to pick an event from evicted_pipei

or from an evicted_pipe of some other worker thread, still considering
Limit() as the upper bound. This is done considering closer threads in
terms of the previously defined notion of distance. Otherwise, thread
Ti tries to get a simulation object located on a close NUMA node.
When it picks a simulation object, it puts it into pipei and starts pro-
cessing the event.
The attempt of picking events from other sets different from pipei, is
made calling the function ChooseObjectFromOrderedSet(),
which tries to pick one of the objects from the set received as an input
parameter. This set is an array, and it can be the evicted_pipe of
another thread (close in distance to the calling thread), or an array of
objects located on the same NUMA node on which the calling thread
is pinned. Clearly, all the simulation objects standing into pipei have
been previously locked by Ti.
If none of the previous attempts succeed, then Ti simply gets a sim-
ulation object from the shared event pool with the classical lowest

101

timestamp policy. We highlight that, in this case, it might happen
that the picked event e has its timestamp larger than the value com-
puted by Limit(), and this is completely fair since we are not actually
exploiting locality. As a final note, the shared event pool is also ac-
cessed to pick events if the window size W is not greater than zero,
and we will discuss the importance of the window size tuning soon,
since it is relevant for the exploitation of locality in combination with
simulation progress guarantees.
In the implementation, the acquisition of a simulation object present
in some evicted_pipe is managed through a while loop, even though it
ends as soon as we successfully get a non-null simulation object whose
event falls within the time window. Such an iteration might need to
pass through all the eviction pipes of all the other threads, potentially
requiring numerous iterations. To reduce these costs, the iteration can
be carried out by not scaling the considered distance up to maxD.
This will favour the picking of simulation objects relatively closer to
the calling thread. As an example, we might run the iteration by
searching only on the eviction pipes of the threads that share L1/L2
caches, limiting the number of iterations to, e.g., the number of hyper-
threads or multi-cores present in a single processor.
Another aspect to consider is that the eviction pipes are accessed by
both the owner thread, in write and read mode, and the other threads,
in read mode. However, no actual synchronization, in terms of critical
sections, is requested. In particular, since simulation objects’ identifier
are represented as basic data types, namely unsigned integer, can be
read/written atomically in a circularly managed array by relying on

102

common processor support. At the same time, the reading of a sim-
ulation object identifier that is currently being evicted by the owner
of the eviction pipe will simply lead the reader to consider as pickable
for processing a simulation object that is less favourable in terms of
spatial locality, respect to the new one that is being inserted into the
eviction pipe.
Additionally, simulation objects cannot suffer from starvation due to
unlimited delay for processing their events. In fact, if an object o is not
dispatched on any worker thread for some time, one of its events will
become the minimum-timestamp event in the shared event pool. In
this case, the GVT will not advance until this event is processed, and
all unprocessed events targeting other simulation objects will eventu-
ally fall beyond GVT+W, forcing the fetch of events from the shared
event pool.

4.4 Multi-view Event Pool Management

We mentioned that our target PDES platform presents a fully-shared
simulation workload among worker threads, and this makes the shared
event pool crucial. It requires synchronization mechanisms in order
to provide scalability for concurrent accesses. This has been typically
tackled by relying on non-blocking algorithms, in particular lock-free
[46, 66, 73].
As we enhance locality with our load-shared scheme, further improve-
ments are needed regarding the data structures used by the threads
in order to reuse per-object metadata, especially in the situation of

103

batch processing of events from the same simulation object. The goal
is to reduce the impact of accessing the shared event pool, which is
still present and might limit the performance reached by such a load-
sharing scheme. Typically, lock-free event pools are designed as linked
data structures, that are known to be ineffective in terms of cache
utilization, and this worsens with its size and with a higher degree of
concurrency. Consequently, traversing a fully-shared large-size event
pool might reduce the effectiveness of any approach that tries to en-
force locality when scheduling the simulation objects. Furthermore,
lock-free algorithms make use of Read-Modify-Write (RMW) instruc-
tions, that can have a significant negative impact on caches. For these
reasons, our approach exploits a multi-view shared event pool, such
that a thread can choose a properly selected view of the event pool
that suites to its current activities. Each of these views give rise to
different memory access patterns, leading to different impacts on the
memory hierarchy.
In one of the views, which we refer to as local, a worker thread can
retrieve the next event to be processed for a specific simulation object
bound to it, namely one of the objects in the pipe, without traversing
the shared event pool. The worker thread needs to fully traverse the
shared event pool only when it needs to look for an event not destined
to any of the simulation objects bound to it, and we refer to this view
as global.
We then exploited a multi-layer solution to build the multi-view event
pool, in order to preserve the lock-free management. At the bottom
layer, we use the lock-free shared event pool used by the USE platform
[54]. This solution has been shown to be effective and scalable when

104

committed aborted
to be

executed
to be

executed
to be

executed
to be

executed

Global index

Local Index

Input channel

Simulation object
metadata

 Event buffers

Identifier of the
target object

Hash table
Current NUMA node
of the object

Figure 4.4.1: Visual representation of the multi-view shared event pool.

a thread needs to traverse the event pool according to the global view
(see Chapter 2). At the same time, an additional layer has been devised
to provide the support for the local per-simulation-object view of the
events in the pool. The scheme is shown in 4.4.1. The shared event
pool can be accessed by the means of either the global index, from
which each event in the pool targeting any simulation object can be
retrieved, or by N local indexes, where N is the number of simulation
objects in the system, which allow a worker thread to only traverse
events targeting one specific simulation object. Since any simulation
object is processed by one worker thread, specifically the one that took
the lock on the object, its events and metadata, including the local
index, are respectively processed and updated by one thread at a time.
This means that the local index can be implemented according to any
sequential specification, allowing us to have a very simple and effective
way to retrieve the next event to executed destined to a simulation ob-
ject. One important thing to notice is that both the global and local

105

indexes maintain references to the actual events in the shared event
pool, so they are not required to be coherent to each other, minimizing
the need for synchronization when updating them. Additionally, no
particular order is required for updating on or the other index, unless
there is some specific need by the simulation platform. For instance,
we choose to first update the global index because we exploit it to
assign a tiebreaker to simultaneous events with a FIFO policy.
In order to allow worker threads to target any object when produc-
ing new events for it, even though the object is not currently bound
to the thread producing the events, the newly generated events are
not directly inserted into the target local index. Rather, they are in-
serted into an input channel associated with the target simulation
object, and it is then lazily processed by a thread when updating its
pipe. More specifically, newly generated events are first inserted in
the shared event pool by updating the global index, and then in the
input channel of the target simulation objects. Whenever a simulation
object is managed by a worker thread, its input channel is flushed and
its content (the events) is used to update the local index. In our imple-
mentation, the input channel is a simple non-blocking stack, which has
the nice property of allowing O(1) insertions and O(1) bulk removals
with an individual RMW instruction.
The event pool is then linked to a hash-map that enables to retrieve
the current NUMA node hosting a given simulation object. In partic-
ular, the identifier of a simulation object, which is kept by any event
buffer into the pool, can be used as an access key to the map. The
global index in combination with the hash-map is exploited to pick an
event, whose timestamp falls into the window w, to process targeting

106

a simulation object whose state is located on a close NUMA node. In
our implementation, the hash-map exploits the fact that the access
keys, namely the simulation object identifiers, are in a known interval
of values ranging from 0 to N -1, with N being the number of simu-
lation objects in the system, hence completely avoiding collisions and
guaranteeing O(1) access cost. Also, since the probability of finding
an object located on the close NUMA node increases while traversing
events on the global view, simply because the number of explored ob-
jects does not decrease, our solution is expected to guarantee a reduced
complexity while managing the NUMA-aware picking scheme.

4.5 Dynamic Window Management

As pointed out, the window W is used to identify, starting from the
GVT, a simulation time interval in which batch processing is possi-
ble. It helps to determine the batch of events destined to a certain
simulation object, which can be processed out of order with respect
to the timestamps of events destined to other objects. Also, W has a
role in determining which simulation object is more favourable to be
dispatched in terms of spatial locality when a worker thread needs to
establish a new short-term binding, and it should also help to identify
what events can be currently be executed without increasing too much
the probability of causality violations – and consequently of rollbacks.
The core issue for choosing the size of W is related to the fact that
running with a size larger than zero gives rise to runtime dynamics
that might be different from those related to the size zero. However,

107

if we run with a value associated to W larger than zero along any ex-
ecution phase, we are not able to determine whether changes in the
runtime dynamics, e.g. rollback occurrence, are exclusively caused by
the value of W or are also due to specific runtime dynamics, such as
event exchanges or variations in event granularity, at the level of the
simulation model. As a consequence, the configuration with W = 0
represents a reference to take into account along the various phases of
the simulation model execution.
To cope with this aspect, we manage the window W through a state
machine, where the value zero is infrequently assigned to it, based on
specific conditions met during simulation execution. Also, in the inter-
val between two assignments to zero, the state machine tries to enlarge
the window’s size as much as possible, until no negative effects are gen-
erated on performance due to the increase of the amount of rollbacks.
The enlarged value is kept until the next reset of the window size is
carried out. In other words, while running in an interval between two
resets, we focus on the effects of the window size on the rollback inci-
dence. However, we end the current interval as soon as we recognize
a change of the model execution dynamics, standing aside pure syn-
chronization. In the above-mentioned state machine, two parameters
are taken into account: the first one is related to the determination of
changes in the rollback occurrence, either caused by the window size
or by specific variation of the executed model, while the second one is
related to the step of increment of the window W adopted.
A consideration must be done: this locality-aware approach for shar-
ing the workload presents performance improvements even in the case
of a slight increase of rollback occurrence caused by the non-negative

108

window size, thanks to the reduction of the average memory access
latency experienced along the execution. The rollback pattern is com-
plex, since it is based on both the frequency of rollbacks occurrence,
and the length of the rollback phase, namely the amount of events
undone. Depending on how the rollback support is implemented, e.g.
checkpointing or reverse computation [15, 19, 103, 104], and on model
specific features, such as the granularity of the simulation events, these
two aspects can have a complex impact on performance. In order to
capture the joint effect of rollback frequency and rollback length on
performance, in combination with the actual locality-awareness ap-
proach, we based the state machine for selecting the window size W
on the speed of commitment of the simulation. Hence, we decided to
consider the event rate (the number of events committed per each wall-
clock-time unit) as the parameter that enables determining whether the
increase of W, after a reset, is generating negative effects. However,
the event rate does not allow us to identify the effects on performance
caused by changes in the size of W in scenarios where performance is
also affected by some change in the execution profile of the simulation
model, so we also consider the average granularity of simulation events.
If the granularity considerably changes, we are in a scenario where a
new setup of W may need to take place.
Denoting with erx the event rate at its x-th observation, and with δy

the average event granularity at its y-th observation, the state machine
resets W each time the following condition holds:

 erx

erref
< 0.9

 OR

0.6 >
δy

δref

 OR

1.4 <
δy

δref

 (4.1)

109

where erref and δref are respectively the reference event rate and the
reference event granularity, both measured in the observation interval
the follows the last reset of the window.
By Equation 4.1, we decided to reset the window size more aggressively
when the event throughput (i.e. event rate) decreases vs erref , with
respect to changes in the event granularity. In fact, for the event gran-
ularity we tolerate changes, positive or negative, up to 40%, because
our approach is expected to provide changes in the event granularity
while increasing W thanks to the locality-aware approach and the im-
provement of caching/NUMA effectiveness.
One final aspect regards the stabilization of the window size value W
before any reset is applied. We simply use a hill climbing algorithm vs
the event rate, stopping the climbing scheme as soon as we observe a
maximum, as shown by the state machine scheme n figure 4.5.1. The
step to increase W is based on a parameter ∆ which we set to the
average increment of the local virtual time of the simulation objects
related to the processing of any new event. This helps to increase the
size of W by having the opportunity to increase the size of the batch
of events destined to an individual simulation object along any step of
the climbing procedure.

4.6 Dynamic NUMA Placement of Simulation
Objects

The previously described locality-aware mechanism already benefits
performance, but NUMA locality can still be improved if threads are

110

S0 S1

Start adaptation/
Enlarge window

S2

Throughput
decrease /
Shrink
window

Throughput
stable / Do
nothing

Large throughput or event
granularity variation /
Reset window

S0 : window is set to zero S1 : window is set to a
value greater than zero

S2 : window is not changed

Throughput increase /
Enlarge window

Figure 4.5.1: Scheme of the state machine for managing W (throughput de-
notes the event rate).

not penalized in the possibility of choosing a simulation object residing
in its close NUMA node, rather than one hosted by a remote node). To
reach this objective, our solution also embeds a scheme that enables a
balanced distribution of event processing activities among the different
NUMA nodes.
We indicate with ϕx the average inter-arrival time of events to the
simulation object ox along virtual time, and with CPUx the average
CPU time for processing an event destined to ox. Based on these two
parameters, we can introduce a weight wx for simulation object ox,
computed as:

wx = CPUx

ϕx
(4.2)

This weight represents the per-simulation-time-unit incidence on CPU
caused by the processing of events destined to the object ox. The goal

111

is to keep the sum of the weights of all the simulation objects hosted
by a node balanced among all the NUMA nodes.
In particular, indicating with wNODEy

the weight related to the simu-
lation objects hosted by NUMA node Y , which we can compute as:

wNODEy
=

∑
∀ox on NUMA node Y

wx (4.3)

we decided to periodically perform a migration of simulation objects
among NUMA nodes in order to get the distance between the maxi-
mum and the minimum value of wNODEy

values lower than a threshold.
According to the greedy approximation policy [23], the threshold dis-
tance we consider is 30%. However, we did not choose to perform
aggressive migrations of simulation objects to match the threshold,
since moving virtual pages across NUMA nodes via operating systems
services has a cost. In fact, the CPU would synchronously work on
data move tasks, like physical page allocations on the target node and
data copies from the source node, as soon the service of the operat-
ing system is called, namely move_pages(). Rather, we decided to
achieve a well-balanced configuration over time according to a lazy
approach, by just moving, at each re-balance point, a small fraction
of the simulation objects included in the simulation model, set to 5%,
although we enable the migration of at least one object, which still
enables the re-balancing for smaller models. The selected simulation
objects to be moved are the one with the maximum weight (low ϕx

and/or high CPUx), which enables a bigger step towards the object
of re-balancing the weights among nodes in the NUMA architecture.

112

4.7 Experimental Evaluation

4.7.1 Test-bed Environment

As stated in Chapter 1, all the solutions presented in the thesis have
been integrated and tested into the USE simulation platform [54],
an open-source high performance PDES engine for multi-core shared-
memory machines, which provides non-blocking progress in both vir-
tual and wall-clock-time. The former is achieved by having an innova-
tive implementation of the previously described Time Warp protocol
[57], revisited for the case of shared-memory execution. The latter is
guaranteed by exploiting fine-grain thread synchronization consisting
of individual atomic instructions, ensuring scalability while accessing
shared data and metadata within the simulation engine.
USE is the reference platform for fine-grain workload sharing, and it
has shown several improvements compared to platforms based on the
classical medium/long-term binding of simulation objects to worker
threads. In particular, USE has shown to reduce the incidence of
rollbacks and to deliver higher performance compared to other PDES
reference platforms run on top of shared-memory machines. For this
reason, in this section, we will use the original version of USE as the
baseline for assessing how the locality-aware scheme can further im-
prove performance. In the original version of USE, threads are pinned
to processing units and the placement of memory frames for the state
of the simulation objects is determined by the default Linux kernel’s
policy first touch, according to which a frame is allocated within the
NUMA node of the processing unit running the thread that touches a

113

Table 4.7.1: Hardware Platforms

Processors 2 x Intel Xeon Silver 4210R
Cores (Logical) 20 (40)
NUMA Nodes 2
RAM 160GB
L1 640KB 8-way
L2 20MB 16-way
LLC 27.5MB 11-way
Operating System Ubuntu 22.04.02
Linux Kernel v5.15.0

memory page for the first time. We included a layer that keeps track
of memory pages pre-reserved for hosting the state of a specific simu-
lation object also including an initial binding to a NUMA node, and
we use the move_pages() service if the migration to another node is
requested.

We carried out the experiments on the platform whose details are listed
in Table 4.7.1, providing an adequate level of parallelism of 40 hyper-
threads. The cache layout is retrieved automatically at compile time
by accessing the sysfs pseudo-filesystem at /sys/devices/system/
cpu/cpu*/cache. Finally, the platform is equipped with 160GB of
RAM arranged in 2 NUMA nodes. The NUMA configuration is still
retrieved automatically at runtime via the NUMA library.

4.8 Benchmark Applications

To evaluate the effectiveness of the proposed solution, we have per-
formed an experimental evaluation that relies on three different simu-
lation models, namely PHOLD [40], Personal Communication Systems

114

(PCS) [20, 58] and Tuberculosis (TBC) [81]. These applications have
already been discussed in Chapter 2, but to briefly recall: the first one,
which has almost no memory access to data when events are processed,
has been used to estimate the potential overhead of our approach un-
der different configurations in terms of event granularity. Conversely,
PCS and TBC allow us to show the benefits given by enabling the
locality-aware mechanism for caches and NUMA nodes.
As for the PHOLD model, we set the Fan-Out parameter to 1, and
this leads to scenarios where the average number of events in the event
pool is stable, but there are punctual fluctuations. The timestamp
increments are drawn from an exponential distribution with mean set
to one simulation-time unit. Finally, the busy loop generates a differ-
ent event granularity at different tests, namely 5µs, 10µs, 25µs, 50µs,
100µs, 200µs and 400µs. The CPU busy loop is run with no need
for memory access to data and data cache and/or close NUMA node
exploitation.
Regarding the PCS model, we set τD = 120s and τH = 300s, respec-
tively representing the expected duration call and the residual residence
time of the device inside a cell. The number of channels N and the
inter-arrival time τA have been varied in order to evaluate scenarios
where the utilization factor has different values, and is balanced or
unbalanced across the cells. The channel utilization has as impact on
both CPU and memory demand for executing the event handler. Also,
the unbalanced scenario requires simulation objects migrations in order
to balance the model execution activities across the different NUMA
nodes, according to our approach.
Finally, we configured the TBC model to conduct a simulation of a

115

medium-sized city. Specifically, we used 1024 simulation objects, each
covering a square region having a mean of 500 agents as population,
for a total population of half a million people. At the start of the simu-
lation, 95.59% of the population is healthy, 4.28% is infected, 0.12% is
cured and the remaining 0.01% is sick or untreated. Despite the signifi-
cantly small amount of infected people, the frequent agents’ movements
leads the simulating environment to a pandemic, with clear recurring
phases of peak infection and low disease spread. We simulated a total
of 6000 days of the evolution of the TBC model.

4.8.1 Preliminary Experimental Evaluation for Parame-
ters Setup

Throughout these sections, we did not assume knowledge of certain
crucial parameters for the locality-aware approach, such as the pipe
size and the window size. We investigated several configurations for
the size of both the pipe and the evicted pipe, and the actual strategy
to set the window size W. For this purpose, we exploited the PCS
model as the reference, and we ran it on top of our locality-aware so-
lution varying the pipe size from 1 to 8 (so, in order to keep the bound
for 1-8 simulation objects for each thread) and with multiple static
window values W.
The results show that the optimal size for both pipes is independent
of the window value W, and of the utilization factor of the cells within
the simulation model. For this reason, we report a subset of the ob-
tained results in Figure 4.8.1, namely for W = 3.2s and ρ = 0.5. In

116

1 2 4 8
Evicted pipe size

8
4

2
1

Pi
pe

 si
ze

1.129 1.128 1.132 1.149

1.192 1.191 1.185 1.175

1.220 1.223 1.182 1.181

1.196 1.218 1.194 1.192

Overall Speedup

1 2 4 8
Evicted pipe size

Pi
pe

 si
ze

615 614 615 619

581 581 581 580

564 565 559 559

541 545 541 541

Abort probability ratio

1 2 4 8
Evicted pipe size

Pi
pe

 si
ze

3.191 3.201 3.199 3.420

3.263 3.280 3.286 3.290

3.564 3.552 3.332 3.304

3.395 3.534 3.368 3.356

Event Processing Speedup

1.00

1.05

1.10

1.15

1.20

1.25

500

550

600

650

1

2

3

4

#simulation object:4096 :0.50 W:3.2

Figure 4.8.1: Evaluation of different pipe-size values for the PCS model run
with 40 threads.

particular, we show three heatmaps where each tile represents a spe-
cific combination of pipe and evicted pipe sizes. The chart reports
three different metrics from left to right: the leftmost one reports the
overall speed-up provided by our solution with respect to the baseline
load-sharing mechanism offered by the original version of USE; the
heatmap at the center shows the abort probability ratio, namely the
ratio between the abort probability measured with our solution and
the baseline platform – the abort probability has been computed as
the ratio between the rollback occurrences and the total number of ex-
ecuted events; finally the rightmost one reports the speed-up obtained
just for event processing. The speed-up of event processing shows that
the locality-aware scheme has a positive and relevant impact on event
processing, which is at least 3.19x faster, with all the tested pipe sizes,
having the maximum improvement for size equal to 2.
The abort probability ratio, on the other hand, is affected by the pipe
size. In particular, the larger the pipe size (vertical axis), the higher the

117

0 1 2 3
Windows Size W (s)

1.0

1.1

1.2

1.3

Ov
er

al
l S

pe
ed

up

:0.25
:0.50
:0.75
:1.00

0 1 2 3
Windows Size W (s)

0.0

0.1

0.2

0.3

Ab
or

t p
ro

ba
bi

lit
y

:0.25
:0.50
:0.75
:1.00

0 1 2 3
Windows Size W (s)

1.5

2.0

2.5

3.0

3.5

Ev
en

t P
ro

ce
ss

in
g

Sp
ee

du
p

:0.25
:0.50
:0.75
:1.00

#simulation objects:4096

Figure 4.8.2: Evaluation of different window-size values for the PCS model
run with 40 threads.

abort probability ratio. This reflects the fact that excessively increas-
ing the number of simulation objects bound to a given worker threads
leads to a scenario where the computing power is less likely allocated
for higher priority events. However, the evicted pipe size has a reduced
effect on the abort probability ratio, showing that its choice is not crit-
ical. Clearly, the higher the abort probability ratio, the less effective
our solution, and this is evident by observing the overall speed-up (the
leftmost heatmap), that is maximized when the pipe size is equal to 2.
Consequently, we kept both the pipe sizes equal to 2 in our subsequent
evaluation. In Figure 4.8.2 the results obtained with a static window W
are shown. In particular, the leftmost chart shows the speed-up while
varying W from 0.1 to 3.2: as expected, there is an optimal value for
a given workload, which leads to balanced trade-off between the gains
obtained in terms of locality while executing simulation events (the
rightmost plot) and the abort probability (the centremost plot). This
observation justifies the viability of the hill-climbing algorithm we use
to manage the window size W during simulation execution, starting
from W = 0. When the system is stable, namely the queue size and

118

throughput, the hill-climbing starts by exploring the search space, and
it stops when a local maximum has been found. According to the em-
pirical evidence, shown in Figure 4.8.2, this approach can identify the
optimum.

4.9 Results

4.9.1 Results with PHOLD

In PHOLD, as described in Chapter 2, the event handler spins for a
given amount of time, thus wasting mostly clock cycles. Consequently,
no benefits in terms of memory locality are expected. However, this
allows us to evaluate the impact of the proposed locality-aware scheme,
in particular the slowdown for managing additional data structures,
such as the pipes, the local index and the NUMA-based hash-map for
determining which simulation object is more favourable to pick.

Figure 4.9.1 resumes the results in terms of overall speed-up. In par-
ticular, it reports the speed-up achieved by the baseline USE and the
proposed approach, denoted as cache+NUMA opt., with respect to
the sequential execution. The data show that scalability is not hin-
dered and not affected by the additional work needed for managing
the locality-aware scheme. In particular, there is no significant dif-
ference between the performance of the baseline USE and the new
solution over a broad range of thread counts and event granularities.
We also report, in Figure 4.9.2 the absolute throughput values for the
different setups we used for event granularity and thread count.

119

5 10 15 20 25 30 35 40
#Threads

20

21

22

23

24

25

Ov
er

al
l S

pe
ed

up

USE
cache+NUMA opt.
1 s
5 s
10 s
25 s
50 s
100 s
200 s
400 s

#simulation objects:1024

Figure 4.9.1: Speedup with respect to PHOLD sequential execution with
different event granularities.

4.9.2 Results with PCS

For what concerns the PCS model, we have tested different model
sizes using 256, 1024 and 4096 simulation objects, namely cells, each
one managing 1000 channels, and also with different utilization factors
(0.25, 0.5, 1.0). This allowed us to explore the benefits of our approach
for different levels of disjoint access parallelism characterizing the sim-
ulation model execution. We evaluated the performance comparing
our approaches, the locality-aware scheme (denoted as cache+NUMA
opt. and the cache locality-aware scheme without NUMA awareness
(denoted as cache opt., compared to the baseline load-sharing scheme
implemented in USE. Figure 4.9.6 reports the performance achieved
when running the PCS model at full concurrency, which is 40 threads
on the target machine. We report the average value of the committed
events’ throughput observed at steady state calculated over 12 runs

120

0 50 100 150 200 250 300 350 400
Granularity (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Th

ro
ug

hp
ut

 (M
ev

ts
 p

er
 se

c)

x14.6

x10.5

x4.3

x31.3

x17.7

x4.8

x34.9

x18.3
x4.9

x37.3
x18.7
x5.0

USE
OPT
1 threads
5 threads
20 threads
40 threads

#simulation objects:1024

Figure 4.9.2: Throughput of PHOLD with different event granularities and
thread counts. Each label represents the speedup relative to the sequential

execution for a given event granularity and thread count.

(represented with a triangle), its median (represented as an orange
line), its 80% confidence interval (represented as a box) and its mini-
mum/maximum values (represented as error bars).
We observe that for smaller simulation model sizes our approach turns
out to be less effective in the attempts of exploiting spatial locality
when increasing the size of the window W. We recall that this simu-
lation model has no lookahead, thus not favouring our window-based
approach. This is evident looking at the leftmost plot, showing the
results for the model size equal to 256 simulation objects, where our
solution gives rise to an execution speed that is essentially the same,
or slightly better, than the one offered by the baseline.
Conversely, increasing the model size allows a higher effectiveness of

121

sequential baseline cache
opt.

cache
+ NUMA opt.

0.1

0.2

0.3

0.4

0.5

0.6

Th
ro

ug
hp

ut
 (1

06 e
vt

s p
er

 se
c)

#simulation objects:256

sequential baseline cache
opt.

cache
+ NUMA opt.

Th
ro

ug
hp

ut
 (1

06 e
vt

s p
er

 se
c)

#simulation objects:1024

sequential baseline cache
opt.

cache
+ NUMA opt.

Th
ro

ug
hp

ut
 (1

06 e
vt

s p
er

 se
c)

#simulation objects:4096
PCS - :0.25

Figure 4.9.3: Execution speed with ρ = 0.25.

sequential baseline cache
opt.

cache
+ NUMA opt.

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 (1

06 e
vt

s p
er

 se
c)

#simulation objects:256

sequential baseline cache
opt.

cache
+ NUMA opt.

Th
ro

ug
hp

ut
 (1

06 e
vt

s p
er

 se
c)

#simulation objects:1024

sequential baseline cache
opt.

cache
+ NUMA opt.

Th
ro

ug
hp

ut
 (1

06 e
vt

s p
er

 se
c)

#simulation objects:4096
PCS - :0.50

Figure 4.9.4: Execution speed with ρ = 0.5.

sequential baseline cache
opt.

cache
+ NUMA opt.

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Th
ro

ug
hp

ut
 (1

06 e
vt

s p
er

 se
c)

#simulation objects:256

sequential baseline cache
opt.

cache
+ NUMA opt.

Th
ro

ug
hp

ut
 (1

06 e
vt

s p
er

 se
c)

#simulation objects:1024

sequential baseline cache
opt.

cache
+ NUMA opt.

Th
ro

ug
hp

ut
 (1

06 e
vt

s p
er

 se
c)

#simulation objects:4096
PCS - :1.00

Figure 4.9.5: Execution speed with ρ = 1.

Figure 4.9.6: Results with PCS.

our solution, providing an improvement of the execution speed-up up
to 30%. This maximum gain is achieved when the model size is set to
4096 simulation objects and the utilization factor is equal to 1. This
is also in support of the fact that the proposed solution is well-suited
for heavier-loaded models, such that the density of simulation events
per-object along simulation time is higher. Also, the plots show how

122

Table 4.9.1: Average rollback frequency of PCS

Utilization factor ρ = 0.25 ρ = 0.50 ρ = 1.00
#Simulation objects 256 1024 4096 256 1024 4096 256 1024 4096

baseline 0.71% 0.19% 0.05% 0.77% 0.22% 0.05% 0.91% 0.24% 0.05%
cache opt. 2.12% 2.68% 3.21% 2.80% 3.29% 2.94% 2.81% 3.24% 2.55%

cache+NUMA opt. 2.62% 3.14% 3.16% 2.75% 3.49% 3.03% 2.95% 3.28% 2.64%

Table 4.9.2: Average rollback length of PCS

Utilization factor ρ = 0.25 ρ = 0.50 ρ = 1.00
#Simulation objects 256 1024 4096 256 1024 4096 256 1024 4096

baseline 1.06 1.02 1.01 1.08 1.02 1.01 1.08 1.02 1.01
cache opt. 1.97 2.55 3.84 2.06 3.55 4.14 2.13 4.01 5.08

cache+NUMA opt. 2.08 2.50 4.04 1.99 3.25 3.97 2.06 3.34 5.01

the combination of cache and NUMA optimizations enable in various
cases the improvement of the execution speed compared to the scenario
where the NUMA optimization is not considered.
For completeness of the analysis, we also report in Table 4.9.1 and
Table 4.9.2 respectively the average rollback frequency and the aver-
age rollback length observed when running the different solutions. As
the data show, the exploitation of spatial locality, that we remind is
achieved by processing events not according to strict timestamp order
within a time window W, leads to slightly increasing the incidence of
rollbacks. However, it is limited, and the final trade-off between clock
cycles spent for rollback operations and reduced clock cycles required
for the forward processing of events provides the advantages seen in
Figure 4.9.6.

The results discussed above have been obtained running a balanced
configuration of the simulation model, where each cell, namely sim-
ulation object, has the same density of incoming calls. In order to
test the effectiveness of the proposed solution for what concerns the

123

sequential baseline cache
opt.

cache
+ NUMA opt.

0.1

0.2

0.3

0.4

0.5

0.6

Th
ro

ug
hp

ut
 (1

06 e
vt

s p
er

 se
c)

#simulation objects:4096
PCS with 20%/ 80% hot/ordinary cells - :0.25

Figure 4.9.7: Execution
speed

60 120 180 240
Seconds

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Th
ro

ug
hp

ut
 (1

06 e
vt

s p
er

 se
c)

#simulation objects:4096
USE
cache opt.
cache + NUMA opt.

PCS with 20%/80% hot/ordinary cells - :0.25

Figure 4.9.8: Event
throughput for an individ-

ual simulation run

Figure 4.9.9: Results with PCS with 20% of hot-spot cells.

migration across NUMA nodes, we performed experiments where PCS
is configured with two types of cells: hot-spot and ordinary cells. The
first type represents the 20% of the simulated cells, and they are char-
acterized by a higher density of calls than ordinary cells. During the
simulation, the utilization factor of hot-spot and ordinary cells is re-
spectively 0.5 and 0.25. In order to stress-out our NUMA rebalancing
policy, we initially placed all the hot-spot cells on the same NUMA
node, also loaded with ordinary cells. This kind of assignment makes a
single NUMA node initially handling the 75% of the simulation work-
load. Figure 4.9.7 shows that, for this unbalanced configuration of
PCS, our approach provides 18% speed-up compared to the baseline
USE, with the NUMA optimization active. In these experiments, the
NUMA rebalancing policy across NUMA nodes is enabled, as described
in Section 4.6, to be performed periodically at each wall-clock-time
second along the model execution. Limiting the optimization to the
caching system (the cache opt. one), would not enable reaching such

124

performance benefit, but we note that the NUMA-aware optimization
indirectly favours the cache-aware one, since more balance spreading
of the accesses among NUMA nodes allows improving the overall ex-
ploitation of a larger amount of cache lines in the caching hierarchy.
Furthermore, the automatic management of the migration of simula-
tion objects across NUMA nodes offered by our approach allows re-
moving the need for accurate setup of NUMA placement of simulation
objects at startup time, which might be difficult in some cases, for
instance with complex and/or non-isotropic models. We also report,
in Figure 4.9.8, the relative throughput over time of each load-sharing
scheme with respect to the throughput of events of the baseline USE
for one of the runs. Initially, both the baseline and the cache-aware
solutions are able to effectively exploit locality, however the model size
grows while moving to the steady state configuration of the workload
of calls to the wireless cells, and the cache benefits are eventually re-
duced (around 30 seconds for both the baseline and the cache-aware
solution). Instead, enabling the NUMA-aware solution, including the
migration policy of simulation objects, makes the initial part of the ex-
ecution more expensive, but it allows achieving a more effective steady
state due to the exploitation of cache and NUMA locality, according
to the scheme we devised and thoroughly described. To widen the
study of NUMA migrations and how they affect performance, we re-
port in Figure 4.9.14 data related to a configuration of PCS where the
hot-spot cells constantly vary. The variation takes place periodically,
every 1000 simulated time units, and the newly selected hot-spot cells
initially reside on the same NUMA node. In this experiment, a total of
4 variations of hot-spot cells take place along a simulated time of more

125

sequential baseline cache
opt.

cache
+ NUMA opt.

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut

#simulation objects:4096
PCS with 20%/ 80% hot/ordinary cells - :0.25

Figure 4.9.10: Execution
speed

105 210 315 420
Seconds

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Th
ro

ug
hp

ut

#simulation objects:4096
USE
cache opt.
cache + NUMA opt.

PCS with 20%/80% hot/ordinary cells - :0.25

Figure 4.9.11: Event
throughput for an individ-

ual simulation run

105 210 315 420
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Sk
ew

#simulation objects:4096
USE
cache opt.
cache + NUMA opt.

PCS with 20%/80% hot/ordinary cells - :0.25

Figure 4.9.12: Work-
load skew between the two

NUMA nodes

0 60 120 180 240 300 360 420
Seconds

0

25

50

75

100

125

150

175

200

#M
ig

ra
tio

ns

#simulation objects:4096

avg
min
max

PCS with 20%/80% hot/ordinary cells - :0.25

Figure 4.9.13: Average cu-
mulative number of migra-

tions.

Figure 4.9.14: Results with PCS with moving 20% of hot-spot cells.

than one hour. We report the execution speed observed over different
runs in Figure 4.9.10, and also details related to an individual run, in
Figure 4.9.11. As for the execution speed, we clearly see an improve-
ment of 20%, when both cache and NUMA optimizations are active.
In Figure 4.9.14 we also show the variation of the execution speed over
time for an individual run, which highlights how our solution, espe-
cially if considering the NUMA optimization, allows achieving clear

126

event rate peaks when new hot-spots are selected, and how a well-
balanced re-distribution of their states across the two NUMA nodes in
the underlying machine favours the execution latency.
To further assess the workload balancing capabilities of this approach
across NUMA nodes, in the right plot of Figure 4.9.12 we show the
variation of the percentage skew of the execution time of the threads
across simulation objects hosted by the two NUMA nodes for one of
the runs of the PCS model. As we see, the configuration with active
NUMA optimization allows keeping the skew close to zero, compared
to both the baseline simulator USE and the configuration with the only
cache optimization enabled.

sequential baseline cache
opt.

cache
+ NUMA opt.

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 (1

06 e
vt

s p
er

 se
c)

#simulation objects:1024
TUBERCULOSIS

Figure 4.9.15: TBC execution
speed

Table 4.9.3: Average
rollback frequency of TBC

baseline 0.0010%
cache opt. 1.5610%

cache+NUMA opt. 1.6323%

Table 4.9.4: Average
rollback length of TBC

baseline 1.13
cache opt. 1.51

cache + NUMA opt. 1.57

127

4.9.3 Results with TBC

The results for the model Tuberculosis (TBC) are shown in Figure
4.9.15. The data show the aggregate results over 20 runs. The ad-
vantages achievable for TBC through our solution are similar to the
ones we have previously observed with the PCS model. In particular,
the exploitation of both cache and NUMA optimizations allows our
solution to be up to 38% faster than the baseline USE on the average.
We also note that for this model, the events are very fine-grained (about
3µs), which gives rise to a reduced speed-up over the sequential run
with respect to the PCS model results. Nevertheless, even in this
scenario, our solution makes the parallel run be significantly more ef-
fective than the baseline USE, in terms of delivered performance. Also,
as shown by data in Table 4.9.3 and Table 4.9.4, the reliance on the
window W for the batch processing of events gives rise to negligible
increase of the rollback frequency, which still favours the ability to
exploit locality along the forward phase of execution of the simulation.

4.10 Final Remarks

The literature showed how speculative PDES systems can be reshuf-
fled to better exploit the capabilities of multi-core shared-memory ma-
chines. The previously mentioned architectural reshuffle allows simula-
tion objects to be bound to a specific worker thread for a short period
of time, bounded by the execution time of an event. This architectural
organization offers the advantage of improving efficiency and reducing

128

the likelihood of rollbacks, since the computing power is always in the
proximity of the commit horizon of the simulation. However, despite
the gain in efficiency, having a very short-term binding hinders locality,
preventing the worker threads to fully exploit the underlying memory
subsystem and caching hierarchy. This aspect is particularly relevant
in NUMA systems, given the large impact, both in terms of latency
and pressure on the interconnection, caused by memory accesses that
need to be served by a distant NUMA node.
Following these consideration, the above-described approach provides
a new workload-sharing mechanism to improve spatial and temporal
locality exploiting the caching hierarchy and NUMA locality in order
to improve overall memory utilization. In order to do so, we allowed a
thread to prefer simulation objects either lastly executed by itself or by
a thread sharing some cache level, or currently deployed on the same
NUMA node. This binding holds until events targeting such simula-
tion objects are not too far from the commit horizon of the simulation,
a condition for which we provide an autonomous mechanism based
on a dynamic virtual time window accordingly managed. Also, the
scheme supports a mechanism to dynamically rebalance the simula-
tion activities across NUMA nodes, achieved through the migration of
simulation objects, which allows not penalizing any thread running on
a processing unit on any NUMA node in terms of possibility to pick for
execution a memory-latency favourable simulation object. In order to
support this full scheme, we have developed a multi-view fully-shared
event pool to improve locality during the worker thread activities that
manage a set of events.
Overall, the proposed load-sharing scheme allows to continuously build

129

and maintain short-term binding between simulation objects and worker
threads, favouring both cache and NUMA effectiveness. The results
with both synthetic and real-world simulation models have shown that
our approach introduces negligible overhead and significantly improves
performance, even in the context of non-isotropic simulation models.

130

Chapter 5

Memory Aware and Lightweight
Mechanisms for Incremental
Checkpointing

In the previous chapter, we showed how to leverage memory hierarchy
awareness in order to optimize event processing in speculative PDES
platforms running on top of multi-core shared-memory machines. This
allowed us to better exploit caches and NUMA nodes, in particular re-
ducing the costs of misses, to improve the overall performance of the
simulation applications, without directly impacting the simulation ob-
jects states.
However, efficient state management is necessary in the context of
speculative PDES, since causality violations can occur and some check-
pointing mechanisms are needed. This is particularly critical in PDES
dealing with a large state simulation model and write-intensive work-
loads. Hence, efficient checkpointing techniques become paramount to

131

ensure correctness of the speculative execution. As mentioned in Chap-
ter 2, checkpointing techniques can be distinguished between the full
checkpointing, in which a copy of the entire state is performed, and the
incremental checkpointing, in which only the modified portions of the
state are saved. We focus on the latter one, since the tracking of the
modified portions of the state is a crucial issue in the above-mentioned
scenario, i.e. large-state and write-intensive simulation application.
The solutions explored to support the incremental checkpointing did
not exploit write-protection services offered by common operating sys-
tems, as described in Chapter 3, but they were founded on the instru-
mentation of code at the binary level. The lack of consideration in the
literature, except for what concerns fault tolerance, is motivated by
the reduced granularity of the state of the simulation objects versus
the page grain of the memory protection services. However, modern
machines allow us to execute simulation with larger state and write in-
tensive models, making write-protection services suitable for improving
the effectiveness of the checkpointing.
Furthermore, the classical approach tackling incremental state saving,
based on instrumentation of models, as described in Chapter 3, showed
some limitations: in fact, for certain simulation workloads, i.e. large-
state and write-intensive models, the instrumentation-based approach
introduces an overhead during the event execution caused by the (mul-
tiple) interception of memory write instructions, which might increase
the average event granularity, hampering performance or the energy
footprint. Hence, the advantages that can be achieved, e.g. in terms
of reduction of the size of checkpoints thanks to the incremental ap-
proach, might require excessive costs in terms of CPU cycles.

132

Based on these observations, we investigated the possibility of ex-
ploiting the write-protection services of common operating systems,
in particular mprotect(), for building an incremental checkpointing
solution suited for optimistic simulation in Posix systems, e.g. Linux.
The proposed approach leverages memory update correlation through
a buddy-pages scheme to identify and efficiently manage changes in
the simulation state, in order to also reduce the costs associated to the
write-tracking mechanism and the checkpoint operation. As a follow-
ing aspect, we highlight the performance limits of this approach, due
to the kernel-level activities of the mprotect() system-call. In fact,
the mprotect() system-call needs to synchronize the memory updates
(i.e. the change of permissions) across all cores, and this means that
the Translation Lookaside Buffers (TLBs) must be flushed across all
cores, with consequent non-negligible costs. Furthermore, the need for
a signal handler to manage write interceptions, causes frequent user/k-
ernel switches to detect the access to a single page. The performance
bottlenecks of the mprotect() led us to develop a lightweight operat-
ing system service to support incremental checkpointing.
In particular, we present the design and implementation of a fully
new system call, which enables protecting one or multiple pages from
write operations without the need for interactions across the different
CPUs in the machine and the threads they are running. Avoiding TLB
shoot downs leads to drastically reduce the number of CPU cycles re-
quired for installing the protection for write activities by that thread
on the pages. As a second step, we provide a system level service
that allows acquiring information on what pages have been written
in a work-deferred mode. Hence, we fully avoid the need for running

133

signal handlers when the page-write operations occur, eliminating the
user/kernel switches’ overhead. Rather, we retrieve the whole pool of
dirtied memory pages just when the checkpoint operation needs to be
carried out, also enabling the retrieval of multiple items (page identi-
fiers) via a single user/kernel interaction. We developed this solution
relying on Linux Kernel Modules (LKM) on Linux x86 processors, and
we highlight the fact that the solution and software we will describe
could be ideally exploited and/or adapted in/to contexts other than
PDES, where checkpoint/restore activities may have a non-negligible
impact on the critical path of the application execution (e.g., in terms
of their frequency of occurrence).
Therefore, the techniques introduced in this chapter are directly rele-
vant to the goals of this thesis, particularly in the context of improving
the efficiency of speculative PDES on multi-core shared-memory ma-
chines.

5.1 Write-tracking Mechanism via mprotect()

As mentioned, we want to keep track of the modified portions of the
state in order to efficiently support the incremental checkpointing op-
eration. We want to avoid the multiple write-tracking problem of
the instrumentation-based approaches, so we exploit the mprotect()
system-call of Linux-based operating systems. We couple our system-
call with a signal handler that manages the SIGSEGV signal. After
protecting a memory area, when a denied memory access touches a
protected memory area, the control flow of the program executing the

134

Write chunk in
memory area Page fault due to

write protection fault!User Space

Kernel Space
Interception of

SIGSEGV via signal
handler

1 2

3

Figure 5.1.1: Illegal Write Access after Memory-protection via mprotect()

Page fault due to
write protection fault!User Space

Kernel Space
Interception of

SIGSEGV via signal
handler

Unprotect chunk in memory area to avoid
multiple write-tracking

4
2

3

Figure 5.1.2: Write-tracking after Memory-protection via mprotect()

access is deviated due to the delivery of the SIGSEGV signal. We exploit
such a mechanism to give control to a signal handler as soon as the
first write touches a protected segment (Figure 5.1.1). At this point,
such a handler can update a metadata table indicating what zone has
been dirtied depending on the current write access, and then it relin-
quishes control to the original flow, which resumes from the offending
instruction. We avoid the multiple write-tracking problem, present in
the instrumentation based approach, by reopening the write access to

135

A B

Page

Write-access
interception

C

Larger page made
of buddies

Coalescing into a
larger page

D

1

2

3

E
Memory segment
hosting
the simulation object
state

Figure 5.1.3: The buddy pages mechanism exploiting write-protection

the page after such an interception via SIGSEGV (see Figure 5.1.2).
This includes updates that act on the same target memory locations
already updated by some previous event on that same page. We then
focus on improving the single page-based approach considering mem-
ory awareness of the simulation objects’ states, introducing the notion
of buddy pages in the memory segment used for hosting the state of
a simulation object, as shown in Figure 5.1.3: two pages, namely A
and B, are buddies if they are contiguous and aligned in the segment
layout. If these pages are both written consequently to an event execu-
tion, or in general along a complete checkpoint interval, then we group
them into one larger page, namely C. We then manage the larger page
C in terms of (1) the checkpoint operation, (2) the write-protection
service exploitation to re-open the write access and discard subsequent
interceptions for the coalesced page. The coalescing of pages can be it-
erated for C and a same-size page, namely D, in order to further reduce
the memory protection costs for intercepting single-page accesses. In
fact, optimizing the usage of operating systems services, namely reduc-
ing the number of calls to mprotect() and the number of SIGSEGV

136

signals intercepted, is crucial in optimistic simulation, because out-of-
order errors are endemic and require checkpointing not to be executed
too infrequently. The buddy pages scheme is coupled with a decision
model to help with the write-correlation operations, described in the
next section.

5.2 Decision Model for the Memory Aware In-
cremental Checkpointing

We showed the developed mechanism to reduce the intrusiveness of the
instrumentation-based approach in terms of instructions in the simula-
tion model, exploiting operating systems’ services to protect memory,
i.e. mprotect(). This leaves the simulation model unaltered and
allows us to track memory write operations without incurring in the
above-mentioned problems related to the multiple write-tracking for
the same memory area. We also showed a buddy-pages scheme de-
vised to reduce the costs associated to the signal handler associated to
the mprotect() and the cost of saving the state. In order to further
reduce the overhead of managing single page accesses, we devised a
mechanism to correlate write operations on memory pages.
In particular, we considered a pre-reserved memory area M to host
the state of the simulation object, and we then partitioned it into
groups of pages according to a decision model that partitions the pages
in a way to consider them as a unique zone to be managed by a
single mprotect() call and by the checkpointing facility. Since the
mprotect() system call can manage multiple contiguous pages at the

137

same time, we would like to compute the partitioning that minimizes
the overall costs, namely the clock cycles needed for the interception
of the SIGSEGV signal and the reopening of the write access on the
target memory area, and the checkpointing costs.
Assuming that these costs can be accurately estimated, finding the best
partitioning can be formulated as the following optimization problem:

min
Z

∑
i∈Z

CP,i + CL,i (5.1)

where Z is a partitioning scheme of the memory area M , CP,i and CL,i

are the costs for protecting/unprotecting and logging the partition i of
the segment, including the cost for tracing its access via the SIGSEGV
handler.
A naive algorithm for solving this optimization problem involves enu-
merating all possible partitioning schemes and choosing the minimum-
cost one. However, such an approach requires exponential time. In
fact, the total number of partitioning schemes evaluated is equal to
2n−1, where n is the number of memory pages within the area M . This
can be shown considering that: (1) the number of points in which we
can split the memory area is equal to n−1; (2) each point provides two
possible choices; namely, it can be considered or not. Consequently,
we can encode the choice of each individual separation point as a bit
within a string of n − 1 bits that can assume 2n−1 different values.
For this reason, we opted for considering a reduced set of partitions,
namely those that can be generated according to the buddy-system
scheme—in fact, our solution focuses on exploiting buddy pages and
their correlated accesses in write mode.

138

The buddy scheme imposes that (1) partitions contain a number of
pages that is a power of two, and that (2) the starting address of each
partition is aligned to its size within the area M . These constraints
make each partition being composed of two halves, called buddies, that
are aligned to their size, contiguous to each other, and composed of two
smaller buddies with the same properties. Imposing that partitions are
generated according to the buddy-system specification makes the num-
ber of partitions to be considered linear to the number of elements in
the set. In fact, we can consider the n memory pages of the area M as
the leaves of a complete binary tree with 2n− 1 nodes. Each non-leaf
node of the tree mentioned above represents a non-minimal partition
that can be protected/unprotected with an individual mprotect()
call. However, even though the number of admissible partitions in-
creases linearly with the number of pages within the memory area,
enumerating and evaluating all partitioning schemes is still unfeasible.
In fact, it can be shown that they increase exponentially in the number
of pages.
The main benefit of resorting to a buddy-system scheme is that the
new problem formulation has an optimal substructure, namely, the op-
timal solution can be built from the optimal solutions of sub-problems.
Intuitively, the optimal solution is either protecting/unprotecting the
whole segment of memory m or it is the union of the optimal solu-
tions for the left and right halves of m , denoted as mL and mR ,
respectively. In particular, we can easily show that:

C∗(m) = min (CP,m + CL,m, C∗(mL) + C∗(mR)) (5.2)

139

where C∗(i) is the cost of the optimal solution for a memory segment
i . The following theorem proves Equation 5.2.

Theorem 5.1. The optimization problem in Equation 5.1 with
partitions compliant with the specification of the buddy system has
the suboptimal structure shown in Equation 5.2.

Proof. We prove the statement by reduction to absurd. Let us as-
sume that an optimal solution with cost O∗ < C∗ exists. Such a
solution cannot contain a single partition that includes the entire seg-
ment m. In fact, such a case imposes O∗ = CP,m + CL,m, contra-
dicting the hypothesis. The buddy system specification imposes no
partition within the optimal solution that crosses the middle of the
segment. Consequently, any partition of the optimal solution belongs
entirely either to the left half mL or to the right half mR of the seg-
ment m. It follows that O∗ = O∗L + O∗R, where O∗L and O∗R are
the costs associated to mL and mR. Furthermore, since the O∗ is
optimal, we know O∗L + O∗R < C∗(mL) + C∗(mR), suggesting that
O∗L < C∗(mL)∨O∗R < C∗(mR). This contradicts the hypothesis that
both C∗(m, L) and C∗(m, R) are costs associated with the optimal
solutions for mL and mR.

Proving the presence of a suboptimal structure allows us to build a
simple algorithm to pinpoint the optimal partitioning scheme. Initially,
we map each page to a unique partition. Then, we check each pair
of buddy pages and, if costs associated with a pair are higher than
considering an individual partition including both, the two buddies
are moved into an individual contiguous partition whose size is twice

140

Algorithm 5.2.1 Memory Partitioning Algorithm
1: procedure FindOptimalSolution()
2: cost_t tree[NUM_OF_PAGES ·2]
3: bit_t optimal[NUM_OF_PAGES ·2]
4: int start ← NUM_OF_PAGES
5: int end ← 2 · start
6: for int i ← start to end− 1 do
7: tree[i] ← compute_cost(i)
8: optimal[i] ← 1
9: end for

10: while start ≥ 1 do
11: end← start
12: start← start/2
13: for int i ← start to end− 1 do
14: tree[i] ← compute_cost(i)
15: cost_t child_sum ← tree[i/2] + tree[i/2 + 1]
16: if tree[i] < child_sum then
17: optimal[i] ← 1
18: else
19: tree[i] ← child_sum
20: end if
21: end for
22: end while
23: end procedure

a single page. If there is any couple of new larger buddies, we check
again if it is convenient to merge them, repeating the process until no
buddies of any size can be merged. Since there are 2n− 1 admissible
partitions and each is considered once, the algorithm runs in linear
time.
Algorithm 5.2.1 shows the pseudocode of the proposed approach. It
relies on an array-based representation of a static binary tree, where
each node at index i has its left and right child at index 2i and 2i +
1, respectively. The root is placed at index 1. First, the algorithm
initializes each leaf—corresponding to a memory page—by computing

141

its costs and by associating a partition to each individual page. Then,
it proceeds by scanning each level of the tree until the root is reached.
Whenever a partition has associated costs lower than the sum of its
two halves, it is marked as a candidate for belonging to the optimal
solution. The partitioning scheme is finally computed by identifying
all the highest-level partitions marked as candidates to be included in
the optimal solution, which enables covering all the memory pages in
the area.

5.2.1 Estimating Costs of the Buddy-based Approach

The algorithm presented in the previous section assumes that the costs
CP,i and CL,i for respectively protecting and snapshotting a mem-
ory region i are known. This can be achieved by running a micro-
benchmark which evaluates the cost of protecting and copying each
different-sized partition. However, such an approach allows us to
roughly estimate the synchronous costs of mprotect() invocations
and the costs of logging when a write access occurs to the protected
region. Clearly, the cost associated with logging a never-written region
is zero. Consequently, we redefine CL,i as the expected cost for logging
the region i, which can be computed as CL,i = Pw(i) · CC(|i|), where
Pw(i) is the probability that at least one write access targets i, |i| is
the size of the memory region i, and CC(s) is the cost for copying the
content of a region whose size is s.
We keep track of Pw(i) for any admissible partition i as the frequency
of first-write accesses in a time window. In particular, we store the
number of first-write accesses Ni for each partition i using a complete

142

static binary tree. The root of this tree keeps Nm of the whole segment
m, its left and right children keep NmL

and NmR
for the left and right

half of the segment, and so on until we reach the leaves, which track
Np for each memory page p. At this point, Pw(i) can be computed
as Ni/Nm when Nm > 0, that is, as the ratio between the number of
first-write occurrences targeting the partition i and the total number
of first-write accesses targeting the whole memory segment. Clearly, if
Nm = 0, Pw(i) = 0 for any partition i.
Since we need to traverse the tree from a leaf to the root at each first-
write access, keeping updated the static binary tree requires k log2 n

time, where n is the number of memory pages and k is the number of
first-write accesses.
The estimation of costs is exploited to re-determine the partitioning of
the memory area periodically by re-executing Algorithm 5.2.1. This
also enables us to deal with simulation models where the access pat-
terns of the events to the state layout change over time.

5.3 Experimental Evaluation

5.3.1 Test-bed Environment

Although the proposed solution is usable in generic speculative simu-
lation systems, we studied its integration in the USE platform [54].
As mentioned in previous sections, we used DyMeLoR [139] to inte-
grate our new incremental checkpointing support in USE. In particular,
USE offers a standard programming model for the event handler, which

143

enables the handler to rely on dynamic memory allocation/dealloca-
tion, as typically offered by standard libraries. Whenever a simulation
object needs to allocate memory for its state, it requests a chunk from
a memory allocation service. DyMeLoR intercepts this request and
selects a non-busy chunk from a pre-allocated memory area to satisfy
the request. At the same time, the pre-allocated storage for chunks
of different sizes is embedded into different portions (hence different
pages) of the whole memory area destined for the usage of the simula-
tion object. It is worth noting that the pages pre-reserved for hosting
the data chunks are only memory mapped. This means that if a simu-
lation object does not actually use them, they will not take up space in
RAM and will require no checkpointing (i.e. memory copy) operation
for storing them.
Through this architecture, we maximize the locality of the memory
chunks to be used when requesting memory of a given size (which fits
the size of these chunks). At the same time, the locality of operations
on chunks of different sizes deals with different pages. This can be
extremely useful in scenarios where the simulation model may have
different memory access profiles (read vs write) on data structures,
relying on the linkage of different-size chunks. The incremental check-
pointing solution presented in this thesis can operate in this scenario
by determining what page, which host the chunks that are accessed
in write mode in a correlated manner, can be grouped together when
forming the partitions based on the decision model presented in Sec-
tion 5.2.
As for the underlying hardware, we exploited a machine equipped with
an Intel i7-12700K with 12 CPU cores (20 Hardware Threads) and

144

64GB of DDR5 RAM. The operating system is Ubuntu 22.04 (kernel
version 5.19).

5.4 Benchmark Application

The goal of the presented solution is not to overstep existing solutions,
but instead to consider a specific scenario not covered by the litera-
ture. This is the workload of models with large-state and with events
consisting of write intensive zones of the state (hence of set of pages).
Checking with models used for evaluating optimizations in speculative
engines for parallel simulation, we identified PCS (Personal Communi-
cation System), see Chapter 2, as a good test-bed for assessing our in-
cremental checkpointing solution. As already described, in this model,
each simulation object is in charge of simulating a wireless coverage
area (a cell), and each device currently active in this area requires
keeping entries in multiple lists belonging to the state of the simula-
tion object. In particular, there is a list that includes basic informa-
tion about an active device, such as the identification of the channel
used for communicating. However, the model can be configured to
keep additional lists depending on the level of granularity according to
which the wireless communication needs to be simulated. In particu-
lar, another list is used to manage the power assigned to each device
call, also depending on a time-variable fading factor. Furthermore,
the state of each simulation object keeps an area for storing statisti-
cal data referring to different simulation time periods, which are used
for the production of output data by the simulation. In our setup of

145

the model, we used all its facilities, hence having multiple linked lists
within the state of each simulation object. Also, the model has events
requiring write-intensive access to the state, in particular to the list
of power information records—to update it based on variations of the
fading that impacts each call.
We have run this model by considering cells equipped with 1000 chan-
nels each, where the workload of calls leads to a probability of busy
channel of the order of 50%. The overall size of the state of each simu-
lation object resulting from this configuration is of the order of 80KB
(20 pages). The total number of simulation objects has been set to 256,
leading to simulate a total count of wireless channels equal to 256000.

5.5 Results

We report data comparing the solution based on exploiting the protect()
systems-call with an incremental checkpointing solution where we in-
tercept memory-write accesses by the event handler to the state of the
simulation objects via a macro. This is an ideal solution where in-
strumentation takes place at the software-source level, and enables the
compiler to generate an executable with minimal number of machine in-
structions required for the write-access tracing mechanism. Moreover,
we rely on the incremental log of dirty chunks, which is an alternative
compared to the incremental log of dirty (buddy) pages we exploit
in the proposed solution. In the plots, we refer to the competitor
as ISS-instrumentation while we refer to our solution as ISS-buddy.
For completeness, we also report data gathered through a page-level

146

protection scheme with no actual partitioning of memory depending
on the access pattern to buddy pages. We refer to this solution as
ISS-page, and we note that it is useful in order to show the effects of
our optimization technique exploited in ISS-buddy, which is based on
the decision model we have presented in Section 5.2. For fairness in
the comparison, we executed each run by using the same checkpoint
interval for all the techniques tested, exploiting infrequent full check-
points in all the cases. In particular, we set the USE runtime system
to take a full checkpoint each 10 checkpoint operations, while all the
others are incremental. Additionally, given that the USE environment
has been designed in order to optimize the usage of the CPU in spec-
ulative simulation, in particular by generating executions that highly
likely suffer from very minimal rollback, we have decided to set the
checkpoint interval to be used in all the tested techniques to the value
80. This is a kind of limit value for enabling memory recovery upon
GVT calculation, which is well suited for scenarios where the rollback
frequency is very minimal and the state size of the simulation objects
is large, as for the case of our test-bed application. All runs have been
executed on top of 20 CPUs (namely hyperthreads) of the underlying
machine, and we have observed that the model is executed with a roll-
back frequency less than 1%.
We report in Figure 5.5.1 the speed of the simulation execution when
running with the three different solutions. In particular, we report the
number of committed events per unit of wall-clock-time. Each value is
computed as the average over 10 different runs, each executed by rely-
ing on different seeds for the pseudo-random generation. The results
show how ISS-buddy enables performance improvement compared to

147

Th
ro

ug
hp

ut
 (C

om
m

itt
ed

 E
ve

nt
s

P
er

 S
ec

)

0

250000

500000

750000

1000000

ISS - buddy ISS - page ISS - instrumentation

Figure 5.5.1: Simulation execution speed

ISS-instrumentation, in particular by enabling the simulation run to
commit 22% more events per wall-clock time unit. Furthermore, it
allows 12% improvement of the number of committed events per wall-
clock time unit when compared with ISS-page. This is an indication
of the effectiveness of the partitioning scheme based on buddy pages
for the reduction of the impact of operating system services. Finally,
in Figure 5.5.2 we report data related to the size of the incremental
checkpoints for the three techniques, comparing it with the size of the
full checkpoint that is infrequently exploited in all scenarios. As the
plot shows, the incremental checkpoint with minimal size is achieved
through ISS-incremental, which however shows the worst performance
as we discussed. At the same time, the incremental checkpoint that
is achieved through the ISS-buddy technique is definitely lower than
the size of the full checkpoint. This indicates how ISS-buddy still

148

Lo
g

si
ze

 (K
B

)

0

25

50

75

100

full incremental avg

ISS - buddy ISS - page ISS - instrumentation

Figure 5.5.2: Checkpoint sizes

supports large memory usage reductions compared to the full check-
pointing technique. Also, this reduction is similar to the reduction that
would have been achieved by relying on ISS-page, which, as discussed
before, introduces a higher cost than ISS-buddy in terms of CPU cycles
requested for supporting the incremental checkpointing technique.

5.5.1 Considerations

We showed a new way of tracking modified portions of simulation ob-
jects states in speculative PDES, leveraging operating systems services,
such as the mprotect() system-call, in order to avoid the multiple
write-tracking problem of the instrumentation-based approach. We
armed a signal handler to manage a subsequent illegal access, and in

149

order to reduce the costs associated to the state saving and the man-
agement of a single-page write-tracking, we devised a buddy-pages
scheme to manage correlations between writes. We showed that the
use of memory write correlation on buddy-pages reduces the overhead
of incremental checkpointing by grouping memory updates with spa-
tial locality, efficiently handling write-intensive workload.
However, there is still room for improvement in terms of performance,
and in particular for what concerns the overhead given by the mprotect()
system call. In fact, this service leads to a suboptimal solution for
our tasks due to two aspects previously described, at the beginning
of Chapter 5. To recall, some aspects that can still be targeted for
performance improvement are related to the following facts:

• The mprotect(), used to intercept write operations on a memory
area, needs to guarantee not only that the memory area is not
writeable at a given time, but also that every other processing
unit (working on the same address space) has a coherent view of
the address space. This means that the operating system, at some
point, will flush the TLB of all CPUs, at least for the range of
addresses targeted by the protection operation. The TLB flushing
is a heavy procedure due to the Inter-Processor-Interrupts (IPIs)
management (sending and handling).

• At each memory protection requested and subsequent illegal write-
access, a signal handler is executed. This leads to frequent user/k-
ernel switches to detect the write access to a single page. Also,

150

write accesses are always identified uniquely, without the possi-
bility of grouping them and managing them in a single write-
interception phase.

In the next section, we will describe how we tackled these aspects,
and reduced the overhead and intrusiveness of memory protection ser-
vices when used to support the incremental checkpointing procedure
in speculative PDES platforms.

5.6 Lightweight Operating System Service for In-
cremental Checkpointing

It is worth highlighting that improving the efficiency of PDES plat-
forms on multi-core shared-memory machines regards not only devis-
ing advanced simulation algorithms, but also improving the underly-
ing support provided by the operating system. In particular, in the
previous section we described how exploiting Linux-based operating
systems services can improve the performance of classical speculative
PDES operations, such as the incremental checkpointing. However,
we also showed how operating system services are not always tailored
to the specific needs of simulation workloads, especially if they exhibit
a fine-grained data sharing. In order to tackle the above-mentioned
critical aspects of the mprotect()-based approach to support the in-
cremental checkpointing, we designed and implemented a Linux Kernel
Module (LKM) technology based on a fully new system call to enable
the protection of one or multiple memory pages from write operations

151

without the need for interactions across CPUs – and so the threads
they are running. In fact, it can be called by the thread in charge of a
certain simulation object in order to build a local view of the memory
that only disables its own write-access to the target pages. In this way,
we avoid an excessive use of IPI and the handling of these interrupts
at kernel level, drastically reducing the number of CPU cycles required
for protecting memory for write activities by that thread on the pages.
As a second aspect, we provided a system level service, still based on
LKM, that allows acquiring information on what pages have been writ-
ten, in a work-deferred mode. In fact, we avoid the need for running
signal handlers when the illegal write operation occurs. Rather, we re-
trieve the whole pool of written memory pages when the checkpointing
operation needs to be carried out also enabling the retrieval of multiple
pages via a single user/kernel interaction.
As an additional note, our approach does not prevent that a simulation
object is re-bound to a different thread while being within a checkpoint
interval, since our architecture enabled the migration of the memory
protection locally installed for a thread to another thread. This gives
ride to a solution that is independent of any rebalancing policy of sim-
ulation objects to threads.
As mentioned, these services are embedded within an LKM, conse-
quently they can be installed with no need for recompiling the kernel.
To build our operating system service for incremental checkpointing,
our architecture guarantees that any individual virtual page does not
contain memory chunks that are used by more than a single simulation
objects at a given time, as already discussed in Chapter 2. In fact, we
recall that each simulation object has a disjoint set of pages mapped

152

Interception of the
page fault handler in

custom LKM Dirty-page Address
Logging Device

Kernel Space

Work-deferred mode

Address space

Page fault!

Write chunk in memory
area

1 2

3

4

Figure 5.6.1: Write-tracking after Memory-protection via track_memory()

via the mmap(..) system-call. This allows us to develop an API to
manage the state of the allocation system for each simulation object,
since it is capable of identifying object-specific memory mapped areas.
Starting from this baseline, in the following subsection, we will describe
how the support for the incremental checkpointing is structured.

5.6.1 Write-tracking Mechanism via LKM

Each memory area, let’s say the i-th one, used for allocating chunks
for an object is associated with the virtual address interval
[START_ADDRESSi, END_ADDRESSi). All the logical pages
with bytes falling in that interval are managed via the interception of
the page-fault execution logic at the level of the Linux kernel (see Fig-
ure 5.6.1). The interception has been based on the exploitation of the
kprobe subsystem offered by the Linux kernel.

153

At the same time, our custom system call for protection memory,
track_memory(..), works at the level of the x86 page table entries
used by Linux for managing these pages, and exploits bits that are
unused by the x86 processor, in particular bits 9-11 of the PTE table,
to instantiate and manage a state machine that is exploited and up-
dated by our page-fault interceptor (see Figures 5.6.2 and 5.6.3). The
following two states are permitted while managing each page in that
area:

• NORMAL, in this state the interceptor of the page-fault simply
returns control to the page-fault handler to execute the default
procedure for managing a page fault occurred due to the accesses
to the object state by the event handler modules. In other words,
this page fault is not caused by a write-access to a page marked
by our system for its insertion in an incremental checkpoint of the
simulation object state (although we will describe a corner case).

• WRITE-PROTECTED, in this state the interceptor of the page-
fault handler logs the address of the write-accessed page into a
backend data structure managed by a device driver, in order to
keep track that it will need to be involved in an incremental check-
point operation. In order to correctly generate a page-fault when
a write-access is issued by the event handler software, while being
in this state the real bit in the page table that enables writing
the page (bit 1 in the PTE) is reset, and is set up again after the
interception of the write access.

154

NORMAL

Page-fault not
caused
by a write-protection
fault

Page-fault handler

Returns control to
the page fault
handler

PTE’ state
management

1

2 3

Figure 5.6.2: Page-fault Not Caused by Write-protection

When the page-fault interceptor finds a page table entry in the WRITE-
PROTECTED state upon a write-access, beyond registering the ad-
dress and resetting the write-bit, it also moves the page state to NOR-
MAL. This way, future writes on already dirtied pages to be included
in the checkpoint of the simulation object state will not be intercepted,
thus eliminating the cost associated to multiple write-tracking of the
same memory area, as for the approach based on mprotect() de-
scribed earlier.

Additionally, it is important to note that unused bits by the x86 pro-
cessors in the page table entry, which we exploit to build and manage
our state machine, can be used without incurring in the risk of conflict
to the Linux kernel only when the page is really materialized in a RAM
frame, so when the page table entry is valid. In fact, if the page table
entry is not valid, e.g. it is still not materialized, Linux actually uses
it, possibly overriding the aforementioned bits, for internal operations.

155

WRITE-
PROTECTEDNORMAL

Page-fault caused by a
write-protection fault

Page-fault handler

PTE’ state
management

Log faulted address for
checkpointing activities

Change PTE’s state

1

2

3

Returns control to
the page fault
handler

4

Figure 5.6.3: Page-fault Caused by Write-protection

This is the corner case we were referring to earlier, and it poses a prob-
lem related to the interception of the first write access to a page that
is not yet materialized in RAM.
To cope with this problem, our page fault interceptor has been ex-
panded with a logic that allows the identification of the write-access
to a page that has the corresponding page table entry which is not
valid. For this page, the address is also logged in order to correctly
include the page in an incremental checkpoint operation that will be
eventually requested.
When a new checkpoint interval needs to be started for a simulation
object, all the already materialized pages used to keep chunks that
belong to its state need to be transited to the WRITE-PROTECTED
state. To reach this objective, the thread managing the object invokes
our track_memory(..) system call. The parameters passed to it in
order to correctly identify the entries of the page table to be updated
are therefore START_ADDRESSi, and the number of pages of the

156

area, computed as

⌈END_ADDRESSi − START_ADDRESSi

4KB
⌉ (5.3)

(we recall that on x86 processors pages have size 4 KB).
If multiple mapped memory areas are used for keeping the chunks of an
object, then this system call can be invoked multiple times, in order to
change the page state for all the virtual pages that could be involved
in write-access operations by the simulation object, which might be
placed on the different mapped memory areas.
At the same time, we exploited free bits in the Virtual Memory Area
(VMA) data structure of the Linux kernel – we recall that Linux keeps
one VMA for each mapped memory area – in order to record that
the whole area needs to be exploited in write protection manner for
supporting incremental checkpointing. This information is used, as
pointed out before, to correctly track write-accesses of not yet materi-
alized pages, which are not passed to the WRITE-PROTECTED state
by the system call, since the x86 unused bits in the page table might
be actually already used by Linux.
Overall, when a thread manages a simulation object, it can start the
write-interception phase to the pages hosting the memory chunks by
simply calling the track_memory(..) system call. In its turn, this
system call does not need any IPI to signal other CPUs that some-
thing is occurring in terms of page table modifications, since there is
no need for other threads to perceive this change and so to synchro-
nize. The cost for the management of IPIs is therefore completely

157

saved, compared to the previously described mprotect()-based ap-
proach, as it occurs when using common operating system services for
tracking page-write accesses. Similarly, the cost for running the han-
dler of the interrupt to the remote CPUs, which ultimately yields to
managing the TLB for a possible flush, is completely saved.
At the same time, we note that the IPI technology exploited for page-
protection management, along with the associated TLB flush, operates
at a global level in the architecture. Hence, the larger the number of
CPUs, the larger the expected intrusiveness caused by IPI-based so-
lutions. This likely leads our alternative operating system services to
better provide advantages with larger CPU counts in the machine,
hence naturally scaling vs the underlying computing power offered by
the machine.
The above described system call is coupled with another analogous
system call, namely untrack_memory(..), used to restore the pos-
sibility to write data to the pages of a specific memory area when a
rollback of the simulation object occurs, so to recover from causal-
ity violations, and previously checkpointed information needs to be
re-written in that area. We note that classical approaches based on
mprotect() still need to re-open write-accesses in a rollback phase,
thus again facing the same issues related to the IPI architecture, which
are instead avoided in the solution discussed in this thesis.
The solution proposed in this thesis also offers the possibility to run the
checkpoint interval of a simulation object, made by whatever number
N of simulation events, across different threads. This can be particu-
larly relevant in all the speculative PDES platforms, where the switch
of the assignment of objects to threads can take place wherever along

158

wall-clock-time. In this scenario, different threads need to pass through
the interception of write-accesses involving the state of the object while
processing events. Hence, calling the track_memory(..) system call
along a single thread A at the beginning of the checkpoint interval of
the simulation object, which leads to updating the page table entries
and the unique TLB of the CPU where thread A is running, does not
guarantee that another thread B running on another CPU can actually
exploit the new management rule of the pages containing the state of
the simulation object. To solve this problem, our track_memory(..)
system call offers also the possibility to simply flush the TLB on the
processor it is invoked, and this is achieved by simply passing the value
NULL as its first parameter. Exploiting this behaviour, the thread
B that becomes responsible for one or more simulation objects that
were previously managed by another thread A can simply execute the
system call passing NULL as input. This way, the TLB of the local
CPU will be flushed, enabling therefore the correct management of the
write-access interception, based on the updated value of the page table
entries. At the same time, we still avoid multiple interceptions of write
operations on the same page along the checkpoint interval, since a page
that is already in RAM and that has been transited to the NORMAL
state after a write interception, will not generate any new page fault
when thread B writes again on it, in fact the write-bit for that page
has already been set.
As a final consideration, a thread that has flushed its TLB when run-
ning on a specific CPU could be dynamically migrated by the operating
system kernel to another CPU, just for load balancing. Hence, the reset
of the TLB, for the correct exploitation of the new page table content,

159

might be made useless, in particular when the target CPU after the
migration has just run another thread of the same process—in this case
the page table pointer register CR3 of x86 processors is not necessar-
ily rewritten, and the TLB could therefore yield stale data compared
to the updates performed on the entries of the page table for write-
protecting pages according to our solution. To cope with this problem,
we have installed another kprobe to the context switch function of the
Linux kernel, which simply flushes the local TLB when the current
thread is switched. Overall, we can support incremental checkpoint-
ing with our services in speculative PDES platforms where pinning of
threads to CPUs can be either used or not.
At the same time, all the aforementioned operations are executed
only if the thread, which takes the CPU upon the context switch by
the operating system, belongs to a process that is registered via an
ioctl(...) call within a /proc entry we included in the virtual file
system through our LKM. This check is carried out also for what con-
cerns the access to the page tables and the VMA entries when running
the interceptor of the page-fault handler. Hence, we completely avoid
intrusiveness on threads that are not running the PDES engine (e.g.,
daemon-threads of the kernel).

5.6.2 Dirty-page Address Logging Device

Our support for incremental checkpointing also offers optimization in
terms of passage of data, namely the addresses of the dirty pages, from
kernel to user space. These optimizations tackle two aspects. Firstly,
we enable the retrieval of information for each individual simulation

160

object. This facilitates the post-processing of the information at user
space, since there is no need to parse data for determining which object
is associated with the page addresses returned from the kernel. Sec-
ondly, we enable the user level software to retrieve a batch of addresses
of dirty pages via a single system call invocation. As highlighted, this
enables avoiding the costs spent for retrieving the same information via
signal handler, which would be activated at each interception of the
write operation, as we previously described for the mprotect()-based
approach.
We note that both the configuration and the usage of the kernel level
software device we designed for logging and delivering this information
are extremely simple and do not require additional installation system
calls. In fact, all the different actions to interact with the device are
triggered by relying on the standard ioctl(...) system call. Still
in relation to this aspect, the software device we designed corresponds
to the one previously mentioned, which appears as a char-device in
/proc, as we outlined, and it allows registering at kernel level the
identifier of the process for which the incremental checkpointing sup-
port and the associated kernel level tasks need to be activated.
The exploitation of the ioctl(...) system call allows us to pass
to the device different commands. One of these commands, named,
GET_DIRTY_PAGES, for which our LKM offers the implementation of
the kernel-side function, is used to retrieve the addresses of the pages
that have been written along the current checkpoint interval. One
additional parameter that is passed is the Object Identifier (OID) for
which this information needs to be retrieved, while two more parame-
ters are the address of the memory area where the information needs

161

ioctl(...)

OID

Hashtable

NULL

BUFF_ELEMS entries Empty area of the
buffer

Figure 5.6.4: Logging Device Architecture

to be delivered, and the maximum number of addresses of dirty pages
that we are currently retrieving. Hence, with this ioctl(...) re-
quest we can extract kernel data units, each one made of 64 bits, that
is the size of a virtual address on x86-64 machines. The actual data
structure used for the implementation of the device is shown in Figure
5.6.4. There is a hash table indexed via the OID, where each entry is
associated to a linked list. Each element of the list is a buffer where
multiple addresses of dirty pages can be recorded. In particular, the
number of addresses kept in a single buffer element of the list is a con-
figurable macro, named BUFF_ELEMS, which can be selected compiling
our LKM on top of the Linux release where the PDES platform needs
to be executed. We configured it by setting its value to 256, which ap-
pears reasonable since it allows maintaining information on 1MB (256
x 4 KB) of dirty memory via a single kernel buffer allocation operation.
Also, each element in the list has metadata not only for pointing to
the subsequent element, but also for the identification of the portion

162

ioctl(GET_DIRTY_PAGES)

OID

Hashtable

NULL

Pack addresses to
deliver user space

copy_to_user()

Figure 5.6.5: Logging Device Architecture

of buffer area still available for recording other addresses of pages that
become dirty.
Additionally, the user-level memory allocator, which, as previously
mentioned, uses mmap(...) to allocate memory pages, maps the
chunks for a specific simulation object (associated with an OID value)
to memory addresses selected based on a function of the OID. This ap-
proach avoids address conflicts. In particular, we used a fixed-mapping
scheme, with the base address computed as a multiple of the OID value.
Hence, when the interception of a page address is carried out, the OID
of the corresponding simulation object can be immediately identified
at kernel level, and so the corresponding hash table entry in order to
insert the address of the page that has been dirtied.

As a last note, we implemented the passage of the kernel side logged
page addresses via ioctl(...) rather than a new system call, since
we need to exploit the kernel side copy_to_user(...) function for

163

delivering the information at user level (see Figure 5.6.5), which typi-
cally has a cost comparable to the one of other activities required for
running ioctl(...) at the level of the virtual file system on Linux.
Differently, the system calls track_memory and untrack_memory
have been implemented outside the virtual file system to avoid its cost,
given that with these system calls we only need to pass two param-
eters to the kernel through CPU registers, rather than moving data
from user to kernel memory buffers or vice versa.

5.7 Experimental Evaluation

5.7.1 Test-bed Environment

We relied on a multi-processor machine equipped with two Intel Xeon
Silver 4210R processors, each one hosting 10 cores and 20 hardware-
threads, which we simply refer to as CPUs. The machine is equipped
with 160GB of RAM, organized in two NUMA nodes, and has 8-way
640KB L1 caches, 16-way 20MB L2 caches and 11-way 27.5MB LLC.
Also, we executed our tests with the support of an Ubuntu release1

running on top of Linux kernel 6.2.
The performed tests focused on both the analysis of the reduction of the
overhead with respect to the mprotect()-based approach, in terms
of the already discussed drawbacks related to the IPI architecture to
synchronize the address space across cores, and on the integration of
the LKM services for supporting the checkpoint operation in a state-
of-the-art speculative PDES platform.

1Ubuntu 22.04

164

5.8 Preliminary Experimental Evaluation

In a first set of tests, we compared the LKM-based solution to the one
relying on the mprotect() system-call. To perform this comparison,
we developed a benchmark application where a number of N threads
iterate on the execution of the following set of activities: (1) they call
the memory protection service on a mapped memory region consisting
of N · P pages to write-protect the pages; (2) they write a single byte
in each of the pages; (3) they intercept the address of each page that
is dirtied by the write operations performed in point (2). The inter-
ception of the memory address of the dirtied page is done in the two
compared memory management techniques, either using the SIGSEGV
signal handler or through the LKM approach described in the previous
subsections.
For this test, we scaled up the number of threads N running the bench-
mark, up to the value 40, corresponding to the maximum number of
available CPUs on the target machine. Also, we exploited two different
values for the number of pages N ·P involved in the operation, being 1
and 512. The value 1 allows us to assess the different techniques when
considering the minimum amount of memory actually managed by the
operating system for each of the threads, while the value 512 allows
us to scale up our analysis to the case when an entire 4-th level page
table, namely the PTE, is used on the x86-64 processor running the
experiments.

165

0 5 10 15 20 25 30 35 40
N = Number of Threads

10 2

10 1

100

101

102

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Latency of the memory protection and page-fault handling

mprotect + signal handler
LKM
1 page
512 pages

Figure 5.8.1: Latency of protection and page-fault handling with different
memory sizes (log-scale on the y-axis)

5.8.1 Results

The results of the above-described test are shown in Figure 5.8.1, where
we report the latency for running 1000 times, in an iterative man-
ner, the aforementioned execution steps along all the involved threads.
From the results, we observe how our new service (labelled as LKM and
represented with a dotted line) enables a clear reduction of the latency.
Also, the curve for a single page shows how the benefits provided by
our solution scale well with the number of used threads. This is also
true for 512 pages, but however this curves also include relevant costs

166

0 5 10 15 20 25 30 35 40
N = Number of Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)
Latency of memory protection/unprotection

 with different memory sizes
mprotect
LKM
1 page
512 pages

Figure 5.8.2: Latency of memory-write protection (and unprotection) via
mprotect(...) vs our custom LKM syscalls with different memory sizes

related to the tracking of the addresses of the dirtied pages, which tend
to become relevant when numerous pages are written at each iteration.
To make the analysis more accurate, in particular for what concerns
the advantages of our solution in terms of avoidance of the overhead
of using IPI and related handlers, we also report in Figure 5.8.2 the
latency for running 1000 times only step (1) of the previously listed
ones plus the re-opening of the write-access for the pages, still in an
iterative manner. In particular, according to these results, we can
better observe the comparison of the costs that are simply required

167

by the different techniques for managing the TLB reset in the hard-
ware architecture. We recall again that track_memory(...) and
untrack_memory(...) only require flushing the TLB of the local
CPU, while the classical mprotect(...) needs cross CPU interac-
tions through the IPI support. By the data, we observe how the better
scalability of our approach is directly perceivable, thanks to better
reductions of the test execution time with larger number of threads.

5.9 Benchmark Application

We now discuss the integration of the proposed solution in the state-
of-the-art PDES platform USE. The fine-grain resource sharing mech-
anism among worker threads employed by this platform offers a chal-
lenging testing environment for the solution discussed in this thesis.
In fact, worker threads might execute simulation objects recently exe-
cuted by some other thread, forcing to frequently flush the TLBs (up
to once for each executed event) in order to align the memory man-
agement scheme to the information kept by the page table entries that
have been updated by a different thread.
The integration of our new operating system services has been carried
out in a fully transparent manner with respect to the layer that imple-
ments the simulation model. Hence, the usage of track_memory(...)
and other services has been embedded exclusively at the level of the
simulation engine layer offered by USE. At the same time, the inter-
action between simulation model specific software and the simulation
engine has not been modified at all, and has been left based on the

168

following classical APIs: (1) the ScheduleNewEvent(...) service,
callable by the application for injecting (i.e. scheduling) a new event
to be processed by whichever simulation object in the model, and (2)
the ProcessEvent(...) callback offered by the application layer in
order to enable the simulation engine to pass control to the simulation
model-specific code for processing the event that was previously sched-
uled destined to some simulation object.
Once again, we have used the Personal Communication System (PCS)
model described in Chapter 2, considering cells equipped with 1000
channels each, where the workload of the calls leads to a probability
of busy channel of the order of 25%, 50% and 100%. The total num-
ber of simulation objects, or LPs, has been set to 1024. Additionally,
we varied the checkpoint interval, as the number of events occurring
between each checkpoint taken, between two incremental checkpoints
from 10 to 80 events. Hence, we explored this parameter value, mov-
ing it up to the double of the upper limit suggested by the literature
in order to control memory usage thanks to fossil collection. All runs
have been executed on 40 CPUs, and we have observed that the model
is executed with a rollback frequency of less than 1%.

5.9.1 Results

Figure 5.9.1 reports the average throughput on the y-axis (the higher,
the better) achieved by using our approach, labelled ISS-LKM and
represented with a dotted line, compared to the mprotect()-based
one, labelled ISS-mprotect and represented with a solid line, varying

169

10 20 30 40 50 60 70 80
Checkpoint Period

50000

100000

150000

200000

250000

Th
ro

ug
hp

ut
 (C

om
m

itt
ed

 E
ve

nt
s P

er
 S

ec
on

d)

Throughput of PCS with 40 threads, 1024 LPs

ISS-mprotect
ISS-LKM
=0.25
=0.5
=1.00

Figure 5.9.1: Throughput of Incremental State Saving in PCS via
mprotect(...) vs LKM facilities on varying checkpoint periods and varying

inter-arrival times

the checkpoint interval on the x-axis and with different PCS configu-
rations in terms of utilization. When the checkpoint interval is lower
than 50, our approach always provides improved performance with re-
spect to ISS-mprotect, showing that it is able to reduce the overall
management costs in a broad range of scenarios by providing from
1.38x speed-up (when ρ = 0.25 and checkpoint interval equal to 40)
up to 2.27x speed-up (when ρ = 1.00 and checkpoint interval equal to
20).
With checkpoint period larger than 50, the benefits introduced by our

170

approach are slightly reduced with low utilization of cells. This is
strictly related to the fact that the lower the utilization is, the lower
the number of active channels and, consequently, the lower the wall-
clock-time required for executing an event for a simulated cell. Given
that the test-bed platform allows a simulation object to be executed
by a different worker thread at each event, a lower event granularity
increases the frequency of TLB flushes performed by individual CPUs
in wall-clock time, which are required by our ISS-LKM. Conversely,
since the ISS-mprotect keeps the TLB of each CPU synchronized via
IPI, it does not need to pay the cost of a local TLB flush when a simu-
lation object migrates from one worker thread to another one, which is
a scenario that likely occurs in a share-everything platform like USE.
This makes ISS-LKM being 3% slower than ISS-mprotect in the case
of ρ = 0.25 and checkpoint interval equal to 80. However, as soon as
the utilization factor increases, and thus event granularity, the bene-
fits introduced by our solution emerge again by providing up to 1.6%
speed-up (when ρ = 1.00 and checkpoint interval equal to 60). Also,
the curves show a flatness, particularly for the case of finer grained
events, indicating that they are representative in terms of analysis of
the variation of performance vs the checkpoint interval up to the point
where indirect performance adverse factors, e.g. linked to the memory
usage for uncollected fossils, appear.

171

5.10 Final Remarks

At the beginning of this chapter, we described our approach to support
the incremental checkpointing focusing on the exploitation of the mem-
ory protection services of operating systems, namely the mprotect()
system call. We argued that instrumentation-based approaches, that
represent the state-of-the-art for the write-tracking approach, hinder
performance in case of write-intensive workloads and large state simu-
lation models. This is also due to the multiple-write tracking problem,
which occurs when the same memory area is tracked multiple times
after being written to more than once, as might happen within a single
checkpoint interval consisting of multiple events.
In this scenario, we have shown the effects of exploiting the mprotect()
system-call to track write operations, and also how optimizing the par-
titioning of the memory used to host the state of a simulation object can
give rise to an effective memory-protection based incremental check-
pointing technique. This solution can effectively target models with
large-state simulation objects and with events that are write-intensive
in specific zones of the object state. We have presented a partitioning
scheme that combines buddy-pages at different levels in order to en-
hance memory awareness of the overall approach, and have reported
the results of an experimental assessment of its advantages in terms
of memory usage reduction, compared to a classical full checkpointing
technique, and reduced number of CPU cycles, compared to a clas-
sical incremental technique based on the instrumentation of memory
accesses.

172

However, we have also noticed that the mprotect() has some draw-
backs related to some kernel-level activities, that causes non-negligible
overhead regardless of the optimized management at user level. One
drawback is related to the synchronization of kernel level data struc-
tures, such as the TLBs, that must be updated, namely flushed, across
all cores. Another drawback is related to the frequent user/kernel
switch due to the signal handler execution.
As a consequence of the overhead caused by the interaction across cores
due to the IPI architecture when updating the page table, we have de-
veloped a lightweight operating system service to support incremental
checkpointing. The goal was to reduce the above-mentioned overhead
for both the memory protection service, and so the across core inter-
action costs, but also for the management of the write interception of
protected memory pages, exploiting the kernel-level interception of the
page fault handler.
The new proposed solution, on the one hand, allows for higher scalabil-
ity since it only acts locally on the Memory Management Unit (MMU)
of the CPU that is running the thread in charge of processing events
of a specific simulation object, for which incremental checkpointing
needs to be setup. On the other hand, it also offers a kernel-side mech-
anism to register dirtied page addresses and support the incremental
checkpointing in a work-deferred manner, and managing a batch of
addresses instead of a single address per write-interception, also reduc-
ing the interactions between user and kernel level. We showed how the
memory protection overhead, measured in terms of execution time, was
reduced respect to the mprotect()-based solution, and also showed
how lighweight the overall approach is in the context of speculative

173

PDES applications.

174

Chapter 6

Effective Access to the
Committed Global State

In previous chapters, we have described some optimizations tackling
a locality-based load-sharing scheme for processing events and sup-
porting in a memory aware and lightweight way the incremental state
saving in speculative PDES platforms. We have also described many
other optimizations targeting several aspects of PDES systems that
have been carried out through the years, still regarding causality vio-
lations recovery mechanisms, namely rollback, but also CPU schedul-
ing, load balancing, optimism control, and the very important task in
speculative PDES, that is the GVT computation. We have highlighted
that, among all of these aspects, one aspect has been dealt with in a
limited manner, that is related to the access to the committed portion
of the execution trajectory. This is a relevant aspect, since it can be
useful for predicate detection purposes, or for producing output data.
In Chapter 2, we have discussed how critical is the GVT computation

175

and how it is fundamental to identify the committed global state of
the simulation. In fact, in order to identify a committed portion of the
state to inspect the execution trajectory, we have to guarantee that
it is not subject to causality violations, and therefore to rollbacks. In
order to do so, we must observe a state whose timestamp is past the
GVT value.
To recall what has been mentioned in Chapter 3 (Section 3.3), since
freezing the speculative processing of events in order to stop the progress
and wait that their simulation time is outdated by the new GVT value
is not feasible, because it might slow down the speed of simulation pro-
cessing, solutions based on state-swapping have been proposed [21]. In
this solution, the current state of the simulation object is temporarily
swapped with a past committed one in order to inspect the simulation
trajectory, and then swapped back. However, this scenario refers to
the already discussed PDES architecture, in which each worker thread
has its own set of simulation objects. This implies that when a thread
Ti needs to swap the state of the object ox that it manages, there
will be no other thread capable of touching the same state concur-
rently. Modern speculative PDES platforms running on top of multi-
core shared-memory machines, however, support the full sharing of
workload among worker threads, allowing worker threads to process
events destined to any simulation object in the system, creating a bind-
ing lasting no more than a single or very few events. In this scenario,
the realignment to the committed state of an object ox needs to avoid
interference with respect to regular simulation operations carried out
on the same object by another worker thread. Similar considerations
apply also to simulation engines running on a cluster of shared-memory

176

machines, where fine-grain workload sharing among worker threads can
be adopted within each node in the cluster.
Additionally, as already mentioned in Chapter 3, there are two core
aspects that the literature does not take into account, which are our
main focus towards the state-swapping to do output collection:

• A thread which is faster than others in swapping the states can
then resume event processing of those objects before other threads,
possibly leading to over-optimism in their execution. Hence, there
is the need for optimizations in the distribution of the state-
swapping activities among threads, and the creation of a well
confined wall-clock-time window where all threads take care of
these activities,

• There is a lack of support for making all threads simultaneously
switch to the state swapping activities with close-to-zero delay
after a selected wall-clock-time instant, which is useful for sce-
narios with interactive users who are willing to observe output
data based on the committed state trajectory of the simulation at
specific time instants. This is clearly interesting also for real-time
analysis of the simulation output.

We focus on these two aspects in the scenario of speculative PDES
running on top of multi-core shared-memory machines, supporting the
full sharing of the workload and filling the gap with the state-of-the-art,
but also introducing new techniques to support the access to the latest
committed global state with minimal intrusiveness and with minimal
latency. We provide the following support by:

177

• Introducing an operating system service exploiting the Inter Pro-
cessor Interrupt (IPI) architecture, which allows to promptly no-
tify all the worker threads that a switch to the state-swapping
activities is needed, in order to deal with the committed state
reconstruction. This service eliminates any delay that would be
added by relying on traditional signal mechanisms, in fact using
signals a thread can react with a delay related to the first subse-
quent access to a system call, if any, or an entire time quantum
at the end of which an interrupt is generated 1,

• Supporting two different contexts for the execution of a thread:
a normal context and a committed reconstruction context. The
latter is used for making the thread work on the access to the
committed global state of the simulation, and it is installed upon
the asynchronous IPI arrival while saving at the same time the
normal context, for future resume. Having two separate contexts
enables a correct asynchronous interruption, and eventually the
resume, of any event processing activity carried out by the thread
in normal execution. Hence, the solution proposed in this thesis
enables an almost instantaneous move of the computing power
to the management of the committed global state of the simula-
tion, while at the same time ensuring the correct resume of any
processing activity,

• Introducing a mechanism that enables a balanced distribution
of the state-swapping activities among all the worker threads.

1On multi-core machines running on Linux, the common setting for this delay can be on the
order of 2.5 milliseconds

178

Hence, the proposed solution aims at providing an almost imme-
diate switch back of the threads to their normal context, in order
to reduce the likelihood of under-optimism on simulation objects
that are still in the phase of committed state reconstruction, while
some threads have already switched back to forward processing
other simulation objects in optimistic manner.

As for the IPI support, we notice that the work in [127] presents a
solution where the IPI technology is exploited on multi-core machines
in order to early abort the execution of no longer consistent events in
speculative PDES. In the solution proposed in this thesis, we exploit
the IPI technology as well, but with a different objective and accord-
ing to a different method. In particular, we exploit IPI for building a
timeline where a broadcast of interrupts is destined to all the CPUs
in order to enable all the worker threads to switch to committed state
access and output production. Furthermore, differently from [127], in
our architecture the generation of the IPI is demanded to an operat-
ing system daemon of the Linux kernel—the SoftIRQ daemon—with
is managed via high-resolution-timers and enables real-time support.
We also highlight that, even though we have already discussed (see
Chapter 2) some possible drawbacks of the IPIs related to the coor-
dination of TLBs across cores, in this case we do not encounter this
issue. In fact, in the case of using memory protection services, IPIs
are endemic and non-avoidable in the context of CPUs/TLBs coordi-
nation, due to the high frequency of new checkpoint interval restarts
of the simulation objects. In our case, we leverage the IPI architec-
ture just to notify the threads in a prompt manner to implement the

179

context-switch (namely, from normal context to committed reconstruc-
tion context), with the result of being less impactful on the fine-grain
sharing workload scheme, since IPIs are less endemic than the previ-
ously described scenario. In fact, output production is less frequent
than checkpoint interval restarts.
Our implementation is tailored for Linux operating systems and for
x86-64 processors, and we embedded it in the speculative PDES system
running on top of shared-memory multi-core machine named Ultimate-
Share-Everything (USE) [54], even though the discussed concepts are
general.

6.1 System Architecture

Our reference simulation platform architecture adheres to what pro-
posed by the literature [21]. In particular, we consider the scenario
where the application layer offers the simulation engine the following
two callback functions:

1. void ProcessEvent(unsigned int me, simtime_t now, int
event_type, event_content_t *event_content, unsigned
int event_size, void *state), which is used to execute an
event occurring at the simulation object identified by me at a given
point along simulation time. The last parameter of this function
is a generic pointer state which enables the simulation object to
reach its state in memory.

180

2. bool onGVT(unsigned int me, void *state), which is used
to pass to the application layer a committed state snapshot, pointed
by state, of the simulation object whose index is me. This func-
tion can inspect the state snapshot to determine properties of
interest for the modelling scenario and produce output related
to the simulation state trajectory. It returns TRUE if, for this
simulation object, the execution can be completed.

We note that the callback described in point 1 has been already men-
tioned in Chapter 5, even if not described in detail.
When all the simulation objects have replied with TRUE via the
onGVT() callback, the simulation can end.
In order to perform the onGVT() callback correctly, the actions that
need to be done by a worker thread are the following:

1. The current state of the simulation object me is saved.

2. The latest checkpoint of the object me with logical time preceding
the last computed GVT is restored.

3. The onGVT() callback is invoked for this object.

When the onGVT() returns control to the simulation platform, the
original state of the simulation object, which was saved, gets restored
so that the simulation can proceed, if required.
Depending on the end-user choices, it is also possible that, after the
restore in point (2) in the above list, the events of the simulation object
with timestamp between the restored checkpoint time and the GVT,

181

N
um

be
r

of
 th

re
ad

s
ac

ce
ss

in
g

th
e

co
m

m
itt

ed
 g

lo
ba

l s
ta

te

wall-clock-time advancement
To

ta
l n

u
m

b
e

r
o

f
w

o
rk

e
r

th
re

a
d

s

Figure 6.1.1: Target timeline of activities along wall-clock-time.

are reprocessed, as in the classical coasting-forward, to realign the sim-
ulation object state exactly to the reference GVT.
Since, as pointed out, we are in the scenario where all the worker
threads can manage any simulation object at any time instant, we
want to reverse all the computing power of the underlying machine
(the processing units hosting the worker threads) to the management
of the onGVT() callbacks at a given wall-clock-time instant, with mini-
mal overhead and delay, and with balanced distribution of the activities
across all the threads. In particular, we would like to get a timeline
execution of the simulation similar to the one depicted in Figure 6.1.1,
where at a given time instant all the threads switch to the execution of
the operations related to the access to the committed global state, and
then at a subsequent wall-clock-time instant they switch back to the
forward execution mode of the simulation. This enables (i) low latency
finalization of the access to the committed state snapshot, which be-
yond helping performance, is also useful in real-time scenarios for the

182

analysis of the simulation trajectory, and (ii) no risk of having threads
executing objects in an overoptimistic manner while other threads are
still performing the access to the committed global state, keeping at
the same time their targets object(s) busy on this task. This can be
helpful for not favouring the increase of rollbacks in the simulation run,
thus still favouring performance and limiting the intrusiveness of the
committed state access operations on synchronization. This scheme
represents a first step towards a further optimization, which we will
discuss later, regarding the memory impact and intrusiveness of the
context-based approach adopted. We discuss the context-based ap-
proach in the next section.

6.2 Execution Contexts

As mentioned above, we envisaged a system architecture based on the
possibility to switch the execution context of any thread Ti in a fully
asynchronous manner. The asynchronous switch is the only oppor-
tunity we have for the thread to react promptly, and to fast –almost
immediately– move to the reconstruction of the committed simulation
object states related to the latest computed GVT. We denote this ex-
ecution context as Committed State Reconstruction (CSR), while we
denote as NOrmal (NO) the context of classical execution of the sim-
ulation main loop.
User Level Technology (ULT) cannot be effective in this scenario, since
the thread Ti would require to synchronously reach the point of code
where the ULT call passing control to the CSR context is present.

183

Furthermore, such ULT calls should be also integrated within the ap-
plication logic in order for the thread to switch to the CSR in a prompt
manner even when simply performing a normal forward processing of
the simulation events. Clearly, this would reduce the transparency
level of the solution with respect to the application code development
process.
To tackle all of these limitations, our support for the fully asynchronous
switch of the execution context has been based on operating systems
facilities. In particular, we have developed an LKM which offers a new
system call and a new interrupt handler, which can be used (i) to notify
the existence of an additional context CSR for a worker thread, (ii) to
switch to this context, and (iii) to return to the original NO context
as soon as all the operations for accessing the committed global state
have been completed.
More in detail, the system call we added has the signature
int setup_context(void *routine, void *stack) and is used
to notify to the operating system kernel the two core parameters re-
quired for setting up the CSR context associated with the thread in-
voking the system call, namely:

• The memory address of the function that the simulation platform
code should use to start the operations in the CSR context.

• The stack area to be used for processing the activities in the CSR
context.

184

1 struct pt_regs csr = {
2 r15 = 0x0, ..., rax = 0x0; //default null values
3 ip = routine; //rip setup for passing control to the CSR function
4 sp = stack; //rsp setup for proper stack management
5 ss = 0x2bU; //stack-segment setup for user space return
6 cs = 0x33U; //code-segment setup for user space return
7 flags = 0x200U; //flags setup for user space return
8 }

Listing 6.1: Register setup for the CSR context.

We show in Listing 6.1 the actual set up of the CPU snapshot to be
installed when the execution in this context needs to be started. The
stack pointer register and the instruction pointer register, namely rsp
and rip for x86-64 processors, and the other registers dealing with
segmentation and execution mode are set either to common values or
to the parameters passed to the system call we added. In the listing,
our context is set up based on the Linux kernel struct pt_regs data
structure, which is used just for recording a CPU state to be restored
at some point in time.
The CSR context is associated at kernel level with the specific thread
that called setup_context(). In particular, we envisage a scenario
with worker threads of the simulation platform pinned to the differ-
ent CPUs of the shared-memory machine. Hence, the data structure
keeping the context information is actually placed on per-CPU mem-
ory zones. Also, the LKM offers a device driver for simply making
the simulation application register itself for the usage of the context
management facilities. So, a running thread pinned on a CPU can be
immediately recognized as being part of the simulation platform.
In our implementation, the function, whose address corresponds to the
value passed with the parameter routine, takes no parameter. Hence,

185

when starting the activities in the CSR context, all the general pur-
pose CPU registers for its activation are simply set to the value zero.
At the same time, there is no information at all in relation to floating
point and vectorial registers of the x86-64 processor. The reason for
this stands in the fact that upon activation of the CSR context, some
fresh set up of these registers can be safely performed by the simulation
engine or the application logic, for example if these registers are used
by the simulation code.
Conversely, when entering CSR and leaving the NO context, floating
point and vectorial registers potentially used in the NO context, e.g.
used by the ProcessEvent() routine implementing the simulation
model, need to be saved. To correctly do this operation, the system
call setup_context() also reserves room for saving both the struct
pt_regs registers, and the floating point and vectorial registers of the
NO context, still on per-CPU memory.
When the CSR context is activated along a worker thread, the NO
context is saved, and will not be resumed until the CSR context ends
all its activities. To perform a very fast restore of the NO context,
we exploited the same handler used for the passage from NO to CSR,
this time invoked via a trap called by software. This trap should be
invoked by any worker thread at the end of the activities related to
the CSR context. Hence, the actual function taking control for the
execution in the CSR context at the simulation platform level can be
simply structured as

186

void csr_function(void){

... //do the actions required for

//swapping the simulation objects states

//and calling the onGVT() function

asm inline("int disp"::) ;//return control to the normal context

}

where disp represents the displacement at which the trap handler
is installed on the Interrupt Descriptor Table (IDT) managed by the
x86-64 processors. In the implementation, we have exploited a not
currently used entry of the IDT, that is the spurious interrupt entry.
Our kernel side implementation regarding the management of this trap
simply restores the NO context of the thread, with no saving the cur-
rent CSR context. In fact, when the CSR context will need to take
control again, this will occur at the next time instant the access to the
committed global state of the simulation needs to occur, and all the
activities will need to resume simply re-installing the CPU snapshot
shown in Listing 6.1.
In order to make all the worker threads currently running the simula-
tion, switch to the CSR context, we exploited, as mentioned, the IPI
architecture. In particular, in our LKM we embedded a kernel level
function with signature void switch_to_csr(void), which simply
sends an inter-processor interrupt to all the processing units on the ma-
chine. This is done by exploiting the Linux kernel send_IPI_all()
API, which enables sending an IPI associated with a specific displace-
ment of the IDT to all the CPUs. When reacting to this interrupt, the
handler linked at that entry makes the following actions:

187

• if the thread hit by the interrupt is the worker thread of the
simulation platform that should run on the target CPU, then its
context is switched to CSR;

• if the thread of the simulation platform that should run on the
target CPU is not currently CPU-scheduled, e.g. because the
CPU is currently dedicated to a kernel level daemon, a per-CPU
flag is set.

The flag set in the second point is checked by a hook function we in-
stalled on the Linux scheduler. As soon as the target thread running
the simulation is rescheduled on CPU, the hook checks the flag and if
it set, then the switch to the CSR context is performed.
The call to switch_to_csr() is done periodically. In particular, we
exploited the High-Resolution Timer (HRT) subsystem of Linux in or-
der to post to the timer management subsystem the request for issuing
the switch_to_csr() after a specific timeout. This does not require
any action at the simulation platform level, since the actions related to
HRT are already executed by the Linux kernel-level softIRQ daemon.
In Figure 6.2.1, we schematize the state machine used for managing the
two contexts CSR and NO on a worker thread in our implementation.
As a last point, the function switch_to_csr() also exploits a bitmap,
with one bit for each CPU, indicating whether there is currently a
CPU that requires the worker thread to return to the NO context af-
ter switching to the CSR context. If the bitmap has at least one bit
still set to indicate that a thread did not come back to the NO con-
text, the sending of IPI is skipped, since the last activated access to
the committed global state is still being processed.

188

IPI by the SoftIRQ
kernel daemon

Simulation startup

NO context CSR contextNO context

trap request by the
application software

Figure 6.2.1: State diagram for the management of contexts

6.3 Memory Safety of Simulation Object States

We discussed in the first chapters how shared-memory computing has
become relevant over the years, and how we want to optimize spec-
ulative PDES on multi-core shared-memory machines. In this kind
of computing systems, the logical processors, namely hyper-threads,
share the same address space and can fully share the workload. In the
context of PDES, this translates the full sharing of the workload in
terms of events to be processed, destined to any simulation object in
the system. In our target PDES platform, namely USE, each worker
thread simply locks a simulation object for processing its next event
currently standing into the pool. The selection of the object to be
locked is based on checking into the pool which events with minimal
timestamp still need to be processed. Also, each thread attempts to
lock a simulation object using a try-lock mechanism, based on the ex-
ecution of an atomic Compare-and-swap (CAS) machine instruction,
which does not lead to real block/wait phases for the thread. Clearly,
once the thread has successfully locked an object, it will eventually
start processing its next event, thus accessing the object in read/write
mode.

189

In the proposed solution, we do not force a barrier among threads
when the committed global state needs to be reconstructed through
the state-swapping operation. Hence, it is possible that when the
thread Ti switches to the CSR context, where the state-swapping op-
eration is executed, another thread Tj might be still processing some
event in NO context, destined to a target simulation object ox. In fact,
the effects of the IPI that triggers the switching of the worker threads
to the CSR context can be non-immediate, recall the discussed sce-
nario where the target thread is currently not scheduled on CPU, and
will therefore suspend its current activity switching to CSR later along
wall-clock-time. In this case, the state of ox cannot be swapped until
we know that thread Tj has not stopped working on that object for
normal forward execution in the NO context of the simulation, other-
wise we might incur problems when the swapping operation tries to
reuse the same memory areas currently used for the state of the simu-
lation object. We refer to this problem as memory safety.
At the same time, when the thread switch to the CSR context, we need
a mechanism to enable understanding that the object ox can now be
considered for the state-swapping operation.
To address all these problems, we introduced a non-anonymous sim-
ulation object locking mechanism. In the proposed solution, a lock
associated with a simulation object, whose structure is shown in Fig-
ure 6.3.1, is a 64-bit memory location where:

• the most significant bit indicates is the simulation object is cur-
rently locked, 0 meaning it is free, 1 meaning that it is locked;

190

1 bit N-1 bits

simulation object
locked or not

ID of the thread that locked the object

Figure 6.3.1: N -bit structure of the per-simulation object lock—N is set to
64 in our x86-64 oriented implementation.

• the remaining 63 bits keep the identifier of the worker thread, if
any, that locked the object.

Algorithm 6.3.1 Simulation Object Locking Algorithm
1: function try_lock(lock_t * lock)
2: lock_t oldValue ← 0
3: lock_t newValue ← MakeWord(1, myTid())
4: if CAS(oldValue, newValue, lock) then
5: return TRUE
6: end if
7: return FALSE
8: end function

The actions done by a thread for trying to lock a simulation object
are described in the pseudocode shown in Algorithm 6.3.1. We use
the macro MakeWord(val1, val2) to build a 64-bits mask, the most
significant of which is set to val1, and the remaining one are set to
val2. We use a classical approach where an atomic CAS instruction
attempts to put the simulation object as busy, and attempts to write
into the lock the identifier of the thread who is performing the locking
operation. The condition for the successful execution of this CAS
instruction is that the whole set of bits in the lock location are equal

191

to zero, the 64-th lock hold bit needs therefore to be zero.
Exploiting the non-anonymous locking mechanism, we can detect what
thread was in charge of processing events for a given object in the
NO context. This will enable that thread to process the object after
switching to the CSR context, while preventing any other thread from
taking care of the same object.

Algorithm 6.3.2 Usage of the potential_locked_object Variable Kept
in Thread-local-storage.

1: when locking an object with identifier X in the NO context:
2: potential_locked_object ← X
3: if try_lock(&locks[X]) then
4: process the actual task
5: unlock(&locks[X])
6: end if
7: potential_locked_object ← NO_OBJECT

When attempting to lock a simulation object in the NO context, the
thread first writes the identifier of the target object into a thread-local-
storage (TLS) variable that we refer to as potential_locked_object
(see Algorithm 6.3.2). Hence, if the thread successfully acquires the
lock, in constant time we can exploit the variable potential_locked_object
as an index to determine the lock to query on to find the ID of the
thread. At the same time, the potential_locked_object variable
is reset to the NO_OBJECT value right after the release of the lock on
the object in the NO context. As we will explain in the next section,
this will be exploited in our algorithm to distribute the state-swapping
activities of the simulation objects among the threads, which we recall
being another crucial aspect in shared-memory machines.

192

6.4 State-swapping Activities Distribution

As stated at the beginning of this chapter, distributing the state-
swapping activities among the worker threads has not been covered by
the literature, since no approaches targeting systems with full sharing
of the workload have been proposed. In particular, the crucial aspect
is related to the fact that there might be faster threads in swapping
the states, that once switched back to the NO context, start forward-
processing events, leading to over-optimism in their execution. In order
to solve this problem, we have to guarantee the property that for each
simulation object, the swapping activity of its state is executed exactly
once, unless we can accept that no output is provided for that object
or that duplication of the output can occur.
As shown in the pseudocode in Algorithm 6.4.1, we exploit an inte-
ger object_id shared among all the threads. Assuming, with no loss
of generality, that the simulation object identifiers are integer values
starting from zero, object_id is initialized to N − 1, where N is the
total number of simulation objects.
This integer variable is manipulated atomically by all the worker threads,
which execute Algorithm 6.4.1 concurrently once they have switched
to the CSR context, in particular using the Fetch-and-Add (FAD) ma-
chine instruction. FAD returns the original value of the variable while
atomically adding, or removing, some units. A thread executes the
FAD(&object_id, -1) to read the simulation object identifier cur-
rently set into the object_id variable and to atomically update it,
eliminating one unit, in order for other threads to read different object

193

identifiers in their attempts.
Once a simulation object identifier is acquired by a thread running in
the CSR context, the thread attempts to lock the object. In the pos-
itive case, the swapping operation targeting that simulation object’s
state is executed; then the onGVT() callback is invoked. Successively,
the current object state is restored, and the lock is released. All the
activities in the CSR context go ahead until all the simulation ob-
ject identifiers have been acquired by the threads. However, a corner
case exists, since a simulation object identifier X can be acquired by a
thread Ti when managing object_id, while a lock for normal process-
ing activities on that same simulation object is acquired by a different
simulation thread Tj. In this scenario, Ti fails in the lock acquisition,
thus not processing the state-swapping activities for that simulation
object X . At the same time, the thread Tj did not acquire the object
identifier X via the variable object_id, since it was delivered to Ti.
Hence, Tj does not process the state-swapping of object X as well.
To avoid that object X will not provide its output data when the
committed global state needs to be inspected, in the successive part
of Algorithm 6.4.1 each thread Ti simply searches if there is one lock
that it currently manages and that it has been acquired in NO context,
this is done by exploiting the potential_locked_object per-thread
variable we discussed in the previous section. In this case, the corre-
sponding simulation object state swap can be safely processed by the
thread Ti, which will not release the lock, since it will resume process-
ing this object upon switching back to the NO context.
Another important aspect is related to the reliance on a bitmap vari-
able, which indicates if a simulation object has been processed in the

194

Algorithm 6.4.1 Algorithm executed in the CSR context—N is the num-
ber of simulation objects, with identifiers in [0, N − 1].

SimulationPlatformData:
simtime_t reference_GVT = last_computed_GVT()

Inputs:
int object_id = N-1
bitmap_t bitmap = 0x0
int num_threads = total number of worker threads

PerThreadData:
int target_object
int potential_locked_object

REDO:

1: target_object ← FAD(&object_id, -1)
2: if target_object ≥ 0 then
3: if try_lock(&locks[target_object]) then
4: if not is_set(&bitmap, target_object) then
5: swap_state(target_object, reference_GVT)
6: onGVT(target_object, state_pointers[target_object])
7: restore_state(target_object)
8: end if
9: unlock(&locks[target_object])

10: end if
11: goto REDO
12: end if
13: target_object ← potential_locked_object
14: if (target_object ̸= NO_OBJECT and
15: locks[target_object] = MakeWord(1,myTid())) then
16: swap_state(target_object, reference_GVT)
17: onGVT(target_object, state_pointers[target_object])
18: restore_state(target_object)
19: set_bit(&bitmap, target_object)
20: end if
21: if FAD(&num_threads, -1) = 1 then
22: object_id ← N − 1
23: bitmap ← 0x0
24: num_threads ← total number of worker threads
25: end if
26: asm inline("int disp"::) ▷ return control to the normal context

195

CSR context by some thread. In particular, even though the selection
of an object identifier through the FAD executed on object_id guar-
antees that different threads always take different object identifiers, it
is possible that a thread Ti takes the identifier of an object that is
the potential locked one for another thread Tj. If the lock has been
actually taken by Tj, this thread can process this object and then re-
turn to the NO context, eventually releasing the lock. Making Tj set
the bit associated with this object in the bitmap variable after having
processed it, enables avoiding that Ti will reprocess this same object
while executing in the CSR context. The set_bit() API we used to
set bits into the bitmap variable is assumed to work atomically, for
example, using atomic machine instructions.
Any thread Ti simply returns to the NO context via the opposite trap.
However, before returning, a re-initialization of the object_id and
bitmap variables needs to be carried out, in order to have their values
correctly set for the next access to the CSR context. An additional
counter, still managed using FAD, is used to detect the number of
threads which already finished their processing activities in the cur-
rent CSR execution, and to make the last of these threads re-initialize
the shared variables, including the counter itself.
The algorithm also uses a reference to the GVT value, exploited in the
state-swapping operation of the objects, which, with no loss of general-
ity, is assumed to be published into an appropriate simulation platform
variable.
With this algorithm, no two different threads will process the state-
swapping activities for an individual simulation object. At the same

196

time, no simulation object will remain unprocessed since, if lock acqui-
sition in the CSR context fails on a thread, another thread, i.e. the
one which locked the object in NO context, will process the state swap
on it. Therefore, we guarantee the exactly-once semantic previously
declared of each simulation object, at any fully asynchronous switch to
the CSR context.
Also, the workload of all the state-swapping operations is fully dis-
tributed among all the worker threads, each of which attempts a new
state swap after just finishing its last executed one. Therefore, there is
no batch of work acquired by a thread in advance, thus reducing the
risk that some heavy batch (involving simulation objects for which the
cost for the state-swapping operation is larger) can retain some thread
in the CSR context for a too long time, while other threads already
returned to the NO context. At the same time, the return to the NO
context has no barrier, which might potentially induce costs, especially
in the scenario of large number of worker threads operating on top of
the shared-memory platform.

6.5 Experimental Evaluation

6.5.1 Test-bed Environment

We have already mentioned in Chapter 2 how memory is allocated and
managed in the USE platform. As the unique platform-specific facility
we had to implement, there is the management of the memory segment
that keeps the current state of the simulation object. To recall, USE

197

relies on DyMeLoR as memory allocator for the states of the simulation
objects, and as checkpoint/restore support. Hence, when processing an
event at a simulation object, it is possible that a memory allocation/re-
lease API (e.g. the malloc() function) is intercepted and processed
through DyMeLoR. However, given the IPI-based support for the pro-
posed solution, it is possible that the execution within DyMeLoR gets
interrupted. In order to avoid inconsistencies in DyMeLoR metadata,
when swapping the state of the simulation object whose event pro-
cessing has been interrupted, e.g. while just executing DyMeLoR, we
perform a flat memory copy of the entire memory segment hosting
both its state and the DyMeLoR metadata. This information is then
restored upon finishing the access activities to the committed state.
Additionally, for all the simulation objects whose event execution is
not interrupted, we directly rely on DyMeLoR API in order to check-
point and restore the current state upon the swapping operation, and
to restore the checkpointed state preceding the GVT.

6.6 Benchmark Application

As a benchmark application, we exploited the well-known PCS model,
configured such that each cell manages 1000 channels, the average
duration of any call is set up to up to 2 minutes, and the call arrival
rate has been set to achieve about 40% channel utilization. Hand-
offs of communicating devices can take place, depending on a mobility
model that enables the switch across different cells according to an
average delay of 5 minutes. All the stochastic values are sampled by

198

relying on exponential distributions.
As underlying hardware platform, we used a machine equipped with
an Intel i7-12700K with 12 CPU cores (20 Hardware Threads) and
64GB of DDR5 RAM. The installed operating system is Ubuntu 22.04
embedding version 5.19 of the Linux kernel. When running on this
machine, the PCS model we used in the experiments shows an average
wall-clock-time delay for processing an individual event of the order of
120 microseconds.

6.6.1 Compared Solutions and Metrics

We compared our new, fully asynchronous solution against a syn-
chronous one. The latter relies on the exploitation of a flag, set peri-
odically by a dedicated thread that acts as a metronome, and which is
checked synchronously by the threads in order to determine whether
the access to the committed global state has been required. If the flag
is set, the threads will call the module for the reconstruction and access
to the committed state by simply performing a function call. Also, in
the synchronous solution, the distribution of the simulation objects to
the worker threads is based on a static pre-partitioning, which is what
happens when relying on classical solutions in the literature. We still
use simulation object locking in this configuration in order to avoid in-
consistent access, caused by thread concurrency on the same simulation
object, that might anyhow happen because of the intrinsic operations
of the USE environment.
For what concerns the metrics used in the comparison, we consider:

199

• The distance along wall-clock-time for the passage of threads from
the normal execution phase to the committed state reconstruction
phase. This metric, which we refer to as NO-to-CSR delay (NC-
D) enables determining how simultaneous is the actual passage of
all the threads to the requested execution task that manages the
committed state.

• The delay for processing the committed state access task. This
metric, which we denote Committed-State-Access Delay (CSA-
D), enables us to determine how effective the used mechanism
appears for the timely production of the output data, this is rel-
evant for any scenario where real-time output production is a
target.

Finally, we also report data related to the simulation dynamics, in
terms of the efficiency of the speculative run. We recall that the effi-
ciency of speculative simulation is the ratio between the total number
of committed events and the total number of processed events com-
mitted plus rolled back. It provides indications on the incidence of
rollback. This helps assess whether the employed mechanism can im-
pact synchronization in some negative manner.
As a last note, for the synchronous solution, which we use as a ref-
erence to assess our innovative proposal, the flag indicating to the
threads that a consistent state access is requested for the output data
production, as mentioned earlier is periodically set by an additional
thread, and we pinned that thread to a specific CPU of the under-
lying machine. This has been done in order to achieve an execution
dynamic where the cadence of the access to the committed global state

200

is regulated via a mechanism that has some similarity with respect to
the IPI-send achieved via the SoftIRQ daemon of the Linux kernel,
which we exploit in our asynchronous solution. Additionally, all the
metrics mentioned above deal which the relative timing of the worker
thread activities, hence being independent with respect to the mech-
anism that is exploited for starting the processing of the committed
state access activity. Furthermore, the used machine has a maximum
number of 20 hardware threads, while we decided to use no more than
16 worker threads. This has been done just to avoid interference with
respect to system level tasks carried out by the operating system. How-
ever, this also allowed us to exploit the additional thread used in the
synchronous case with no interference on the activities of the worker
threads carrying out the simulation execution.

6.7 Results

The PCS model has been run in two different configurations for what
concerns the number of used worker threads, namely 8 and 16. In Fig-
ure 6.7.1, we report the distribution of NC-D for both the synchronous
and the asynchronous mechanisms. From the results, it appears evi-
dent that the asynchronous solution we are presenting definitely allows
a more timely switch of threads to the procedure that accesses the com-
mitted state and supports the output production. In particular, the
distribution of NC-D has a peak around 10/30 microseconds for the
asynchronous solution, while it shows no peak for the synchronous case
and a time span up to the much bigger value of 300 microseconds. This

201

Latency (us)

P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

0 100 200 300

SYN - 8 threads SYN - 16 threads ASYN - 8 Threads ASYN - 16 Threads

Figure 6.7.1: PCS model - NC-D distribution

result shows how our IPI based approach for passing to the committed
state access really supports a very rapid variation of the execution flow
of all the worker threads involved in the simulation execution.
In Figure 6.7.2, we show the distribution of CSA-D. These data con-
firm the effectiveness of our asynchronous approach, in particular of
the algorithm proposed in Section 6.4 for the distribution of state swap
activities among the worker threads. In more details, when running
with the asynchronous support, the completion of the activities related
to the access to the committed state takes place with a delay bounded
by 1 millisecond, while we observe much higher delays, spanning up to
10 milliseconds, for the synchronous mechanism. As noted, this result
is highly relevant when considering real-time orientation in the usage
of the simulation system.

202

Latency (ms)

P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10

SYN - 8 threads SYN - 16 threads ASYN - 8 Threads ASYN - 16 Threads

Figure 6.7.2: PCS model - CSA-D distribution

So, we have already showed how we actually achieved the goals promised
at the beginning of this chapter, but what remains to analyse is the
actual intrusiveness of our approach. In fact, the reduced intrusive-
ness of our asynchronous mechanisms in terms of synchronization and
rollback occurrence is supported by the results in Figure 6.7.3. In par-
ticular, the variations of the efficiency when the mechanism is active
are essentially negligible, independently of the number of used worker
threads, and are anyhow non-negative. This is a clear indication of
the capability of the mechanism to locate itself in a favourable man-
ner along wall- clock-time, for what concerns the activities of all the
threads.
Finally, to provide the reader with additional data related to the dy-
namics we may expect when employing our mechanism, we report in

203

C
om

m
itt

ed
 e

ve
nt

s
/ E

xe
cu

te
d

ev
en

ts

0.00

0.25

0.50

0.75

1.00

ORIG - 8 threads ORIG - 16 threads ASYNC - 8 threads ASYNC - 16 threads

Figure 6.7.3: Efficiency w.r.t. original USE

Figure 6.7.4 the relative speed-up that we observed when running the
simulations with our committed state access mechanism and when ex-
cluding it from USE. For this experiment, we configured the access
to the committed state to occur each 5 seconds along wall-clock-time.
By the data we observe an essentially negligible overhead of our solu-
tion, which can therefore add a feature in the simulation system, the
production of output data related to the committed trajectory of the
speculative simulation execution, at reduced cost. Clearly, the actual
cost can also be determined by the final user choices, since the period
after which the output needs to be provided can be selected at sim-
ulation startup. Anyhow, our data show what we may expect for a
relatively low, although reasonable, setup of this period of time.

204

S
pe

ed
up

0.00

0.25

0.50

0.75

1.00

Async - 8 thread Async - 16 thread

Figure 6.7.4: Relative speedup w.r.t. original USE

6.8 Final Remarks

We provided a support for enabling the on-line access to the committed
state trajectory in speculative simulations and producing output data
that are causally consistent with respect to the executed model. We
filled the gap present in the literature for what concerned the state-
swapping operation, which we recall was targeted in the scenario of
a traditional PDES architecture, that presented a long-term binding
between simulation objects and threads, failing to exploit the capabili-
ties given by a shared-memory machine. In fact, the proposed solution
is suited for last generation parallel simulation platforms devised for
multi-processor/multi-core machines, where the simulation workload
is shared among worker threads at very fine grain.

205

The solution proposed in this thesis, based on innovative operating
system services and the IPI technology, shows how it is possible to
switch all the worker threads to access the committed state of the
simulation simultaneously, thus making them synergic in this activity.
We also provided an algorithm for the distribution of the activities
among worker threads, which makes them terminate the access to the
committed state of the different simulation objects rapidly and in a bal-
anced manner. This point is particularly relevant when considering the
evolved fully-shared PDES paradigm, while was unnecessary in earlier
approaches due to the simulation objects partitioning among threads.
This also enables avoiding negative impacts on execution synchroniza-
tion (e.g., rollback occurrence) that would be caused in scenarios where
only a subset of threads process simulation objects speculatively in for-
ward mode while other threads are still working on committed state
access for other simulation objects.
This proposal appears orthogonal to, and combinable with, other lit-
erature solutions for the effectiveness of speculative simulation plat-
forms.

206

Chapter 7

Conclusions

In this thesis, we addressed innovative solutions for speculative Par-
allel Discrete Event Simulation (PDES) on multi-core shared-memory
machines. We motivated the need for these solutions discussing how
the hardware has evolved over the years, in particular for what con-
cerns the transition from single-processor systems to multi-processor
systems and then multi-core systems. We highlighted the importance
of shared-memory machines in the context of the well-known memory
wall problem, as well as the challenges imposed by NUMA architec-
tures.
We argued that improving speculative PDES platforms on this kind of
machines required a shift on how the workload is distributed in these
platforms, and also on novel memory management strategies to fully
exploit the capabilities of the underlying hardware. In order to further
motivate our statement, we discussed the evolution of PDES systems
over the years, from cluster-based approaches, in which the simulation
model was distributed across several nodes communicating via message

207

passing, to an evolved architecture due to the establishment of shared-
memory machines. We discussed classical PDES architectures, consist-
ing of a long-term binding distribution, which does not fully exploit the
shared-memory machine’s capabilities (see Chapter 2), moving then to
a finer-grained workload distribution scheme, presenting a short-term
binding scheme. While the latter provides higher scalability and bet-
ter load balancing, we argue that it introduces several new challenges
to tackle, such as memory locality/NUMA unawareness, overhead of
operating systems’ services and critical-path operations intrusiveness.
We focused on aspects related to memory management, in order to
improve overall memory utilization and reduce the overhead and the
intrusiveness when managing shared resources.
This thesis revealed that locality-aware load-sharing strategies, leverag-
ing memory locality principles, are critical for improving overall mem-
ory utilization and therefore performance (i.e. throughput). It also
showed how NUMA-aware designs help in reducing the costs of cache
misses. Therefore, we devised a locality-aware load-sharing scheme in
order to favour both spatial and temporal locality when processing
events, leveraging a multi-level queue to avoid frequently accessing the
shared event pool. We also devised a dynamic window-based scheme
to manage the batch processing of events, to reduce the likelihood of
increasing the rollback probability, and a simulation objects migration
mechanism across NUMA nodes for workload balancing purposes (see
Chapter 4).
Regarding classical state recovery schemes for speculative PDES, we

208

showed the importance of reducing the costs related to memory man-
agement for the incremental checkpointing facility, exploiting operat-
ing systems’ protection services (namely mprotect()) and leverag-
ing Linux Kernel Modules (LKM) techniques. First, we focused on
reducing the costs associated to the mprotect() system-call when
used to track memory updates by devising a buddy-page scheme to
coalesce contiguous pages. Then, we focused on the reduction of
intrusiveness and overhead of the above-mentioned memory protec-
tion services, by developing new operating systems services to sup-
port the incremental checkpointing in a lightweight manner, leverag-
ing LKM techniques, in order to avoid paying the costs of the kernel
level activities pursued by the mprotect() system-call. We also en-
abled a work-deferred way of supporting the incremental checkpoint-
ing through a device driver, accordingly queried to retrieve the in-
formation regarding memory pages registered by the kernel facilities.
We showed how the proposed solution that exploits the mprotect()
system-call increases the throughput, compared to instrumentation-
based approaches and to single page-based approaches (namely, with-
out the buddy-page scheme). We then showed the reduced intrusive-
ness, as well as the improved performance, of the solution that lever-
ages LKM techniques, compared to the one exploiting the mprotect()
system-call (see Chapter 5).
Still focusing on the fine-grain sharing of resources, we tackled critical-
path operations such as the committed global state identification, in
order to inspect simulation trajectory, with close-to-zero delay and with
reduced intrusiveness. We highlight that avoiding interference among
threads when accessing simulation objects states is a challenging aspect

209

in this kind of PDES systems. We devised an effective scheme to do
state-swapping with close-to-zero delay, leveraging the IPI architecture
of Linux-based operating systems, and a workload balancing algorithm
to fairly distribute the activities across all threads. We showed the ef-
fectiveness of the proposed approach in terms of reduced delay of the
overall operation in Chapter 6, comparing the proposed approach to a
classic synchronous one.
The advancements presented in this thesis emphasize the need for
hardware-aware designs and memory aware strategies in PDES plat-
forms. As the hardware continues to evolve, future research must be
aware of it and be up-to-date, ensuring that PDES systems continue
to be a viable and effective tool for modelling complex systems. The
insights gained from this thesis not only advance the state-of-the-art
in PDES systems, filling the gap in the literature regarding fine-grain
sharing of resources in such systems, but also make significant contri-
bution to the fields of HPC and parallel simulation.

210

Bibliography

[1] Abar, S., Theodoropoulos, G. K., Lemarinier, P.,
and O’Hare, G. M. Agent based modelling and simulation
tools: A review of the state-of-art software. Computer Science
Review 24 (2017), 13–33.

[2] Abrams, M., and Richardson, D. S. Implementing a
global termination condition and collecting output measures in
parallel simulation.

[3] Agbaria, A., and Plank, J. S. Design, implementation,
and performance of checkpointing in netsolve. In Proceeding
International Conference on Dependable Systems and Net-
works. DSN 2000 (2000), IEEE, pp. 49–54.

[4] Antonacci, F., Pellegrini, A., and Quaglia, F. Con-
sistent and efficient output-streams management in optimistic
simulation platforms. In Proceedings of the 1st ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation
(2013), pp. 315–326.

211

[5] Auriche, L. R., Quaglia, F., and Ciciani, B. Run-time
selection of the checkpoint interval in time warp based simula-
tions. Simulation Practice and Theory 6, 5 (1998), 461–478.

[6] Ayani, R., and Rajaei, H. Parallel simulation based on
conservative time windows: a performance study. Concurrency:
Practice and Experience 6, 2 (1994), 119–142.

[7] Babaoglu, O., and Marzullo, K. Consistent global
states of distributed systems: Fundamental concepts and mech-
anisms. Distributed Systems 53 (1993).

[8] Banerjee, W. Challenges and applications of emerging non-
volatile memory devices. Electronics 9, 6 (2020), 1029.

[9] Boroumand, A., Ghose, S., Kim, Y., Ausavarung-
nirun, R., Shiu, E., Thakur, R., Kim, D., Kuusela,
A., Knies, A., Ranganathan, P., et al. Google work-
loads for consumer devices: Mitigating data movement bottle-
necks. In Proceedings of the Twenty-Third International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (2018), pp. 316–331.

[10] Büsing-Meneses, V., Montañola-Sales, C.,
Casanovas-Garcia, J., and Pellegrini, A. Anal-
ysis and optimization of a demographic simulator for parallel
environments. In 2015 Winter Simulation Conference (WSC)
(2015), IEEE, pp. 3218–3219.

212

[11] Carnà, S., Ferracci, S., De Santis, E., Pellegrini,
A., and Quaglia, F. Hardware-assisted incremental check-
pointing in speculative parallel discrete event simulation. In
2019 Winter Simulation Conference (WSC) (2019), IEEE,
pp. 2759–2770.

[12] Carothers, C. D., Bauer, D., and Pearce, S. Ross:
A high-performance, low-memory, modular time warp system.
Journal of parallel and distributed computing 62, 11 (2002),
1648–1669.

[13] Carothers, C. D., and Fujimoto, R. M. Efficient exe-
cution of time warp programs on heterogeneous, now platforms.
IEEE Transactions on Parallel and Distributed Systems 11,
3 (2000), 299–317.

[14] Carothers, C. D., Perumalla, K. S., and Fuji-
moto, R. M. The effect of state-saving in optimistic simu-
lation on a cache-coherent non-uniform memory access architec-
ture. In Proceedings of the 31st conference on Winter simu-
lation: Simulation—a bridge to the future-Volume 2 (1999),
pp. 1624–1633.

[15] Carothers, C. D., Perumalla, K. S., and Fujimoto,
R. M. Efficient optimistic parallel simulations using reverse
computation. ACM Transactions on Modeling and Computer
Simulation (TOMACS) 9, 3 (1999), 224–253.

[16] Chandy, K. M., and Misra, J. Distributed simulation:
A case study in design and verification of distributed programs.

213

IEEE Transactions on software engineering, 5 (1979), 440–
452.

[17] Chen, L.-l., Lu, Y.-s., Yao, Y.-p., Peng, S.-l., et al.
A well-balanced time warp system on multi-core environments.
In 2011 IEEE Workshop on Principles of Advanced and Dis-
tributed Simulation (2011), IEEE, pp. 1–9.

[18] Chetlur, M., and Wilsey, P. A. Working set based
scheduling in time warp simulations. In 40th Annual Simu-
lation Symposium (ANSS’07) (2007), IEEE, pp. 221–230.

[19] Cingolani, D., Pellegrini, A., and Quaglia, F.
Transparently mixing undo logs and software reversibility for
state recovery in optimistic pdes. ACM Transactions on Model-
ing and Computer Simulation (TOMACS) 27, 2 (2017), 1–26.

[20] Cox, D. C. Personal communications-a viewpoint. IEEE
Communications Magazine 28, 11 (1990), 8–12.

[21] Cucuzzo, D., D’Alessio, S., Quaglia, F., and Ro-
mano, P. A lightweight heuristic-based mechanism for collect-
ing committed consistent global states in optimistic simulation.
In 11th IEEE International Symposium on Distributed Simu-
lation and Real-Time Applications (DS-RT’07) (2007), IEEE,
pp. 227–234.

[22] D’Angelo, G., and Ferretti, S. Adaptive parallel and
distributed simulation of complex networks. Journal of Parallel
and Distributed Computing 163 (2022), 30–44.

214

[23] Dantzig, G. B. Discrete-variable extremum problems. Oper-
ations research 5, 2 (1957), 266–288.

[24] Davari, B., Dennard, R. H., and Shahidi, G. G. Cmos
scaling for high performance and low power-the next ten years.
Proceedings of the IEEE 83, 4 (1995), 595–606.

[25] Deelman, E., and Szymanski, B. K. Dynamic load bal-
ancing in parallel discrete event simulation for spatially explicit
problems. In Proceedings of the twelfth workshop on Parallel
and distributed simulation (1998), pp. 46–53.

[26] Dennard, R. Scaling limits of silicon vlsi technology. In The
Physics and Fabrication of Microstructures and Microde-
vices: Proceedings of the Winter School Les Houches, France,
March 25–April 5, 1986. Springer, 1986, pp. 352–369.

[27] Denning, P. J. The locality principle. Commun. ACM 48,
7 (July 2005), 19–24.

[28] Dickens, P. M., Nicol, D. M., Reynolds Jr, P. F.,
and Duva, J. M. The impact of adding aggressiveness to a
non-aggressive windowing protocol. In Proceedings of the 25th
conference on Winter simulation (1993), pp. 731–739.

[29] Dickens, P. M., Nicol, D. M., Reynolds Jr, P. F.,
and Duva, J. M. Analysis of bounded time warp and compar-
ison with yawns. ACM Transactions on Modeling and Com-
puter Simulation (TOMACS) 6, 4 (1996), 297–320.

215

[30] Dickman, T., Gupta, S., and Wilsey, P. A. Event pool
structures for pdes on many-core beowulf clusters. In Proceed-
ings of the 1st ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation (2013), pp. 103–114.

[31] Dolev, S., Hendler, D., and Suissa, A. Car-stm:
scheduling-based collision avoidance and resolution for software
transactional memory. In Proceedings of the twenty-seventh
ACM symposium on Principles of distributed computing
(2008), pp. 125–134.

[32] Eggers, S. J., and Katz, R. H. Evaluating the perfor-
mance of four snooping cache coherency protocols. In Proceed-
ings of the 16th annual international symposium on Com-
puter architecture (1989), pp. 2–15.

[33] Eker, A., Williams, B., Chiu, K., and Ponomarev,
D. Demand-driven pdes: Exploiting locality in simulation mod-
els. In Proceedings of the 2020 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation (2020), pp. 39–48.

[34] Feldkamp, N., Bergmann, S., and Strassburger, S.
Online analysis of simulation data with stream-based data min-
ing. In Proceedings of the 2017 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation (2017), pp. 241–
248.

[35] Ferscha, A., and Tripathi, S. K. Parallel and dis-
tributed simulation of discrete event systems. Citeseer, 1998.

216

[36] Fleischmann, J., and Wilsey, P. A. Comparative analy-
sis of periodic state saving techniques in time warp simulators. In
Proceedings of the ninth workshop on Parallel and distributed
simulation (1995), pp. 50–58.

[37] Fu, Y. Architectural Support for Large-scale Shared Memory
Systems. PhD thesis, Princeton University, 2017.

[38] Fujimoto, R. Time warp on a shared memory multiprocessor.
In ICPP (3) (1989), pp. 242–249.

[39] Fujimoto, R. M. Parallel discrete event simulation. Com-
munications of the ACM 33, 10 (1990), 30–53.

[40] Fujimoto, R. M. Performance of time warp under synthetic
workloads. In Proceedings of the SCS Multiconference on Dis-
tributed Simulations, 1990 (1990), vol. 22, pp. 23–28.

[41] Fujimoto, R. M. Parallel and distributed simulation sys-
tems. In Proceeding of the 2001 Winter Simulation Confer-
ence (Cat. No. 01CH37304) (2001), vol. 1, IEEE, pp. 147–157.

[42] Fujimoto, R. M., and Hybinette, M. Computing global
virtual time in shared-memory multiprocessors. ACM Transac-
tions on Modeling and Computer Simulation (TOMACS) 7,
4 (1997), 425–446.

[43] Fujimoto, R. M., and Panesar, K. S. Buffer manage-
ment in shared-memory time warp systems. In Proceedings of
the ninth workshop on Parallel and distributed simulation
(1995), pp. 149–156.

217

[44] Fujimoto, R. M., Tsai, J.-J., and Gopalakrishnan,
G. C. Design and evaluation of the rollback chip: Special pur-
pose hardware for time warp. IEEE Transactions on Comput-
ers 41, 01 (1992), 68–82.

[45] Gomes, Z. X. F., Unger, B., and Cleary, J. A fast
asynchronous gvt algorithm for shared memory multiprocessor
architectures. ACM SIGSIM Simulation Digest 25, 1 (1995),
203–208.

[46] Gupta, S., and Wilsey, P. A. Lock-free pending event
set management in time warp. In Proceedings of the 2nd ACM
SIGSIM Conference on Principles of Advanced Discrete Sim-
ulation (2014), pp. 15–26.

[47] Hackenberg, D., Molka, D., and Nagel, W. E. Com-
paring cache architectures and coherency protocols on x86-64
multicore smp systems. In Proceedings of the 42Nd Annual
IEEE/ACM International Symposium on microarchitecture
(2009), pp. 413–422.

[48] Hassidim, A. Cache replacement policies for multicore proces-
sors. In ICS (2010), pp. 501–509.

[49] Hay, J., and Wilsey, P. A. Experiments with hardware-
based transactional memory in parallel simulation. In Proceed-
ings of the 3rd ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation (2015), pp. 75–86.

218

[50] He, Y., Leiserson, C. E., and Leiserson, W. M. The
cilkview scalability analyzer. In Proceedings of the twenty-
second annual ACM symposium on Parallelism in algorithms
and architectures (2010), pp. 145–156.

[51] Hennessy, J. L., and Patterson, D. A. Computer ar-
chitecture: a quantitative approach. Elsevier, 2011.

[52] Heo, J., Yi, S., Cho, Y., Hong, J., and Shin, S. Y.
Space-efficient page-level incremental checkpointing. In Pro-
ceedings of the 2005 ACM symposium on Applied computing
(2005), pp. 1558–1562.

[53] Ianni, M., Marotta, R., Cingolani, D., Pellegrini,
A., and Quaglia, F. Optimizing simulation on shared-
memory platforms: the smart cities case. In 2018 Winter Sim-
ulation Conference (WSC) (2018), IEEE, pp. 1969–1980.

[54] Ianni, M., Marotta, R., Cingolani, D., Pellegrini,
A., and Quaglia, F. The ultimate share-everything pdes
system. In Proceedings of the 2018 ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation (2018), pp. 73–
84.

[55] Ianni, M., Marotta, R., Pellegrini, A., and
Quaglia, F. A non-blocking global virtual time algorithm with
logarithmic number of memory operations. In 2017 IEEE/ACM
21st International Symposium on Distributed Simulation and
Real Time Applications (DS-RT) (2017), IEEE, pp. 1–8.

219

[56] Ianni, M., Marotta, R., Pellegrini, A., and
Quaglia, F. Towards a fully non-blocking share-everything
pdes platform. In 2017 IEEE/ACM 21st International Sympo-
sium on Distributed Simulation and Real Time Applications
(DS-RT) (2017), IEEE, pp. 1–8.

[57] Jefferson, D. R. Virtual time. ACM Transactions on
Programming Languages and Systems (TOPLAS) 7, 3 (1985),
404–425.

[58] Kandukuri, S., and Boyd, S. Optimal power control
in interference-limited fading wireless channels with outage-
probability specifications. IEEE transactions on wireless com-
munications 1, 1 (2002), 46–55.

[59] Klaiber, A. C., and Levy, H. M. A comparison of mes-
sage passing and shared memory architectures for data parallel
programs. ACM SIGARCH Computer Architecture News 22,
2 (1994), 94–105.

[60] Klinkenberg, J., Kozhokanova, A., Terboven, C.,
Foyer, C., Goglin, B., and Jeannot, E. H2m: exploit-
ing heterogeneous shared memory architectures. Future Gener-
ation Computer Systems 148 (2023), 39–55.

[61] Koo, G., Oh, Y., Ro, W. W., and Annavaram, M.
Access pattern-aware cache management for improving data uti-
lization in gpu. In Proceedings of the 44th annual international
symposium on computer architecture (2017), pp. 307–319.

220

[62] Kung, H.-T., and Robinson, J. T. On optimistic meth-
ods for concurrency control. ACM Transactions on Database
Systems (TODS) 6, 2 (1981), 213–226.

[63] Lawall, J. L., and Muller, G. Efficient incremental
checkpointing of java programs. In Proceeding International
Conference on Dependable Systems and Networks. DSN 2000
(2000), IEEE, pp. 61–70.

[64] Leiserson, C. E., Thompson, N. C., Emer, J. S.,
Kuszmaul, B. C., Lampson, B. W., Sanchez, D., and
Schardl, T. B. There’s plenty of room at the top: What will
drive computer performance after moore’s law? Science 368,
6495 (2020), eaam9744.

[65] Li, K., Naughton, J. F., and Plank, J. S. Low-latency,
concurrent checkpointing for parallel programs. IEEE transac-
tions on Parallel and Distributed Systems 5, 8 (1994), 874–
879.

[66] Lindén, J., and Jonsson, B. A skiplist-based concurrent
priority queue with minimal memory contention. In Princi-
ples of Distributed Systems: 17th International Conference,
OPODIS 2013, Nice, France, December 16-18, 2013. Pro-
ceedings 17 (2013), Springer, pp. 206–220.

[67] Liu, C., Jia, J., Zhang, Q., and Zhao, L. Lightweight
websim rendering framework based on cloud-baking. In Proceed-
ings of the 2017 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation (2017), pp. 221–229.

221

[68] Mahmood, I., Haris, M., and Sarjoughian, H. Ana-
lyzing emergency evacuation strategies for mass gatherings using
crowd simulation and analysis framework: Hajj scenario. In Pro-
ceedings of the 2017 acm sigsim conference on principles of
advanced discrete simulation (2017), pp. 231–240.

[69] Maldonado, W., Marlier, P., Felber, P., Suissa,
A., Hendler, D., Fedorova, A., Lawall, J. L., and
Muller, G. Scheduling support for transactional memory con-
tention management. ACM Sigplan Notices 45, 5 (2010), 79–90.

[70] Maqbool, F., Malik, A. W., Raza Naqvi, S. M.,
Ahmed, N., D’Angelo, G., and Mahmood, I. Seec-
ssim: A toolkit for parallel and distributed simulations for mobile
devices. Journal of Simulation 15, 3 (2021), 235–260.

[71] Marathe, M. High performance simulations to support real-
time covid19 response. In Proceedings of the 2020 ACM
SIGSIM conference on principles of advanced discrete simu-
lation (2020), pp. 157–157.

[72] Marotta, R., Ianni, M., Pellegrini, A., and
Quaglia, F. A lock-free o (1) event pool and its application to
share-everything pdes platforms. In 2016 IEEE/ACM 20th In-
ternational Symposium on Distributed Simulation and Real
Time Applications (DS-RT) (2016), IEEE, pp. 53–60.

[73] Marotta, R., Ianni, M., Pellegrini, A., and
Quaglia, F. A conflict-resilient lock-free calendar queue for
scalable share-everything pdes platforms. In Proceedings of the

222

2017 ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation (2017), pp. 15–26.

[74] Marotta, R., Montesano, F., Pellegrini, A., and
Quaglia, F. Incremental checkpointing of large state sim-
ulation models with write-intensive events via memory update
correlation on buddy pages. In 2023 IEEE/ACM 27th Interna-
tional Symposium on Distributed Simulation and Real Time
Applications (DS-RT) (2023), IEEE, pp. 40–47.

[75] Marotta, R., Montesano, F., and Quaglia, F. Effec-
tive access to the committed global state in speculative parallel
discrete event simulation on multi-core machines. In Proceed-
ings of the 2023 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation (2023), pp. 107–117.

[76] McKee, S. A. Reflections on the memory wall. In Proceedings
of the 1st conference on Computing frontiers (2004), p. 162.

[77] Mei, X., Zhao, K., Liu, C., and Chu, X. Benchmarking
the memory hierarchy of modern gpus. In Network and Parallel
Computing: 11th IFIP WG 10.3 International Conference,
NPC 2014, Ilan, Taiwan, September 18-20, 2014. Proceed-
ings 11 (2014), Springer, pp. 144–156.

[78] Mellor-Crummey, J., Whalley, D., and Kennedy,
K. Improving memory hierarchy performance for irregular ap-
plications. In Proceedings of the 13th international conference
on Supercomputing (1999), pp. 425–433.

223

[79] Mellor-Crummey, J. M., and Scott, M. L. Algo-
rithms for scalable synchronization on shared-memory multipro-
cessors. ACM Transactions on Computer Systems (TOCS)
9, 1 (1991), 21–65.

[80] Misra, J. Distributed discrete-event simulation. ACM Com-
puting Surveys (CSUR) 18, 1 (1986), 39–65.

[81] Montañola-Sales, C., Gilabert-Navarro, J. F.,
Casanovas-Garcia, J., Prats, C., López, D., Valls,
J., Cardona, P. J., and Vilaplana, C. Modeling tuber-
culosis in barcelona. a solution to speed-up agent-based simula-
tions. In 2015 Winter Simulation Conference (WSC) (2015),
IEEE, pp. 1295–1306.

[82] Montañola-Sales, C., Onggo, B. S., Casanovas-
Garcia, J., Cela-Espín, J. M., and Kaplan-
Marcusán, A. Approaching parallel computing to simulat-
ing population dynamics in demography. Parallel computing
59 (2016), 151–170.

[83] Montesano, F. Full-stack revision of memory and data man-
agement in pdes on multi-core machines. In Proceedings of the
33rd International Symposium on High-Performance Paral-
lel and Distributed Computing (2024), pp. 417–420.

[84] Montesano, F. Towards the optimization of memory and
data management in speculative pdes on multi-core machines. In
Proceedings of the 38th ACM SIGSIM Conference on Prin-
ciples of Advanced Discrete Simulation (2024), pp. 63–64.

224

[85] Montesano, F., Marotta, R., and Quaglia, F.
Lightweight operating system services for incremental check-
pointing in speculative discrete event simulation on linux plat-
forms. In 2024 IEEE 30th International Conference on Paral-
lel and Distributed Systems (ICPADS) (2024), IEEE, pp. 745–
752.

[86] Montesano, F., Marotta, R., and Quaglia, F. Spa-
tial/temporal locality-based load-sharing in speculative discrete
event simulation on multi-core machines. ACM Trans. Model.
Comput. Simul. 35, 1 (Nov. 2024).

[87] Moore, G. Moore’s law. Electronics Magazine 38, 8 (1965),
114.

[88] Moore, G. E. Cramming more components onto integrated
circuits. Proceedings of the IEEE 86, 1 (1998), 82–85.

[89] Nicolae, B., and Cappello, F. Ai-ckpt: leveraging mem-
ory access patterns for adaptive asynchronous incremental check-
pointing. In Proceedings of the 22nd international sympo-
sium on High-performance parallel and distributed computing
(2013), pp. 155–166.

[90] Palaniswamy, A. C., and Wilsey, P. A. Adaptive
bounded time windows in an optimistically synchronized sim-
ulator. In [1993] Proceedings Third Great Lakes Symposium
on VLSI-Design Automation of High Performance VLSI Sys-
tems (1993), IEEE, pp. 114–118.

225

[91] Palaniswamy, A. C., and Wilsey, P. A. An analytical
comparison of periodic checkpointing and incremental state sav-
ing. ACM SIGSIM Simulation Digest 23, 1 (1993), 127–134.

[92] Palaniswamy, A. C., and Wilsey, P. A. Scheduling time
warp processes using adaptive control techniques. In Proceedings
of Winter Simulation Conference (1994), IEEE, pp. 731–738.

[93] Papamarcos, M. S., and Patel, J. H. A low-overhead co-
herence solution for multiprocessors with private cache memories.
In Proceedings of the 11th annual international symposium
on Computer architecture (1984), pp. 348–354.

[94] Pellegrini, A., and Quaglia, F. The rome optimistic
simulator: a tutorial. In European Conference on Parallel Pro-
cessing (2013), Springer, pp. 501–512.

[95] Pellegrini, A., and Quaglia, F. Wait-free global vir-
tual time computation in shared memory timewarp systems. In
2014 IEEE 26th International Symposium on Computer Ar-
chitecture and High Performance Computing (2014), IEEE,
pp. 9–16.

[96] Pellegrini, A., and Quaglia, F. Numa time warp. In
Proceedings of the 3rd ACM SIGSIM Conference on Princi-
ples of Advanced Discrete Simulation (2015), pp. 59–70.

[97] Pellegrini, A., and Quaglia, F. Cross-state events: A
new approach to parallel discrete event simulation and its spec-
ulative runtime support. Journal of parallel and distributed
computing 132 (2019), 48–68.

226

[98] Pellegrini, A., Vitali, R., and Quaglia, F. Di-
dymelor: Logging only dirty chunks for efficient management of
dynamic memory based optimistic simulation objects. In 2009
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced
and Distributed Simulation (2009), IEEE, pp. 45–53.

[99] Pellegrini, A., Vitali, R., and Quaglia, F. Auto-
nomic state management for optimistic simulation platforms.
IEEE Transactions on Parallel and Distributed Systems 26,
6 (2014), 1560–1569.

[100] Perumalla, K. S., Park, A. J., and Tipparaju, V.
Discrete event execution with one-sided and two-sided gvt al-
gorithms on 216,000 processor cores. ACM Transactions on
Modeling and Computer Simulation (TOMACS) 24, 3 (2014),
1–25.

[101] Plank, J. S., Beck, M., Kingsley, G., and Li, K.
Libckpt: Transparent checkpointing under unix. Computer
Science Department, 1994.

[102] Plank, J. S., Li, K., and Puening, M. A. Diskless
checkpointing. IEEE Transactions on parallel and Distributed
Systems 9, 10 (1998), 972–986.

[103] Preiss, B. R., Loucks, W. M., and Macintyre, I. D.
Effects of the checkpoint interval on time and space in time warp.
ACM Transactions on Modeling and Computer Simulation
(TOMACS) 4, 3 (1994), 223–253.

227

[104] Quaglia, F. Event history based sparse state saving in time
warp. ACM SIGSIM Simulation Digest 28, 1 (1998), 72–79.

[105] Quaglia, F. Fast-software-checkpointing in optimistic simula-
tion: Embedding state saving into the event routine instructions.
In Proceedings of the Thirteenth Workshop on Parallel and
Distributed Simulation, PADS ’99, Atlanta, GA, USA, May
1-4, 1999 (1999), R. M. Fujimoto and S. J. Turner, Eds., IEEE
Computer Society, pp. 118–125.

[106] Quaglia, F. A cost model for selecting checkpoint positions in
time warp parallel simulation. IEEE Transactions on Parallel
and Distributed Systems 12, 4 (2001), 346–362.

[107] Quaglia, F. A low-overhead constant-time lowest-timestamp-
first cpu scheduler for high-performance optimistic simulation
platforms. Simulation Modelling Practice and Theory 53
(2015), 103–122.

[108] Quaglia, F., and Cortellessa, V. On the processor
scheduling problem in time warp synchronization. ACM Trans-
actions on Modeling and Computer Simulation (TOMACS)
12, 3 (2002), 143–175.

[109] Quaglia, F., and Santoro, A. Nonblocking checkpoint-
ing for optimistic parallel simulation: Description and an imple-
mentation. IEEE Transactions on Parallel and Distributed
systems 14, 6 (2003), 593–610.

[110] Rab, M., Marotta, R., Ianni, M., Pellegrini, A.,
and Quaglia, F. Numa-aware non-blocking calendar queue.

228

In 2020 IEEE/ACM 24th International Symposium on Dis-
tributed Simulation and Real Time Applications (DS-RT)
(2020), IEEE, pp. 1–9.

[111] Rao, D. M., and Higiro, J. D. Managing pending events
in sequential and parallel simulations using three-tier heap and
two-tier ladder queue. ACM Transactions on Modeling and
Computer Simulation (TOMACS) 29, 2 (2019), 1–28.

[112] Reed, D. A., and Dongarra, J. Exascale computing and
big data. Communications of the ACM 58, 7 (2015), 56–68.

[113] Riley, G. F., Fujimoto, R. M., and Ammar, M. H.
A generic framework for parallelization of network simulations.
In MASCOTS’99. Proceedings of the Seventh International
Symposium on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems (1999), IEEE, pp. 128–
135.

[114] Romano, P., Palmieri, R., Quaglia, F., Carvalho,
N., and Rodrigues, L. E. T. On speculative replication
of transactional systems. J. Comput. Syst. Sci. 80, 1 (2014),
257–276.

[115] Rönngren, R., and Ayani, R. Adaptive checkpointing in
time warp. ACM SIGSIM Simulation Digest 24, 1 (1994),
110–117.

[116] Rönngren, R., Liljenstam, M., Ayani, R., and Mon-
tagnat, J. Transparent incremental state saving in time warp

229

parallel discrete event simulation. ACM SIGSIM Simulation
Digest 26, 1 (1996), 70–77.

[117] Ronngren, R., Liljenstram, M., Ayani, R., and
Montagnat, J. A comparative study of state saving mecha-
nisms for time warp synchronized parallel discrete event simula-
tion. In Proceedings of the 29th Annual Simulation Sympo-
sium (1996), IEEE, pp. 5–14.

[118] Ross, C. J., Carothers, C. D., Mubarak, M., Ross,
R. B., Li, J. K., and Ma, K.-L. Leveraging shared memory
in the ross time warp simulator for complex network simulations.
In 2018 Winter Simulation Conference (WSC) (2018), IEEE,
pp. 3837–3848.

[119] Ross, C. J., Wolfe, N., Plagge, M., Carothers,
C. D., Mubarak, M., and Ross, R. B. Using scien-
tific visualization techniques to visualize parallel network simu-
lations. In Proceedings of the 2019 ACM SIGSIM Confer-
ence on Principles of Advanced Discrete Simulation (2019),
pp. 197–200.

[120] Santoro, A., and Quaglia, F. Transparent optimistic syn-
chronization in the high-level architecture via time-management
conversion. ACM Transactions on Modeling and Computer
Simulation (TOMACS) 22, 4 (2012), 1–26.

[121] Schaller, R. R. Moore’s law: past, present and future. IEEE
spectrum 34, 6 (1997), 52–59.

230

[122] Schordan, M., Oppelstrup, T., Jefferson, D., and
Barnes, P. D. Generation of reversible c++ code for opti-
mistic parallel discrete event simulation. New Generation Com-
puting 36 (2018), 257–280.

[123] Seelam, S., Fong, L., Tantawi, A., Lewars, J., Di-
virgilio, J., and Gildea, K. Extreme scale computing:
Modeling the impact of system noise in multicore clustered sys-
tems. In 2010 IEEE International Symposium on Parallel &
Distributed Processing (IPDPS) (2010), IEEE, pp. 1–12.

[124] Serena, L., D’Angelo, G., and Ferretti, S. Security
analysis of distributed ledgers and blockchains through agent-
based simulation. Simulation Modelling Practice and Theory
114 (2022), 102413.

[125] Shun, J. Shared-memory parallelism can be simple, fast,
and scalable. Morgan & Claypool, 2017.

[126] Siguenza-Torres, A., Cai, W., and Knoll, A. To-
wards a performance-aware partitioning algorithm for cloud-
based microscopic vehicle traffic simulations. In Proceedings
of the 2023 ACM SIGSIM Conference on Principles of Ad-
vanced Discrete Simulation (2023), pp. 44–45.

[127] Silvestri, E., Milia, C., Marotta, R., Pellegrini,
A., and Quaglia, F. Exploiting inter-processor-interrupts
for virtual-time coordination in speculative parallel discrete event

231

simulation. In Proceedings of the 2020 ACM SIGSIM Confer-
ence on Principles of Advanced Discrete Simulation (2020),
pp. 49–59.

[128] Silvestri, E., Pellegrini, A., Di Sanzo, P., and
Quaglia, F. Effective runtime management of tasks and prior-
ities in gnu openmp applications. IEEE Transactions on Com-
puters 71, 10 (2021), 2632–2645.

[129] Sköld, S., and Rönngren, R. Event sensitive state saving
in time warp parallel discrete event simulations. In Proceedings
of the 28th conference on Winter simulation (1996), pp. 653–
660.

[130] Smith, J. E. A study of branch prediction strategies. In 25
years of the international symposia on Computer architecture
(selected papers) (1998), pp. 202–215.

[131] Soliman, H. M., and Elmaghraby, A. S. An analytical
model for hybrid checkpointing in time warp distributed simula-
tion. IEEE Transactions on Parallel and Distributed Systems
9, 10 (1998), 947–951.

[132] Srinivasan, S., and Reynolds Jr, P. F. Non-interfering
gvt computation via asynchronous global reductions. In Pro-
ceedings of the 25th conference on Winter simulation (1993),
pp. 740–749.

[133] Srinivasan, S., and Reynolds Jr, P. F. Elastic time.
ACM Transactions on Modeling and Computer Simulation
(TOMACS) 8, 2 (1998), 103–139.

232

[134] Suryanarayanan, V., and Theodoropoulos, G. Syn-
chronised range queries in distributed simulations of multiagent
systems. ACM Transactions on Modeling and Computer Sim-
ulation (TOMACS) 23, 4 (2013), 1–25.

[135] Sutter, H., et al. The free lunch is over: A fundamental
turn toward concurrency in software. Dr. Dobb’s journal 30, 3
(2005), 202–210.

[136] Swenson, B. P., and Riley, G. F. A new approach to zero-
copy message passing with reversible memory allocation in multi-
core architectures. In 2012 ACM/IEEE/SCS 26th Workshop
on Principles of Advanced and Distributed Simulation (2012),
IEEE, pp. 44–52.

[137] Tang, W. T., Goh, R. S. M., and Thng, I. L.-J. Ladder
queue: An o (1) priority queue structure for large-scale discrete
event simulation. ACM Transactions on Modeling and Com-
puter Simulation (TOMACS) 15, 3 (2005), 175–204.

[138] Taylor, M. B. A landscape of the new dark silicon design
regime. IEEE Micro 33, 5 (2013), 8–19.

[139] Toccaceli, R., and Quaglia, F. Dymelor: Dynamic
memory logger and restorer library for optimistic simulation ob-
jects with generic memory layout. In 2008 22nd Workshop on
Principles of Advanced and Distributed Simulation (2008),
IEEE, pp. 163–172.

233

[140] Veenstra, J. E., and Fowler, R. J. A performance
evaluation of optimal hybrid cache coherency protocols. In Pro-
ceedings of the fifth international conference on Architectural
support for programming languages and operating systems
(1992), pp. 149–160.

[141] Vitali, R., Pellegrini, A., and Cerasuolo, G. Cache-
aware memory manager for optimistic simulations. In Fifth In-
ternational Conference on Simulation Tools and Techniques
(2012).

[142] Vitali, R., Pellegrini, A., and Quaglia, F. Load
sharing for optimistic parallel simulations on multi core machines.
ACM SIGMETRICS Performance Evaluation Review 40, 3
(2012), 2–11.

[143] Vitali, R., Pellegrini, A., and Quaglia, F. Towards
symmetric multi-threaded optimistic simulation kernels. In 2012
ACM/IEEE/SCS 26th Workshop on Principles of Advanced
and Distributed Simulation (2012), IEEE, pp. 211–220.

[144] Vogt, D., Miraglia, A., Portokalidis, G., Bos, H.,
Tanenbaum, A., and Giuffrida, C. Speculative memory
checkpointing. In Proceedings of the 16th Annual Middleware
Conference (2015), pp. 197–209.

[145] Wang, B., Yu, W., Sun, X.-H., and Wang, X. Da-
cache: Memory divergence-aware gpu cache management. In
Proceedings of the 29th ACM on International Conference
on Supercomputing (2015), pp. 89–98.

234

[146] Wang, J., Abu-Ghazaleh, N., and Ponomarev, D.
Air: Application-level interference resilience for pdes on multi-
core systems. ACM Transactions on Modeling and Computer
Simulation (TOMACS) 25, 3 (2015), 1–25.

[147] Wang, J., Jagtap, D., Abu-Ghazaleh, N., and Pono-
marev, D. Parallel discrete event simulation for multi-core
systems: Analysis and optimization. IEEE Transactions on
Parallel and Distributed Systems 25, 6 (2013), 1574–1584.

[148] Wenjie, T., Yiping, Y., Tianlin, L., Xiao, S., and
Feng, Z. An adaptive persistence and work-stealing combined
algorithm for load balancing on parallel discrete event simulation.
ACM Transactions on Modeling and Computer Simulation
(TOMACS) 30, 2 (2020), 1–26.

[149] West, D., and Panesar, K. Automatic incremental state
saving. In Proceedings of the Tenth Workshop on Parallel and
Distributed Simulation (1996), pp. 78–85.

[150] Wong, W. A., and Baer, J.-L. Modified lru policies for im-
proving second-level cache behavior. In Proceedings Sixth Inter-
national Symposium on High-Performance Computer Archi-
tecture. HPCA-6 (Cat. No. PR00550) (2000), IEEE, pp. 49–
60.

[151] Young, C. H., and Wilsey, P. A. Optimistic fossil col-
lection for time warp simulation. In Proceedings of HICSS-29:
29th Hawaii International Conference on System Sciences
(1996), vol. 1, IEEE, pp. 364–372.

235

[152] Zehe, D., Viswanathan, V., Cai, W., and Knoll, A.
Online data extraction for large-scale agent-based simulations. In
Proceedings of the 2016 ACM SIGSIM Conference on Prin-
ciples of Advanced Discrete Simulation (2016), pp. 69–78.

[153] Zhang, B., Zhong, J., and Cai, W. A data-driven ap-
proach for pedestrian intention prediction in large public places.
In Proceedings of the 2022 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation (2022), pp. 33–
36.

236

	Ackowledgments
	Abstract
	List of figures
	List of tables
	List of Code
	List of Algorithms
	1 Introduction
	1.1 Context
	1.2 Parallel Discrete Event Simulation
	1.3 Challenges
	1.4 Contributions
	1.5 List of Published Papers

	2 Preliminaries
	2.1 Memory Hierarchy
	2.1.1 Cache memory
	2.1.2 Main Memory
	2.1.2.1 NUMA architecture

	2.2 Shared-memory Architectures
	2.2.1 Cache Coherency

	2.3 Virtual Memory
	2.3.1 The Translation Lookaside Buffer

	2.4 Discrete Event Simulation Systems
	2.5 Parallel Discrete Event Simulation Systems
	2.5.1 Time Warp
	2.5.1.1 Local Virtual Time
	2.5.1.2 Global Virtual Time
	2.5.1.3 State Saving and Causality Violations Recovery
	2.5.1.4 Reverse computation

	2.6 Reshuffle of the PDES Architecture
	2.7 Simulation Models and Benchmarks
	2.7.1 PHOLD
	2.7.2 Personal Communication System
	2.7.3 Tuberculosis

	3 State-of-the-art
	3.1 Memory Locality
	3.2 Checkpointing
	3.3 State Trajectory Inspection

	4 Spatial/Temporal Locality-based Load-sharing
	4.1 Baseline Architectural Concepts
	4.1.1 Distance between Threads
	4.1.2 Simulation Object Memory Layout

	4.2 Locality Aware Scheme
	4.3 Workload Management Scheme
	4.4 Multi-view Event Pool Management
	4.5 Dynamic Window Management
	4.6 Dynamic NUMA Placement of Simulation Objects
	4.7 Experimental Evaluation
	4.7.1 Test-bed Environment

	4.8 Benchmark Applications
	4.8.1 Preliminary Experimental Evaluation for Parameters Setup

	4.9 Results
	4.9.1 Results with PHOLD
	4.9.2 Results with PCS
	4.9.3 Results with TBC

	4.10 Final Remarks

	5 Memory Aware and Lightweight Mechanisms for Incremental Checkpointing
	5.1 Write-tracking Mechanism via mprotect()
	5.2 Decision Model for the Memory Aware Incremental Checkpointing
	5.2.1 Estimating Costs of the Buddy-based Approach

	5.3 Experimental Evaluation
	5.3.1 Test-bed Environment

	5.4 Benchmark Application
	5.5 Results
	5.5.1 Considerations

	5.6 Lightweight Operating System Service for Incremental Checkpointing
	5.6.1 Write-tracking Mechanism via LKM
	5.6.2 Dirty-page Address Logging Device

	5.7 Experimental Evaluation
	5.7.1 Test-bed Environment

	5.8 Preliminary Experimental Evaluation
	5.8.1 Results

	5.9 Benchmark Application
	5.9.1 Results

	5.10 Final Remarks

	6 Effective Access to the Committed Global State
	6.1 System Architecture
	6.2 Execution Contexts
	6.3 Memory Safety of Simulation Object States
	6.4 State-swapping Activities Distribution
	6.5 Experimental Evaluation
	6.5.1 Test-bed Environment

	6.6 Benchmark Application
	6.6.1 Compared Solutions and Metrics

	6.7 Results
	6.8 Final Remarks

	7 Conclusions

